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Abstract. In recent years, evolutionary computation has been successfully used to solve problems involving engineering design and
invention, sometimes producing results that are qualitatively different than previous traditionally-designed solutions. However,
while evolutionary methods appear to be a promising tool for supporting design, their usefulness is substantially limited by
their computational expense and inability to integrate expert knowledge with evolutionary search. Here we develop and evaluate
methods for causally-guided evolutionary design based on expert-supplied cause-effect relations that guide how genetic operators
are applied (in contrast to conventional genetic operations which are carried out blindly and randomly), using these methods
for antenna array design. To our knowledge, this is the first study that biases genetic operations in response to the specific
performance characteristics of the individuals to which they are applied, and the first to use explicit cause-effect relations to
guide this process. Our experimental evaluation compares using evolutionary systems with and without causal guidance to design
directional dipole antenna arrays that meet pre-specified performance criteria. We find that causally-guided systems produce
optimal solutions with significantly greater frequency and significant computational savings, suggesting that this approach may
substantially improve the use of evolutionary computation in engineering design.
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1. Introduction

During recent years, there has been much interest in
using computational intelligence optimization methods
for engineering design, including evolutionary compu-
tation, particle swarm optimization [12,41], ant colony
optimization [38], and other nature-inspired approach-
es. Evolutionary computation in particular has been
successfully used to design electronic circuits [27,46],
antennas [5,31–34], space truss structures [2,4], control
mechanisms for unmanned aerial vehicles [43], wind
turbines [29], high-rise building structures [3], and nu-
clear power plant monitoring plans [7]. The design
process in these situations is genuine human-machine
collaboration: a person defines the problem, search
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space, fitness function, and other design constraints,
while the evolutionary process generates and evaluates
a much larger number of alternative designs than could
be done manually. Sometimes the results of evolution-
ary systems are even qualitatively different from pre-
vious human-only solutions, such as patentable elec-
tronic circuits [27], and novel irregularly shaped anten-
nas [21].

Evolutionary computation thus appears to be a very
promising tool for supporting the engineering design
process. However, in order for the evolutionary pro-
cess to remain computationally tractable when applied
to increasingly complex engineering design problems,
new extensions must be developed that increase the ef-
ficiency and effectiveness with which evolutionary sys-
tems produce optimal designs. To this end, the goal
of the research presented here is to develop one such
potential extension, “causally-guided evolution”, and
to evaluate its potential usefulness by applying it to a
real-world antenna array design problem.
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By causally-guided evolution, we mean an evolu-
tionary system in which genetic operators use expert-
supplied causal knowledge to bias, but not to control,
the modification of individual designs. Prior to the
beginning of the evolutionary process, human experts
supply knowledge in the form of cause-effect relations
from the domain. Each cause-effect relation represents
a rule about how some part of an individual’s genetic
representation relates to some part of the same individ-
ual’s phenotypic performance. During the evolution-
ary process, when a genetic operation is applied to an
individual, the performance characteristics of the indi-
vidual are examined and the cause-effect relations are
used to identify likely design problems in the genotype
of the individual. The genetic operation is then prob-
abilistically biased toward modifying the individual’s
specific design problems, For example, in applying a
mutation operator to an individual parent to produce a
modified offspring, the mutation will be biased so that
those parts of the genotype that are judged more likely
to be flawed are made more likely to be mutated. Sim-
ilarly, in applying a crossover operator to two parents,
the operation is biased so that those parts of the par-
ents that are judged to have less chance of being flawed
are made more likely to be combined together in the
offspring.

This is the key distinction between the work present-
ed here and past studies of evolutionary systems; our
genetic operators examine the performance character-
istics of each individual to which they are applied, and
are biased based on the specific design problems that
are reasoned to be present in each individual. In con-
trast, the genetic operators in past evolutionary stud-
ies are applied without any regard to the performance
characteristics of individual designs. In traditional evo-
lutionary methods the genetic operators are blind and
random, whereas here they are guided. While genetic
operators in past studies on “knowledge incorporation”
have been specially designed based on expert knowl-
edge, when applied to individuals the operators still ex-
ecute without regard to the performance characteristics
of the individuals [8,13,17,25,44,45].

Our hypothesis is that causally-guided genetic op-
erators as described above will ultimately make evo-
lutionary systems more effective by allowing them to
explore a much larger number of good designs while
still exploring novel solutions that initially appear un-
promising, and also more computationally efficient by
decreasing the number of poorly fit individuals that
do not contribute useful information to the evolution-
ary process. We believe that the benefits of causally-

guided evolutionary systems will be most pronounced
when applied to problems in which domain expertise is
present but insufficient for solving problems in closed
form. Causally-guided evolutionary methods are de-
signed to preserve the limited dependence on domain
knowledge found in traditional evolutionary compu-
tation, while leveraging whatever cause-effect knowl-
edge is available.

Of course, there is no guarantee that causal guidance
will improve the effectiveness or efficiency of evolu-
tionary methods, and it is entirely possible that just the
opposite would be true; adding causal influences could
produce evolutionary search that is less effective, less
creative, and less computationally efficient. Further,
incorporating expert knowledge into an evolutionary
system raises the possibility of producing non-optimal
solutions [6]. Of particular concern here is the pos-
sibility that causal-guidance will steer the evolution-
ary process into local optima, preventing the discov-
ery of globally optimal solutions. To assess this is-
sue, we compare causally-guided versus non-causally
guided evolutionary design of an antenna array in the
following.

