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Abstract: Arrays composed of high-gain reflector antennas are used for radio-astronomical purposes and, more recently, are
proposed as ground station for deep space communications. This latter application requires a precise knowledge of the
degradation that phase, amplitude and pointing fluctuations impose on the capability of the array to combine coherently the
signal received or transmitted from each antenna. In this study, an analytical model for the fluctuation of each parameter
(phase, amplitude and pointing) is derived and it is used to predict the efficiency of an array composed of an arbitrary
number of high-gain reflector antennas. The analytical models are verified by numerical simulations and applied to an array
layout currently proposed as possible future ground stations for the European Space Agency.

1 Introduction

A key parameter of antennas for space application, where
faint electromagnetic signals are received from very long
distances and a large equivalent isotropic radiated power
(EIRP) is required, is the antenna gain. To this aim,
reflector antennas are widely adopted because of their large
physical area. In particular, the antenna gain can be
calculated as [1]

G = 4pj
S

l2 (1)

where l is the working wavelength, S is the physical area and
j is the antenna efficiency, which includes many different
terms, such as the illumination efficiency, the spillover
efficiency and the surface efficiency. This latter term is one
of the principal obstacles that prevents the possibility to
build arbitrarily large reflector antennas, as shown in [2]. In
fact, beyond a critical mechanical dimension, it is extremely
difficult to provide a surface shape close to designed profile
(e.g. parabolic reflectors) because of the gravity-induced
loads. This in turn poses a practical limit to the maximum
gain achievable by a reflector antenna. Currently, the largest
fully steerable reflector antennas have main reflector
diameters in the order of 100 m [3, 4].

Despite the huge physical area offered by these antennas,
the need of even larger collecting areas has led to arrays
composed of reflector antennas, which provide an enormous
total area while maintaining a reasonable antenna diameter,
hence an acceptable surface accuracy. Typical examples of
arrays of reflector antennas already operating or under
construction are the Very Large Array (VLA), USA [5], the
Allen Telescope Array (ATA), USA [6], the Atacama Large

Millimeter Array (ALMA), Chile [7] and the Australia
Telescope Compact Array (ATCA), Australia [8]. The
number of antennas, the diameter of each antenna and the
equivalent single-dish diameter for these arrays are reported
in Table 1.

All previous arrays have been primarily built and operated
for radio-astronomical purposes. Despite the great potential
that arrays can offer to deep space (DS) communications,
only in some cases they have been applied. Early
experiments were performed in the 1970s by the Jet
Propulsion Laboratory (JPL). More recently, the arraying
capability can be provided at JPL sites by using the 34 m
antennas available at each communication complex,
normally used as single independent ground stations [9].
However, array are not usually used on a permanent basis
and, most of all, they are not considered as the baseline
when performing the link budget calculations required to
determine the communication systems to be developed and
installed on a spacecraft. This is mainly because of the
difficulties to achieve a good coherence between the
antennas for all operating scenarios (e.g. strong atmospheric
turbulence, rains and low elevation angles), a paramount
requirement for ground stations, which must usually
guarantee a time availability significantly higher than for
radio telescopes. Nevertheless, all major space agencies,
including National Aeronautics and Space Administration
and the European Space Agency (ESA) are funding projects
aimed to analyse the feasibility of arrays of reflector
antennas specifically devoted to DS communications [10, 11].

For these reasons, it is important to develop analytical tools
able to predict the level of coherence achievable for a given
array. Mathematical models applicable to normal arrays (i.e.
arrays composed of sub-wavelength elements with sub-
wavelength reciprocal distances) are described in textbooks
and previous works [12, 13]. The development of the arrays
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composed of high-gain antennas for radio-astronomy induced
the first studies specifically tailored to this type of arrays [14],
whereas only in recent years the attention was focused on
arrays for space communications, with theoretical works on
phase errors [15, 16], phase and pointing errors [17], phase
and amplitude errors [18] and experimental works [19, 20].