2. Methods

2.1. Causally-guided evolutionary computation

Causally-guided evolution uses causal knowledge
supplied by domain experts prior to the beginningof the
evolutionary process. Each piece of knowledge details
a cause-effect relationship, expressed as

Genotypic Disorder → Phenotypic Symptom

The arrow here is not logical implication, but causality.
A genotypic disorder is simply a non-optimal part of an
individual’s genetic material, while a phenotypic symp-
tom is a particular performance or fitness problem that
an individual may have. The term “phenotype” is used
broadly here, to include not only the structure/form
that the genotype develops into, but also the behav-
ioral/performance characteristics of that form. Domain
experts do not need to supply an exhaustive list of
cause-effect relations, and could even supply as little as
a single relation; they only need to supply those causal
relationships of which they are aware and believe to be
most important.

In causally-guided evolution, once it has been deter-
mined in the usual fashion that a genetic operator will
be applied to a specific individual, the individual’s per-
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Generic Causally-Guided Genetic Operator
Step 1: Examine the individual’s performance characteristics to
identify its phenotypic symptoms/flaws.
Step 2: Based on supplied causal relations and the individual’s phe-
notypic symptoms, determine what parts of the individual’s genome
are likely to be flawed.
Step 3: Bias the application of the genetic operator to the individual
accordingly

Fig. 1. High level overview of the three step process that is followed
by causally-guided genetic operators.

formance characteristics and the expert-supplied causal
knowledge are used to bias how the operator is applied
to the individual. This is accomplished in three steps, as
shown in Fig. 1. The exact manner in which the genetic
operations are biased in step 3 depends on the specific
type of the genetic operator in question, as follows.

Causally-guided mutation operations are biased so
that those parts of the genotype with higher relative
likelihoods of being flawed are made more likely to be
mutated. In thisway, causally-guidedmutation increas-
es the chances that problematic genes will be changed.
Causal guidance does not change the number of modi-
fications that will be made to an individual’s genotype,
only where they are made.

Causally-guided crossover operations are biased so
that those parts of the parent individuals’ genotypes
that have lower relative likelihoods of being flawed are
made more likely to be combined together when creat-
ing offspring. Consequently, those parts of the individ-
uals’ genotype that have higher relative likelihoods of
being flawed are made less likely to be used when cre-
ating offspring. Causally-guided crossover increases
the chances that the best parts of parents are combined
into the produced offspring.

Causal guidance is used to bias genetic operations,
but does not explicitly control them. Causal guidance
is applied probabilistically and does not prevent the
occurrence of poorly fit individuals that arise in the
populations due to random alterations; it simply influ-
ences the process towards the formation of more fit in-
dividuals and fewer very poor individuals than would
otherwise occur.

To assess the effectiveness of these ideas, we ex-
plore the use of causally-guided evolution to solve an
antenna array design problem. A generational genet-
ic algorithm augmented with causally-guided genet-
ic operators was developed, and its performance in
solving the antenna array design problem was com-
pared to a carefully-matched genetic algorithm that
uses no causal-guidance but is otherwise equivalent.
With the exception of the causally-guided genetic op-

erators, all aspects of the evolutionary systems (de-
scribed in more detail below) are conventional and
widely used [13]. The goal of these experiments is to
determine if causally-guided genetic operators mislead
the evolutionary process toward local minima, have no
significant effect, or improve the quality of and speed
with which solutions are produced.

2.2. Antenna design

The design of many real-world antennas and anten-
na arrays is difficult because it requires significant do-
main expertise and it is time and labor intensive [14,
16,42]. Complex interactions between neighboring
components of an antenna can make it very difficult
to predict antenna behavior beforehand. Past work
has explored using particle swarm optimization [40],
ant colony optimization [38], simulated annealing [12]
and other automated methods for designing antennas.
Evolutionary computation methods in particular have
been successfully used to design Yagi-Uda antennas,
quadrifiliar antennas, and crooked wire monopole an-
tennas [19,31–34]. To our knowledge, no antenna has
ever been designed through causally-guided evolution,
as described here.

There are a number of performance characteristics
that are important in antenna design. The term direc-
tivity refers to the capability of an antenna to radiate
more energy in certain directions than in others. Gain
is a measure of the amount of energy that an anten-
na radiates in a specific direction. It is calculated by
computing the ratio of energy radiated in that direc-
tion to the amount that would be radiated by an anten-
na that radiates equally in all directions. Gain often
has very high values and is most often expressed in
decibels (dB). Another important characteristic is the
impedance mismatch between transmission lines and
antenna, which can cause electrical signals to reflect
back through the feed network. Voltage standing wave
ratio (VSWR) quantifies impedancemismatch between
transmission lines and radiating elements (VSWR = 1
is ideal). Finally, with antenna design problems, cost
can mean many different things, including manufactur-
ing difficulty, weight, size, volume of material, etc.

2.3. Dipole antenna array

The specific task used in this work is that of design-
ing a directional dipole antenna array that meets pre-
specified performance criteria. Dipole antenna arrays
consist of an array of parallel lengths ofwires,known as
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dipoles, which are positioned above a ground plane. A
transmission line connects to the center of each dipole
and carries the signal that is radiated or received by
the antenna. The complete design specifications for
such an antenna includes the number of dipoles, the
lengths of dipoles, the height of dipoles off the ground
plane, the spacing between dipoles, and the phases and
voltages with which each dipole is fed. For this work,
dipole antenna arrays were limited to having uniform
spacing, height, and length. Known formulas are used
to calculate the desired voltage and phase with which
each dipole should be fed, based on each dipole’s lo-
cation and the desired direction of broadcast. The uni-
form nature of such designs makes them appear to be
very simple. However, in practice and despite the small
dimensionality of the search space, it is quite difficult
for a human designer to optimize these four values by
hand. Furthermore, greedy or local search algorithms
often get stuck in the many local optima that exist.

In the particular antenna array design task considered
here, the specific goal, provided a-priori, is to maximize
gain between−10 and +10 degrees off boresight in the
plane that bisects the dipoles, minimize VSWR, and
minimize cost. Specifically, a successful antenna must
have an average gain of at least 10 dB in the target angle
range and a VSWR of less than 3.0 (a commonly used
limit for VSWR in antenna design). The number of
dipoles in the antenna array is used as a rough approx-
imation for cost, which should be minimized but does
not have a required value. The antenna is to be operated
at 1200 MHz with 50 ohm transmission lines. These
particular performance requirements were selected be-
cause they define an antenna design problem that is
complex enough to be of real-world interest while re-
maining simple enough for an initial exploration into
causally-guided evolutionary computation. As in pre-
vious studies, the antennas are simulated over an infi-
nite ground plane in order to keep computational costs
down [34]. Software was implemented in Java and C,
and runs on Linux-based PC’s. All antennas were sim-
ulated using an open source version of the Numerical
Electromagnetic Code software package [10].

2.4. Fitness function and genetic representation

A fitness function that captures the performance cri-
teria above, is made up of three components:

FOverall = FVSWR + FDirectivity + FCost (1)

The VSWR component rewards low VSWR values,and
was calculated as:

Fig. 2. Genetic representation of a dipole antenna array.

FVSWR =
{−2 ∗ VSWRmax if VSWRmax � 3.0
−1 ∗ VSWRmax if VSWRmax < 3.0 (2)

where VSWRmax is equal to the maximum VSWR
observed at any dipole in the antenna. If the VSWRmax

is above 3.0, the FVSWR score is multiplied by −2
instead of −1, increasing its negative impact on the
overall fitness value. The FDirectivity score measures
the directivity of the antenna in the target angle range,
and is calculated as:

FDirectivity =
10∑

i=−10

Gaini (3)

where Gaini is the amount of gain observed in the XY-
plane at i degrees off boresight. There are 21 terms
here, each in the −10 to +10 degree range, so an an-
tenna that meets the design requirements of 10 dB av-
erage in this range would have a FDirectivity score of at
least 210. Lastly, the FCost component is equal to the
number of dipoles in the antenna array multiplied by
−1. These three components are summed to yield the
overall fitness score (FOverall ), which is maximized by
the evolutionary system. This fitness function and the
stepped nature of the VSWR component are inspired
by previous studies showing such an approach to be
successful [21,34].

The genetic representation used to represent a dipole
antenna array consists of a vector of four numbers (see
Fig. 2). The first is a whole number between 1 and 10
that represents the number of dipoles. The remaining
real-valued numbers may have values between 0.1 and
2.0. These three values represent distances, expressed
in wavelengths, for the length of dipoles, height of
dipoles and spacing between dipoles. Since the oper-
ating frequency of this antenna is 1200 MHz, a wave-
length corresponds to roughly 0.25 m. For example,
an individual in the population with a genetic vector of
[4, 1.0, 2.0, 0.5] describes an antenna with 4 dipoles of
0.25 m length, spaced 0.5 m apart and 0.125 m off the
ground plane. Each vector element is a “gene”. The
letters N, L, S, and H are used to refer to these four
genes.
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Fig. 3. Pseudocode for the causally-guided mutation operator as
implemented for the dipole antenna array design task. Input argument
A is an individual antenna array design, while d(g) represents the
assertion that gene g of A is flawed (see text). Mutation s refers to
the 8 specific mutations listed in this text. Constants Δ1 and Δ2

are constrained to be greater than 1.0, and RANDOM(0,1) returns a
uniformly random floating point number in (0.0, 1.0).

2.5. Cause-effect relations

The non-linear interactions between antenna features
and performance qualities are not easily characterized.
Here the simple case in which only a few pieces of
causal knowledge are incorporated into the system is
considered. This allows an initial exploration into the
feasibility of causally-guided evolution, while delay-
ing the need to seriously address complex situations in
which multiple genotypic disorders influence multiple
phenotypic symptoms simultaneously. It is known by
antenna design experts that sub-optimal dipole lengths
can cause high VSWR, but that the height, length, and
number of dipoles have limited effect on the VSWR of
an antenna. This is the causal knowledge that we use
in this study:

Sub-optimal Dipole Length → High VSWR

The left side of this causal relation is a genotypic disor-
der because it refers to a sub-optimal gene value in the
genetic representation (Fig. 2). As noted earlier, the →
symbol is not logical implication but causality. There
are three additional genotypic disorders: sub-optimal
number of dipoles, sub-optimal spacing of dipoles and
sub-optimal height of dipoles. These three genotypic
disorders do not cause high VSWR. The terms d(N),
d(L), d(S) and d(H) are used to represent the four geno-
typic disorders.