However, previous works on arrays composed of high-gain
antennas mainly addressed phase errors (possibly adding the
effect of amplitude or pointing errors), in some case for a
limited number of antennas (two) or with a limited
development of general equations to calculate the array
performance. Therefore there is a need for a comprehensive
and general mathematical model to clearly indicate the
effect of phase, amplitude and pointing errors on the array
phasing. This paper derives this model, intended to be used
as a prediction tool to calculate the performance achievable
by an array composed of high-gain antennas separated by
multi-wavelength distances, with no limitations on the
number of elements composing the array and under
different working conditions. This is particularly useful for
arrays intended for space communications, where it is very
important to know the expected performance also for
extreme operating scenario (e.g. severe weather, critical
failures). In order to verify the analytical approach, the
expected array degradation is also calculated by means of
numerical simulation tools for a practical test case, currently
proposed as possible future ground station for ESA. The
agreement between the numerical simulations and the
derived models can be considered as very good.

2 Analytical formulation

The gain of a generic antenna can be expressed by [1]

G = 4p
Kx

P
(2)

where Kx is the radiation intensity generated along a certain
direction and P is the input power. Now, let us consider the
standard far-field approximation, which allows for writing

E0 ≃ p̂
�������
2h0Kx

√ e−j2pr

l
(3)

where E0 is the electric field calculated at a distance r from
the source, p̂ is the polarisation vector and h0 is the vacuum
impedance. Substituting (3) into (2) the antenna gain becomes

G ≃ 4p

2h0

|rE0|2

P
(4)

Now, let us consider an array composed of N elements. If
high-gain reflector antennas are assumed, any mutual
coupling between them can be neglected. Therefore each
antenna radiates independently from the others. Equation

(4) is accordingly re-formulated as

Garray ≃ 4p

2h0

|r(E1 + E2 + · · · + EN )|2

P1 + P2 + · · · + PN

(5)

where E is the electric field generated by the ith antenna and
Pi is the input power at the ith antenna. If all antennas have an
identical input power P, assuming that the electric fields
generated at a distance r are the same (condition of perfect
coherence between identical antennas), (5) will become

Garray ≃ 4p

2h0

|rNE|2

NP
≃ N

4p

2h0

|rE|2

P
≃ NG (6)

demonstrating that for an array of high-gain antennas (with no
mutual coupling) the maximum gain of the array, achievable
if condition of perfect coherence is met, is N times the gain of
the single antenna. This approximation is widely adopted in
the literature to study this type of arrays [21, 22], which
corresponds to the statement that the total collecting area of
the array is the sum of the collecting areas given by each
antennas.

In order to introduce phase, amplitude and pointing errors,
it is useful to express the electric field and the power
associated with each antenna as function of a generic
excitation coefficient. In fact, the final effect of any phase,
amplitude or pointing fluctuations can be thought to be
assigned to the excitation coefficient of each antenna.
According to this formulation, the following equations hold

Ei = CiE0 (7)

Ci = Aie
jwi f (ui) (8)

Pi =
1

2
Re{Z0}|I0|2A2

i
(9)

where Ai is the amplitude error (ranging from 1 to 0), wi is the
phase error, f (ui) is a function accounting for the pointing
error, I0 and Z0 are the input current and the input
impedance of the antenna, respectively. Of course, the
power at the input port of each antenna is only affected by
Ai. Please note that, for sake of brevity and without loosing
generality, the terms Ai, wI and f (ui) only account for the
excitation errors, and they do not describe the element
excitations in absolute values. In other words, the terms
intentionally assigned to each element of the array to
modify the excitation (e.g. phase terms required to have
constructive interference along the pointing direction of the
array) are not errors and they are not included in the
analysis. Now, substituting (7) and (9) into (5) it is obtained
that

Garray ≃ 4p

2h0

2|rE0(A1ejw1 f (u1) + · · · + AN ejwN f (uN ))|2

Re{Z0}|I0|2(A2
1 + · · · + A2

N )

(10)

In the next sections, all the different contribution will be
addressed.