2.6. Causally-guided genetic operators

As outlined in Fig. 1, causally-guided genetic oper-
ations occur in three steps. In the antenna array de-
sign task, assessing phenotypic symptoms (Step 1) and
making inferences about the likelihood of genotypic
disorders (Step 2) is straightforward. If an antenna has
a VSWR greater than 3.0, it is assessed as having the
phenotypic symptom of high VSWR, otherwise it is
assessed as not having the symptom of high VSWR.
An antenna that has the symptom of high VSWR can
be reasoned to have an increased chance of having sub-
optimal dipole lengths, as this is the only genotypic dis-
order that is known to cause the symptom. On the other
hand, if the antenna lacks the symptom of high VSWR,
it can be reasoned that there is a decreased chance that
the antenna has sub-optimal dipole lengths. Finally,
the way in which these inferences are used to bias the
execution of genetic operators (Step 3) depends on the
particular genetic operator in question.

2.6.1. Causally-guided mutation
When an individual is selected for causally-guided

mutation, there are a number of specific mutations
that may or may not be applied to the individual, and
these are controlled by the algorithm Causal-Mutation
in Fig. 3. The decision of whether to apply each specif-
ic mutation is made stochastically and independently,
and is influenced by causal guidance. There are eight
specific mutations that may be applied to an individu-
al during each causally-guided mutation: for each of
the four genes there is a specific mutation that makes
large changes to the gene value, and one that makes
small changes. The terms MN , mN , ML, mL, MS , mS ,
MH , and mH are used to refer to these eight specific
mutations. A lowercase m is used for small mutations,
an uppercase M is used for large mutations, and single
character indices are used to identify the relevant gene.
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Each largemutation replaces the relevant genewith a
random value, selected uniformly from the appropriate
legal range for that gene. Thus large specific mutations
very often (though not always) make large changes to
the gene value. If mN is applied to an individual, the
value of the gene that specifies the number of dipoles
is either incremented or decremented by 1, with equal
probability. For the other three genes, small mutations
either increase or decrease the gene’s value by a small
random value that is selected with equal probability
from one of five uniform distributions: [0, 0.2], [0,
0.1], [0, 0.01], [0, 0.001], and [0, 0.0001]; this has the
effect of making smaller changes (e.g., < 0.0001)more
probable than other small changes (e.g., 0.1 to 0.2).

When causally-guidedmutation is applied to an indi-
vidual, the probabilitywith which each of these specific
mutations is applied is biased based on the inferred like-
lihood of the various genotypic disorders (see Fig. 3).
Specifically, a utility score is calculated for each spe-
cific mutation. The utility score of a specific mutation
is used as an indication of how useful it would be to
apply that specific mutation to the individual. Initially,
each specific mutation is assigned a utility score of 1.0.
For each gene that has an increased likelihood of being
flawed (i.e., the corresponding genotypic disorder has
an increased likelihood of being present), the utility
score of the corresponding large mutation is increased
by multiplying it by a constant Δ1 > 1.0. For those
genes with lower likelihoods of beingflawed, the utility
score of the corresponding large mutation is decreased
by dividing it by a constant Δ2 > 1.0. Lastly, the utility
scores are rescaled so that the sum of all eight specific
mutations’ utility scores is equal to one. Thus large
mutations that correspond to genes with higher relative
likelihoods of being flawed have higher utility scores.
Each specific mutation is then applied with probability
equal to its utility score. For example, when causally-
guided mutation is applied to an antenna design with
the symptom of high VSWR, the causal knowledge in-
dicates an increased probability that dipole lengths are
sub-optimal. Thus, the utility score of the specific mu-
tation ML, which makes changes to the gene associated
with dipole length, is increased, while the utility scores
of all other specific mutations are effectively decreased
through the normalization process.

2.6.2. Causally-guided crossover
As implemented in algorithm Causal-Crossover (see

Fig. 4), causally-guided crossover is a variation of uni-
form crossover, in that offspring are created by stochas-
tically selecting one copy of each gene from each of

Fig. 4. Pseudocode for the causally-guided crossover operator as
implemented for the dipole antenna array design task. Same notation
as in Fig. 3, where 0 < Δ3 < 1 is a constant. A parent p’s inheritance
score for gene g is given by inh(p,g), as explained in text.

two parents M and F, and each gene is inherited in-
dependently. The inferred likelihood of the genotypic
disorders is used to bias the crossover operation as fol-
lows. Each gene in each parent is initially assigned an
inheritance score (inh) of 1.0. This score is designed
to be an indication of how unlikely it is that the gene
is sub-optimal and, accordingly, how useful it would
be for offspring to inherit that gene. The inheritance
score of each gene that has an increased likelihood of
being flawed is decreased by subtracting the constant
0 < Δ3 < 1. This same constant is added to the inheri-
tance score of each gene that has a decreased likelihood
of being flawed. The chance that an offspring will in-
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herit a copy of a gene from one parent is equal to that
parent’s gene’s inheritance score divided by the sum of
both parents’ genes’ inheritance scores. In this manner,
those genes in a parent with high relative likelihoods
of being flawed will have lower inheritance scores and
therefore be less likely to be inherited by offspring. For
the antenna array design task, the chromosome consists
of only four genes, which limits the potential for overly
destructive crossover.

2.6.3. Control genetic operators
The control mutation and crossover operators are

not biased by causal reasoning, but otherwise operate
the same as their causally-guided counterparts. They
serve as a baseline for comparing the effectiveness of
causally-guided operators. During control mutation,
each of the same eight specific mutations may or may
not be applied to an individual with fixed probability
of 1/8. During control crossover, offspring are created
by stochastically selecting one copy of each gene from
one of the two parents, with each gene having a fixed,
equal chance of coming from either of the two parents.

2.7. Experimental methods

Four different evolutionary systems were applied to
the dipole antenna array design problem. The CON-
TROL system used control crossover and control mu-
tation operators; it makes no use of causally-guided
genetic operators. In contrast, causal mutation and
control crossover were used by the CAUSALM sys-
tem, control mutation and causal crossover were used
by the CAUSALC system, and causal mutation and
causal crossover were used by the CAUSALCM sys-
tem. Two hundred trials of each of these four evolu-
tionary systems were conducted using a different ran-
dom number stream for each trial. Each trial was start-
ed with a randomly generated population and execut-
ed for 1000 generations, yielding 50,000 antenna array
simulations. Individuals in the initial population were
created by selecting gene values uniformly from the
range of legal values. A population of size 50 and tour-
nament selection with tournament size two were used
in all trials. In each generation, exactly one offspring
was created by elitism. Each of the remaining 49 off-
spring in each generation was created by using exactly
one of the following stochastically chosen operators:
crossover (47.5% chance), mutation (47.5%), or repro-
duction (5%). Thus, the number of offspring created
by each method in each generation was not constant or
predetermined. However, given a population size of 50,

in each generation the expected number of individuals
created by crossover, mutation and reproduction were
approximately 23.3, 23.3, and 2.4, respectively (with
an additional single offspringvia elitism). The constant
values Δ1, Δ2, and Δ3 were fixed at 20.0, 2.0, and 0.2,
respectively. These parameter values were found via a
small number of test runs; they may not be optimal, but
were found to be effective in this study, and were the
same in both control and experiment trials.

The results of the 800 trials (200 trials times 4 evolu-
tionary systems) were examined and analysis was per-
formed as follows. Of all the antenna designs produced
by the evolutionary systems, there appears to be a clear
delineation between those that reach a fitness level of
310 and those that do not (i.e., the fitness of the best
antenna produced by each evolutionary process is ei-
ther just above 310 or else is considerably lower. Thus,
a fitness level of 310 offers useful criteria by which to
classify antennas as being “optimal” for the purpose of
analysis. Data was collected to determine how often
each of the four evolutionary systems was able to find
an optimal antenna within various numbers of genera-
tions. Additionally, the average number of generations
required by each system to find an optimal antenna was
calculated. When computing these averages, trials that
did not find an optimal antenna design in 1000 gen-
erations were counted as having found one in genera-
tion 1000. Therefore, this average is actually a rough
approximation of the true average.

Multi-start strategies, in which evolutionary process-
es are terminated and restarted if an adequate solution
is not found within a certain generational limit, often
find adequate solutions faster than by running a single
process indefinitely [21]. A multi-start strategy was not
used in the 200 trials of each system performed in this
work. However, by using the results of each system’s
200 trials as an approximation for how that system per-
forms across all random number streams, one can cal-
culate the expected number of generations required by
each system to find an optimal antenna when used in
conjunction with a multi-start strategy, thus providing
a measure of computational cost that is very practical.
To do this, we calculated E(required gens(S,f,g)), the
expected value of the number of generations required
by system S to find an antenna with fitness f when used
with a multi-start strategy and a generation limit of g
as in Eq. (4). Here success rate(S,f,g) is the fraction of
system S’s 200 trials that find an antenna with fitness
of at least f by generation g, and average gens(S,f,g)
represents the average number of generations required
by these trials.
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Fig. 5. A schematic of the fittest evolved antenna (left) and a radiation plot (right) illustrating the antenna’s directivity. The ground plane is
located in the XY plane (not shown).

E(required-gens(S,f,g)) (4)

=
1

success-rate(S,f,g)
− g

+average-gens(S,f,g)

Equation (4) follows from probability formulas related
to Bernoulli trials, as each evolutionary process can
be thought of as a Bernoulli random variable and the
multi-start approach is a Bernoulli trial. Because it is
difficult to know a good generation-limit value a priori,
the expected number of generations required by each
system to find an optimal antenna was calculated with
a variety of generation-limits: 100, 200, 300, 400 and
500. This gives a very practicalmeasure of the different
computational costs associated with using each of the
four evolutionary systems to find an optimal antenna
design.

The various antenna designs produced by the four
systems were examined. The antennas were visually
inspected, found to fall into clusters according to their
genotype similarity, and the clusters were assigned ar-
bitrary labels. The frequencies with which the vari-
ous systems arrived at these different designs were cal-
culated, in an effort to understand the ways in which
causal-guidance affects the types of designs that are
produced.

3. Results

Numerous trials from all four evolutionary sys-
tems successfully designed antennas that met the pre-
specified performance criteria. The most fit individual,
which was discovered by some trials in each system,

was a five-element dipole array with dipoles of length
0.4635 λ, height of 1.7094 λ off the ground plane, and
spacing of 0.6956 λ. This antenna had a VSWR of
only 1.31 and a total directivity score of just over 316,
indicating an average of just over 15 dB of gain in the
target range. A schematic of this antenna design and
a radiation plot illustrating its directivity can be seen
in Fig. 5. The ground plane, which would occupy the
XY-plane where Z = 0, and the feed-lines are not pic-
tured. The radiation plot can be thought of as corre-
sponding to the XZ-plane where Y is equal to 0, which
bisects the dipoles (main lobe points in the positive Z-
direction). The radiation plot is in terms of gain, which
simply shows relative strength in particular directions.
The overall fitness score of this most fit antenna was
310.04, compared to typical fitness values of 250 to 290
in the initial generation. The distribution of the fitness
values of the evolved antennas is such that there is a
clear delineation between the fittest antennas and the
less fit ones. For the most part, evolved antennas either
have a fitness score of just over 310 or a fitness score
that is much lower (< 308.5). As noted earlier, any
antenna with a fitness of 310 or higher is considered to
be an “optimal” antenna design.