2.1 Phase errors

The phase errors are best analysed according to a statistical
formulation where the mean value and the standard

Table 1 Example of arrays of reflector antennas

Array Number of

antennas

Diameter of each

antenna, m

Equivalent

diameter, m

VLA 27 25 130

ATA 42 6 39

ALMA 64 12 96

ATCA 6 22 54
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deviation sw are given as follow

�w = 1

N

∑N

i

wi (11)

sw =

���������������∑N
i (wi − �w)2

N

√
(12)

Assuming that only phase errors are present [which means
Ai ¼ 1 and f (ui) ¼ 1], (10) becomes

Garray ≃ 4p

2h0

2|rE0(e jw1 + · · · + e jwN )|2

Re{Z0}|I0|2N
(13)

By dividing (13) for the maximum array gain (i.e. no phase
errors, wi ¼ 0) the following equation is derived

Garray

Gmax
array

= xf ≃
|e jw1 + · · · + e jwN |2

N 2
(14)

where xf is a scalar real number ranging from zero to unity
and indicating how good the arraying is. For small phase
errors each exponential function in (14) can be
approximated by the first three terms of its Taylor series

xf ≃
|1 + jw1 − w2

1/2 + · · · + 1 + jwN − w2
N/2|2

N 2
(15)

Thus

xf ≃
N + j

∑N
i wi − (1/2)

∑N
i (wi)

2
∣∣∣ ∣∣∣2

N 2

=
N + jN �w− (1/2)

∑N
i (wi)

2
∣∣∣ ∣∣∣2

N 2
(16)

Now, let us assume a phase fluctuation distribution with mean
value equal to zero (�w = 0). This is possible because an
arbitrary phase bias can always be added to each term of
the distribution to meet this condition, without altering the
physical meaning of the phase errors, which is related to
relative discrepancies and not to absolute values. In
addition, any terms of (16) containing phase errors raised to
more than second power can be discarded. This turns into

xf ≃ 1 − s2
w (17)

2.2 Amplitude errors

For amplitude errors, the following statistical parameters can
be defined:

�A = 1

N

∑N

i

Ai (18)

sA =

���������������∑N
i (Ai − �A)2

N

√
(19)

where Ā is the mean value and sA is the standard deviation. In
order to account for amplitude errors, the terms in (10) are

considered accordingly (i.e. wi ¼ 0, f (ui) ¼ 1). In addition,
as done for phase errors, the array gain is divided by the
maximum array gain (i.e. no amplitude errors, Ai ¼ 1) to
calculate the array degradation

xa ≃
(A1 + · · · + AN )2

N (A2
1 + · · · + A2

N )
(20)

where xa is a scalar real number ranging from zero to unity
and indicating how good the arraying is. Manipulating (19),
(20) can be simplified as

xa ≃
N �A

2

A2
1 + · · · + A2

N

≃
∑N

i A2
i − Ns2

A∑N
i A2

i

≃ 1 − s2
A

�P
(21)

where P̄ is the mean power reduction suffered by the array

�P =
∑N

i A2
i

N
(22)

From (21) and (22), it is evident the difference with respect to
phase errors. In fact, while the periodic nature of the phase
allows for considering relative fluctuations and, as a direct
consequence, allows for deriving an equation without any
information related to the mean value, amplitude errors are
strongly related to the absolute value of the excitation
coefficients Ci. In other words, the same amplitude
fluctuation (i.e. the same standard deviation sA) returns
different losses according to the mean power reduction. For
example, for benign atmospheric conditions the mean
power reduction is close to the unity. Therefore a given
value for the standard deviation sA represents a small
percentage variation of the amplitudes. Conversely, for
severe weather the mean power reduction can approach very
low values (e.g. P̄ , 0.5) and, in this case, the same
standard deviation sA represents an higher percentage
variation, thus higher losses.

2.3 Pointing errors

For pointing errors, the following statistical parameters can
be defined

�u = 1

N

∑N

i

ui (23)

sRMS
u =

��������∑N
i u 2

i

N

√
(24)

where ū is the mean value and su
RMS is the root mean square

(RMS). Please note that for pointing errors the RMS is more
convenient than the standard deviation, which has been
defined for phase and amplitude errors. This is easily
understood considering the situation where all antennas are
affected by equal pointing errors. In this case, the standard
deviation would be zero regardless of the magnitude of the
pointing error itself, although the RMS assumes different
values according to the magnitude of the pointing error.
Since it is expected that different pointing errors must be
associated with different pointing losses, the RMS is better
suited because it allows for maintaining a two-way
relationship between pointing errors and pointing losses.
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In order to account for pointing errors, the terms in (10) are
considered accordingly (i.e. wi ¼ 0, Ai ¼ 1). In addition, as
done for phase and amplitude errors, the array gain is
divided by the maximum array gain [i.e. no pointing errors,
f (ui) ¼ 1] to calculate the array degradation

xp ≃ |f (u1) + · · · + f (uN )|2

N 2
(25)

where xp is a scalar real number ranging from zero to unity
and indicating how good the arraying is. For small pointing
errors, the typical normalised radiation pattern of a reflector
antenna allows for the following approximation [1]

f (ui) = 1 − au 2
i (26)

where a is a scalar coefficient. Substituting (26) into (25) and
discarding any terms containing pointing errors raised to more
than second power the following equation is obtained

xp ≃ 1 − 2a(sRMS
u )2 (27)

3 Test case array configuration

ESA currently runs a worldwide network of reflector antennas
in order to provide the appropriate support to different
satellites and space probes. In particular, the three 35 m
antennas equipped with X-band 20 kW transmitters are
devoted to DS missions, such as Rosetta, Mars and Venus
Express [23, 24].

For the future, ESA is planning a number of new missions
to explore the Solar system that are going to require better
performance from the ground segment. In particular, a
higher gain over temperature (G/T) is fundamental to
achieve very high data rates from inner planets, thus letting
huge amount of data to be downloaded (e.g. Mars sample
and Return mission). Moreover, a higher G/T is also needed
to support a reasonable data rate from Jupiter and Saturn
(e.g. the future Jupiter Ganymede Orbiter and the Titan
Saturn System Mission). In addition, a higher EIRP is
suggested for manned mission to Mars (e.g. Aurora) and to
have extra margin in the event of emergency, when only a
low-gain antenna may be available on the spacecraft
because of a non-correct alignment of the high-gain antenna
towards the Earth.

For all these reasons, ESA promoted a detailed feasibility
study aimed to address all the aspects related to a possible
enhancement of the performance of the current DS
antennas, to be achieved by means of an array of reflector
antennas [11, 25]. In particular, X band, around 7–8 GHz,
is considered as baseline and an array total area around four
times the current area provided by a DS antenna is
suggested by ESA. In particular, the initial array will
operate only in downlink, whereas uplink will remain an
option. This is due to the fact that compared to receiving
operations, transmission poses more serious problems. In

fact, the lack of a reliable closed loop prevents the
application of real-time calibrations and adjustments, as
normally done for reception [21]. Therefore higher phase,
amplitude and pointing errors are expected. Recent
experiments succeeded to demonstrate array uplink
operations under certain constraints (e.g. short duration,
good weather, spacecraft in Earth orbit etc.), but a fully
operable uplink array is still ahead [19, 21, 26]. For these
reasons, the formulas derived in Section 2, which hold for
both downlink and uplink can be used to predict the array
response for large phase, amplitude and pointing errors,
likely to occur if the array was operated in transmission,
providing a useful evaluation tool for the expected uplink
performance.

The array configuration selected for the ESA scenario is
composed of twelve 20 m antennas [25]. This configuration
offer the optimum compromise between the number of
antennas and antenna diameter, which means an optimum
compromise in terms of sub-arraying, antenna performance,
construction cost and budget spread over the years. The
array layout, depicted in Fig. 1 was designed to maximise
the compactness of the array, a major advantage to reduce
the phase and amplitude fluctuations, while avoiding any
shadowing for all elevation angles along the ecliptic plane,
where almost all DS missions are expected to flight.

4 Numerical validation

In order to verify the analytical formulation derived in Section
2, a numerical simulation of the array described in Section 3 is
performed.