A higher percentage of the causally-guided evo-
lutionary systems’ trials than control systems’ trials
found an optimal antenna design within 1000 genera-
tions. An individual trial is said to be successful by gen-
eration g if itfinds an optimal antenna design (as defined
above) at or before generation g. Figure 6 illustrates,
for each of the four evolutionary systems, the fraction
of trials that were successful by generation 100, 250,
500 and 1000. At each generation listed, the causally-
guided systems found optimal antennas with greater
frequency than the control system. Further, the perfor-
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Fig. 6. Fraction of trials of each system that find an optimal antenna
design within 100, 250, 500 and 1000 generations. Vertical bars are
used to illustrate a 99% confidence level.

Fig. 7. The average number of generations that each system requires
to find antenna designs of various fitness scores. Vertical bars are
used to illustrate a 99% confidence interval.

mance of the four systems relative to each other appears
to be the same in all generations. CAUSALCM out-
performs CAUSALM, which outperforms CAUSALC,
which outperforms the CONTROL system. A z-test re-
vealed the difference between CAUSALCM and CON-
TROL to be statistically significant at a 99% confidence
level at generation 250, 500 and 1000. At generation
1000 and 500, the difference between all pairs of sys-
tems were statistically significant at a 95% confidence
level, except for CONTROL and CAUSALC, which
still had a low p-value of less than 0.10 in generation
1000. Note that the 99% confidence intervals of CON-
TROL and CAUSALCM never overlap.

The average number of generations required by
each evolutionary system to find antenna designs with
scores of 308, 309, and 310 are illustrated in Fig. 7.
For each fitness score, the CAUSALCM system av-
eraged the lowest number of generations, followed
by CAUSALM, CAUSALC, and CONTROL. The

CAUSALCM system averaged less than 16%, 29%, and
42% as many generations as CONTROL. The differ-
ence between CAUSALCM and all other systems, as
well as CAUSALM and all other systems, was statis-
tically significant to a 99% confidence level, for each
fitness score. The difference between the CAUSALC

system and the CONTROL system was statistically sig-
nificant to a 95% confidence level.

By using the 200 trials for each system as an ap-
proximation for how the system performs across all ini-
tial random seeds, one is able to calculate the expected
number of generations required to find an optimal an-
tenna, when used in conjunctionwith multi-start strate-
gies using generation limits of 100, 200, 300, 400 and
500 (see Section 2.7). As illustrated in Fig. 8, all of
the causally-guided systems outperformed the CON-
TROL system, regardless of the generation limit was
used. The CAUSALCM system has the lowest expected
value, followed by CAUSALM and CAUSALC. The
CAUSALCM system requires less than 43% as many
generations as the CONTROL system, regardless of
generation limit.

It was also found that each of the most fit antenna
designs that were produced by each trial of each evo-
lutionary system may be grouped, based on the simi-
larity of their genotypes, into one of seven design cat-
egories. The mean values of the design aspects and
performance characteristics of antennas from each of
these categories are detailed in Table 1, and the cat-
egories are assigned arbitrary labels A through G. In
categories A through F, there is very little variation
among antenna designs. The maximum Euclidean dis-
tance of any antenna from the average characteristics
of its assigned category is less than 0.08. Category G
captures 3 outlier antennas that do not fit into any of the
other six categories. These outlier antennas are tightly
clustered in terms of dipole length, dipole height, and
dipole spacing but, unlike antennas from the other six
categories, may have different numbers of dipoles (9 or
10). Category-A antennas represent the fittest class of
antenna designs. The other categories of antennas rep-
resent local optima at which the evolutionary systems
sometimes got stuck.

There appears to be little difference between the
types of antenna designs that were evolved by the con-
trol system and causal systems. With the exception
of category-G antennas, which are only 3 out of 800
evolved antennas, there are no antenna designs that
were produced by the causal systems that were not
evolved, in at least one trial, by the control system.
However, there are significant differences in the fre-
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Table 1
The seven classes of antenna designs produced by all evolutionary systems

Mean defining features of genome Mean fitness scores
Type Number Length Height Spacing Overall Directivity VSWR

A 5 0.4635 1.7094 0.6957 310.03 316.35 1.32
B 6 0.5047 1.7094 0.5689 308.35 316.89 2.54
C 7 0.5222 1.7130 0.4850 307.39 317.39 3.00
D 7 1.2827 1.7394 0.4740 307.29 346.89 16.30
E 8 1.2588 1.7342 0.4269 307.37 350.66 17.65
F 6 1.3267 0.7589 0.5384 306.72 336.12 11.70
G 9.33 1.2636 1.7244 0.3710 306.15 353.42 18.97

Fig. 8. Expected number of generations required by each system
to find an optimal antenna design when used in conjunction with a
multi-start strategy, with varying generation limits.

quency with which the different systems converged to
antenna designs in the seven categories. The distribu-
tion of categories is illustrated in Fig. 9. Of the 200
CONTROL system trials, 123 converged on an optimal
category-A antenna design, compared to 139, 177, and
199 of the CAUSALC, CAUSALM, and CAUSALCM

trials, respectively. The causally-guided system tri-
als converged to category D, E, and F with less fre-
quency than the control system trials. All 200 of the
CAUSALCM trials avoided D, E, and F and all but one
(category-C) converged to an optimal category-A solu-
tion. It is worth noting that the categories that causal
systems avoided (D, E, and F) typically have dipole
lengths that are longer than optimal and VSWR values
that are so high as to be unusable. This relates direct-
ly to the user-supplied causal knowledge employed by
the causal evolutionary systems in these simulations
supporting the hypothesis that the causal relations are
contributing effectively to the design process.