In particular, the radiation pattern of the array shown in
Fig. 1 is calculated as the sum of the radiated field
generated by each antenna, retrieving the maximum array
gain. This is possible assuming that no mutual coupling is
present between antennas, exactly the same hypothesis
already adopted to calculate the equation reported in
Section 2 [21, 22]. The radiated field generated by each
20 m antenna is calculated by means of a commercial tool
based on physical optics [27]. The parameters of the
antenna are reported in Table 2.

In the next paragraphs, phase, amplitude and pointing
errors are analysed. Please note that delay errors are not
considered because they are negligible if compared with
phase errors. This is mainly because of the moderate DS

Fig. 1 Schema of the proposed array layout for the architecture composed of 12 20 m antennas

Antennas are separated by a reciprocal distance of 60 m and placed along the North–South axis

Table 2 Antenna parameters

Parameter 20 m antenna

configuration Cassegrain

main reflector diameter, m 20

equivalent f/D 0.27

sub-reflector diameter, m 2.4

sub-reflector eccentricity 1.24

taper angle, degrees 11

taper, dB 210
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service bandwidths with respect to the carrier frequency. In
fact, the largest bandwidth for DS services, associated with
Delta-differential one-way range (DOR) ranging is equal to
around 40 MHz, considerably lower than carrier frequency
(around 8 GHz) [28]. To align a 40 MHz channel requires
time accuracy significantly better than 25 ns. This is
routinely achieved even by large arrays, which can reach a
delay error lower then 250 ps [29], that is, 1/100 of the
reciprocal of the signal bandwidth, a fraction considered
more than adequate to align the time delays [12].

4.1 Phase errors

To simulate phase errors, a Monte Carlo analysis is carried
on, assigning a random phase to each antenna excitation
and calculating the field radiated by the array by adding the
fields radiated from each antenna. This calculation is
repeated 3000 times to obtain a good statistical distribution.
Please note that the random phase is calculated according to
a uniform distribution in order to obtain the same
occurrence for all phase combinations, including extreme
values that are not likely to occur in the real world.
Although in this way the probability for large errors is
higher than expected from a real array, this gives the
opportunity to extensively test the equations reported in
Section 2 also against large phase errors. The same
considerations hold for the amplitude and pointing errors,
reported in the next paragraphs.

The maximum residual phase error for normal operation
when the combiner is locked (downlink) is estimated to
be around 78 or even less [25, 29]. However, the phase
error can increase up to around 308 for given cases. First,
extreme weather condition, with rapid phase variations not
compensated in real-time by the correlator, shall be taken
into account. Second, when the array is operated for
uplink communications closed-loop adjustment techniques
are not available or they are less effective and for this
reason higher phase fluctuations shall be accounted for
[30]. Third, a possible malfunction, or even a complete
failure, of the correlator is a critical case worth to be
analysed.

The comparison between the analytical formulation, (17),
and the numerical simulation is reported in Fig. 2. The
agreement can be considered good, with a maximum
discrepancy of 0.2–0.3 dB. Moreover, the theoretical curve
provides a conservative estimation if compared with the
numerical simulation. This is due to the approximation

adopted when the Taylor series has been applied and it
guarantees a safe margin.

4.2 Amplitude errors

To simulate amplitude errors, a random amplitude is
attributed to each antenna excitation. Also in this case, the
gain calculation is repeated 3000 times to obtain a good
statistical distribution.

According to the RAPIDS and ITU models [31, 32], the
power collected by an antenna in X band can be reduced to
50% of the nominal value because of bad atmospheric
conditions for a cumulative distribution of 99.99% (i.e. only
for a fraction of time equal to 0.01% the power collected by
the antenna can be lower than 50%). Assuming as worst
case that the power reduction experienced by an antenna is
completely un-correlated with the power reduction
experienced by another antenna of the array, the maximum
power fluctuation among antennas is also set to 50% (i.e. it
means that an antenna could receive the incoming signal
with no extra losses, whereas another antenna of the array
could receive only 50% of the nominal power).