To explore the issue of computational cost per gener-
ation, 5 trials of the CONTROL and CAUSALCM sys-
tems were executed for 5000 generations and the CPU
time required for each trialwasmeasured. Surprisingly,
it was found that despite the expected increased costs
associated with the causally-guided systems, on aver-

age the CONTROL system required more than 7 times
as much CPU time as the CAUSALCM system (5893
seconds and 793 seconds, respectively). This differ-
ence is largely due to differences in the types of antenna
designs that are explored by the two systems. Specifi-
cally, the CONTROL system tends to explore antenna
designs with longer and more numerous dipole lengths
than the causally-guided systems. These types of an-
tennas are more computationally expensive to simulate
during fitness evaluation than smaller antennas. Thus,
the increased computation per generation required by
the CAUSALCM system to provide causal guidance
is dwarfed by the computational savings of evaluating
smaller antennas.

An attempt was made to incorporate an alternative
causal relation into the evolutionary system, but this
failed to improve performance. Specifically, antenna
design experts indicate that there is a strong cause-
effect relationship between the height of dipoles and the
directivity of an antenna. However, causal relations to
that effect did not improve the performance of the sys-
tem. In an attempt to better understand the cause-effect
relationships in this domain the single most highly fit
antenna of all trials described above was identified and
experimented upon. Four separate experiments were
conducted. In each experiment, three of the four an-
tenna genes were held fixed, while the fourth was in-
crementally adjusted, and changes in antenna perfor-
mance were observed, yielding insight into causality in
this domain and presumably more generally.

Figure 10 illustrates the effects that changing the op-
timal antenna’s number of dipoles, length of dipoles,
height of dipoles, and spacing between dipoles has on
that antenna’s VSWR and directivity. In each graph, a
thick black hash on the horizontal axis indicates the un-
modified value of the optimal antenna. Consistent with
the causal knowledge employed by our system, it can
be seen that the length of dipoles has a large effect on
the VSWR of an antenna. Noting that the right vertical
axis labels of the top right plot in Fig. 10 differ from
those of the other plots shown here, the range of VSWR
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Fig. 9. Distribution of the categories of antenna designs to which each system’s trials converge. All but one CAUSALCM trials (not shown)
converged to category-A designs.

Fig. 10. Effect that changing the number (top left), length (top right), height (bottom left), and spacing (bottom right) has on Fitness Directivity
score (left axis) and VSWR (right axis) of the optimal antenna. The range of VSWR values plotted in the top right is an order of magnitude larger
than the other three plots.

values when dipole lengths are varied are seen to be an
order of magnitude larger than when number, spacing,
or height of dipoles are varied. Figure 10 also reveals
a clear and seemingly cyclical causal relationship be-
tween the height of dipoles and the directivity of anten-
nas. It is clear that the length of dipoles and the spacing
between dipoles also has an effect on the directivity
of an antenna, but it is difficult to characterize these
interactions. These results indicate the complexity of
causal relationships in this domain.

4. Discussion

The use of evolutionary computation methods as a
design tool to support human engineers has been in part
encouraged by the incredible innovativeness of biolog-
ical evolution processes (e.g., the “invention” of opti-
cal lenses, sonar, pumps, valves, winged flight, neural
computation, and many other things long before they
were thought of by people [9].) Recently there has
been growing use of evolutionary computation in en-
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gineering, such as the design of control mechanisms
for robots [35], mechanical systems [22,30], desalina-
tion systems [18], electrostatic micro-generators [20],
as well as those discussed in Section 1. In this current
work we take some initial steps in evaluating the ef-
fectiveness of evolutionary computation methods that
have been modified so that explicit cause-effect rela-
tions are used to guide the application of genetic op-
erators. Our main innovation is based on the recogni-
tion that conventional genetic operators are blind and
random, i.e., they execute without regard to the perfor-
mance characteristics of the individuals to which they
are applied.

While our hypothesis was that introducing causally-
guided genetic operators would ultimately make evo-
lutionary systems more effective and efficient, there
was no guarantee of this a priori; it was entirely pos-
sible that just the opposite would be true. Instead, we
found that causally-guided evolutionary systems could
be used successfully to design dipole antenna arrays
that meet pre-specified performance criteria. The per-
formance of these systems was compared to carefully
matched control systems that do not employ causally-
guided genetic operators. It was found that, at var-
ious generations, the causal systems found the fittest
antennas with significantly greater frequency than the
control system. On average, the causally-guided sys-
tems also required significantly fewer generations to
find antenna designs with various fitness scores. The
causally-guided systems found optimal antenna designs
much more frequently largely by avoiding specific sub-
optimal designs. Interestingly, these sub-optimal de-
signs were characterized by dipoles that are longer than
optimal and have high VSWR values, factors that re-
late directly to the specific cause-effect relations that
the causally-guided system employed. In each result
discussed, it was found that the systems using only
causal mutation or causal crossover outperformed the
control system, but that the system employing both
causal mutation and causal crossover performed even
better, indicating that these causally-guided operators
were synergistic/complementary.