The comparison between the analytical formulation (21) and
the numerical simulation is reported in Fig. 3. In particular,
three analytical curves are shown, each with a different mean
power reduction P̄ (1, 0.6 and 0.5). Fig. 3 highlights that, for
a given numerical simulation that randomly select all the
antenna excitation coefficients Ai (that in turn means a
random mean power reduction and a random standard
deviation), a top and a bottom limiting curves can be
retrieved. The top curve is always associated with a mean
power reduction equal to unity. Of course, this is an ideal
asymptotic case (P̄ ¼ 1 means no power reduction at all).
The bottom curve depends on the distribution of the
numerical simulation. For the case reported in Fig. 3, where
the power collected by each antenna can be reduced to 50%
of the nominal value, a mean power reduction P̄ ¼ 0.5
represents the worst case condition (which means all
antennas collecting 50% of the nominal power). All other
cases (e.g. P̄ ¼ 0.6) indicates intermediate cases.

Therefore the analytical formulation represents a powerful
prediction tool: for a given mean power reduction, which
practically means for a given atmospheric condition (e.g.
clear sky, light rain etc.), the array gain efficiency Gratio is
calculated for any amplitude fluctuation (which depends on
the array extension, array working in closed- or open-loop
etc.).

Fig. 2 Array gain degradation at 8.4 GHz for a given phase
standard deviation

Comparison between analytical formulation (17) (solid black curve) and
numerical simulation (white dots)

Fig. 3 Array gain degradation at 8.4 GHz for a given amplitude
standard deviation

Comparison between analytical formulation (21) calculated for different
mean power reductions (solid curves) and numerical simulation (white dots)
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4.3 Pointing errors

To simulate pointing errors, a random pointing is attributed to
each antenna excitation. Then, the array radiated field is
calculated by adding the radiated field from each antenna.
This calculation is repeated 3000 times to obtain a good
statistical distribution.

According to Vassallo et al. [24], the maximum pointing
error for a state-of-the-art 35 m antenna is 5 mdeg for a
wind up to 45 km/h with gust of 60 km/h. Other useful
comparisons are provided by [5, 8]. In particular, the 25 m
antennas of the VLA can achieve a blind pointing of
accuracy of around 3 mdeg without wind loads. This value
can improve up to 1 mdeg if a reference target (e.g. a
pulsar) is available close to the desired direction. The 22 m
antennas of the ATCA achieve similar values, both for
blind and referenced pointing. Therefore for a 20 m
antenna, a maximum pointing errors of 5 mdeg is taken as
worst case, including wind loads.

The comparison between the analytical formulation, (27),
and the numerical simulation is reported in Fig. 4. The
agreement can be considered good, with a slight
discrepancy because of the polynomial approximation
(a ¼ 90 deg22) adopted to represent the 20 m antenna
radiation pattern. Please note that the broad beamwidth of a
20 m antenna in X band implies very low de-pointing
losses even for a pointing error up to 5 mdeg.

5 Conclusions

This paper presented the mathematical derivation of
prediction curves useful to analyse and design arrays
composed of many identical reflector antennas. In
particular, the array efficiency, that is, the arraying
goodness between the elements of the array, is affected by
phase, amplitude and pointing fluctuations, mainly because
of atmospheric turbulences, failures and mechanical
uncertainties. Therefore it is important to have reliable
analytical tools to predict the array performance.

Assuming no cross-coupling between antennas, an
hypothesis easily met for reflector antennas, this paper
calculates the prediction curves for phase, amplitude and
pointing fluctuations according to a statistical formulation
readily applicable to practical cases, where the required
information is usually given in terms of mean values,
standard deviations and RMSs.

As validation of the proposed tools, an array specifically
designed for the ESA in the frame of a strategic feasibility

study is presented. It is composed of 12 20 m antennas and
the array radiation pattern is calculated by adding the
radiation pattern generated by each antenna, which is turn
retrieved from a commercial tool based on physical optics.

The excitation coefficient of each antenna is randomly
varied to alternatively include phase, amplitude and
pointing errors. The agreement between the theoretical
prediction and the numerical simulation can be considered
as very good.
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