It was found that, surprisingly, the causally-guided
system required 1/7th as much CPU time per genera-
tion as the control system. This unexpected result was
due to differences in the characteristics of antennas that
were explored by the various systems, and the differ-
ent computational costs of simulating those antennas.
While this a promising result for causally-guided evo-
lutionary computation in this particular domain, this
result is of limited interest as it is domain-specific and

may not be relevant to causally-guided evolutionary
computation in general. However, it does demonstrate
the possibility that in some domains the computational
costs of causal inference will be dwarfed by the overall
computational costs of the evolutionary systems.

The fact that causally-guided systems were able to
solve the dipole antenna array design problem with
greater frequency than the control systems demon-
strates that using expert-supplied cause-effect relations
to bias genetic operations can have a meaningful pos-
itive impact on the evolutionary process. The tremen-
dous computational savings of using causally-guided
systems with a multi-start strategy are particularly con-
vincing, as this is a very practical measure of compu-
tational cost. The fact that the causally-guided sys-
tem avoids local optima that are directly related to the
supplied causal relations is especially encouraging, as
this suggests that the causal knowledge is successful-
ly steering the search process away from local optima,
much as a human designer might do. It is also encour-
aging that incorporating either causally-guided muta-
tion or causally-guided crossover into the evolutionary
process results in improved performance, and that in-
corporating both results in even greater performance
improvements, suggesting that the value of causal guid-
ance is not critically dependent upon the specific ge-
netic operator being used.

The additional experiments in which design aspects
of the fittest antenna were systematically varied and
changes in performance measured validated our be-
lief in a causal relationship between dipole length and
antenna VSWR. Furthermore, the influence of dipole
length on VSWR was found to be an order of magni-
tude stronger than the influence of any other design as-
pect on VSWR (at least in the vicinity of an optimum).
It is clear from these experiments that there are other
causal relationships in the domain, but that such causal-
ity can be quite complex. (e.g., a cyclical relationship
between dipole height and antenna directivity). This
arises because some of the energy that radiates from an
antenna is reflected off of the ground plane and passes
back over the antenna. There are certain dipole heights
at which these reflected waves react destructively with
energy radiating directly from the antenna. Unlike the
effect of dipole length on VSWR, it appears that the
effects of design aspects on directivity are of similar
magnitude. These results help to explain why prelim-
inary efforts to include a causal relationship between
dipole height and antenna directivity into the evolution-
ary systemwere unsuccessful,while the causal relation-
ship between dipole length and VSWR was successful.
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They suggest that with our current approachvery strong
and straightforward relationships may be incorporated,
while more complex relationships involving multiple
design aspects may be problematic.

The causally-guided evolutionary system presented
here can be viewed in a number of ways. First, is as a
novel form of adaptive parameter control. In adaptive
parameter control methods, as the evolutionary process
runs, various characteristics of the process are moni-
tored, statistics are computed, and parameters are ad-
justed according to pre-defined heuristics [15]. How-
ever, we know of no previous adaptive parameter con-
trol method in which the performance characteristics
of evolved individuals are examined using cause-effect
relations that bias the execution of the genetic opera-
tors. Additionally, while the vast majority of adaptive
parameter control methods make dynamic adjustments
to parameters that are global to the entire population,
our causally-guided evolutionary system falls under a
much smaller category of adaptive methods in which
parameters are adjusted per individual [23]. Second,
our approach relates to past studies in fitness approxi-
mation [24], where an approximatemodel of the fitness
function is used to efficiently estimate the fitness of
individuals. In some past work, the fitness approxima-
tions of individuals have been used to guide genetic op-
erators [1,39], in a similar fashion to the work present-
ed here. However, in causally-guided evolution there is
no fitness approximation (the actual fitness is calculat-
ed) and instead the causal knowledge is used to guide
the genetic operators. Third, causally-guided evolu-
tion can be viewed as being an instance of a memetic
algorithm. The term memetic algorithm is sometimes
used to refer to a wide range of approaches in which
multiple optimization strategies are integrated in to a
single approach [37], such as combining evolutionary
computation with some form of local search [13,26,28,
36]. In the case of causally-guided evolutionary com-
putation, conventional evolutionary search is combined
with causal inference. To our knowledge, no previ-
ous studies involving memetic algorithms have used
explicit causal relations as the basis for local search.

Finally, there remain some important areas for future
study of causally-guided evolutionary computation. In
order to further evaluate the methods introduced here,
causally-guided evolutionary computation should be
applied to additional challenging applications. While
a preliminary study has previously been successfully
applied to a “toy” neural network design problem [11],
more complex and varied application domains should
be explored and further analyzed statistically. One par-

ticularly important issue for future applications is what
impact causally-guided genetic operators have on dis-
covering truly novel solutions. Another is to assess
the practical significance of the improved computation-
al efficiency that we observed, such as with evolution
of adaptive designs in which continual re-evolution is
required. Still another is to compare the results we
obtained here against those obtainable with other op-
timization methods (PSO, simulated annealing, etc.).
Further, an important extension of this work would be
to expand the ways in which human experts may de-
scribe causal knowledge, including non-linear relation-
ships and their associated probabilities.

5. Conclusions

We conclude that causally-guided genetic operators
offer an effective way of incorporating expert-supplied
cause-effect domain knowledge into the evolutionary
design of antennas. Causally-guided evolution appears
to increase the efficiency and effectiveness of the evo-
lutionary process, by directing the evolutionary search
away from less fruitful areas of the search space.
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