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Abstract: This study deals with the design of elliptical antenna arrays for specific radiation property using three different
evolutionary algorithms; namely, self-adaptive differential evolution method, biogeography based optimisation method and
firefly algorithm. These methods are used to determine an optimum set of positions for uniformly excited elliptical antenna
array (EAA) that provides a radiation pattern with optimum side lobe level reduction with the constraint of a fixed major lobe
beamwidth. Three examples are investigated; 8, 12 and 20 elements EAAs using these evolutionary algorithms. The
comparison shows that the design of non-uniform EAAs using evolutionary algorithms presents a good side lobe reduction in
the radiation pattern for the optimised design. Furthermore, the BBO method shows somewhat better performance compared
with the other two methods.

1 Introduction

Antenna arrays play an important role in modern wireless
applications, such as radio, TV, mobile, radar and satellite
[1]. With the wireless communications revolution, antenna
engineers are faced with more challenges. More
requirements, such as radiation pattern shaping, low profile,
wideband/narrowband devices, interference cancellation,
matching networks, and more limitations such as power
dissipation and antenna size, lead to the urgent need for
simple, time-saving and efficient numerical techniques.
Hence, optimisation techniques have recently taken a big
effort in many electromagnetics and antenna synthesis
problems where they specify the system design accuracy
and reliability.
In this context, evolutionary algorithms, which are

essentially search and optimisation techniques, have been
successfully used in single- and multi-objective optimisation
problems with many constraints. Recently, several
evolutionary optimisation techniques: such as genetic
algorithm (GA), particle-swarm optimisers (PSO), central
force optimisation (CFO), differential evolution (DE), ant
colony optimisation (ACO), Taguchi method,
Biogeography-based optimisation (BBO) and firefly
algorithm (FA) have been successfully used in
electromagnetics because of their simplicity and robustness
[2–11]. One of the common features of evolutionary
algorithms is the existence of some parameters to be adjusted.
One cannot solve a problem efficiently without adjusting
their parameters properly. Proper parameters are different in
each problem, and finding these proper parameters usually
involves trial and error in most of the optimisation techniques.

Nowadays, antenna arrays are widely used in wireless
communications rather than a single antenna. With the use
of several antennas working together (array), it is possible
to improve the radiation according to some specifications.
The antenna array is important in the field of wireless
communications because it improves the transmission and
reception patterns of antennas used in communications
systems. An array enables the beams of the antenna system
to be electronically steered to transmit or receive
information from a specific direction without mechanically
moving the antenna. Antenna arrays can take any shape
such as linear, elliptical, circular, planar, … etc.
Among the different types of antenna arrays, elliptical

antenna array (EAA) [12–14] and circular antenna arrays
(CAA) [15–19] have become more popular in mobile and
wireless communications. In contrast to linear antenna
arrays, the radiation patterns of EAAs and CAAs inherently
cover the entire space; the main lobe could be oriented in
any desired direction. For the design of these arrays, one has
to adequately choose the number of antennas in the array,
their positions along the circumference, the semi major axis
(the circle’s radius in the case of CAAs), the ellipse
eccentricity and the feeding currents (amplitudes and phases)
of the antenna elements. In general, the elliptical and circular
array optimisation problems are more complicated than the
linear array optimisation. Through this paper, EAAs will be
designed with the objective of minimising the side lobe level
(SLL) with the constraint of a fixed major lobe beamwidth,
using three different optimisation methods’ namely, the
self-adaptive differential evolution (SADE) technique, BBO
method and FA. To our knowledge, these techniques have
not been applied on the optimal design of EAAs before.
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The rest of this paper is organised as follows: in Section 2,
the used optimisation techniques are briefly described and in
Section 3 the geometry and the array factor for EAAs are
presented. Then, in Section 4, the fitness function is given.
Based on these models, in Section 5, numerical results and
comparisons are shown. Finally, the paper is concluded in
Section 6.

2 Evolutionary algorithms

2.1 SADE

DE was introduced by Kenneth Price and Rainer Storn in
1995 [20]. It is a simple metaheuristic and stochastic
population-based evolutionary algorithm for global
optimisation problems. DE is a small and simple
mathematical model of a big and naturally complex process
of evolution. However, when such algorithms are used, one
faces the problem of setting their control parameters. The
efficiency and the reliability of many algorithms are
strongly dependent on the values of these control
parameters. A user is supposed to be able to change the
parameter values according to the results of trial-and-error
preliminary experiments with the search process. Such
attempts are not acceptable in tasks when the user has no
experience in the art of control-parameter tuning. That is
why the SADE was proposed in which the setting of the
control parameters is made adaptive through the
implementation of a competition into the DE algorithm [21,
22]. The DE has become one of the most popular
algorithms for the continuous global optimisation problems
and has been used in many practical cases as it has good
convergence properties [20, 23].
Let the decision space (DS) be the Nd-dimensional decision

search space such that DS , RNd . DE [20] evolves a
population of Np individuals of Nd – dimensional vectors

(i.e. solution candidates, Rp = rp1, r
p
2, . . . , rpNd

( )
e DS,

where the solution or individuals index = (1, …, Np), from
one generation to the next). The initial population is
distributed randomly such that it should ideally cover the
entire search space by randomly distributing the ith space
dimension (i.e. parameter) of each individual vector with a
uniform distribution between the prescribed maximum and
minimum bounds rmax

i and rmin
i , where i = 1, …, Nd. At

each generation ‘j’, DE employs the mutation and crossover
operations to produce a trial vector Up

j for each individual
vector Rp

j . It is also called the target vector in the current
population [20].
In [21, 22], a novel approach was proposed for the

self-adapting DE control parameters. The strategy was
based on DE/rand/l/bin scheme. Each vector was extended
with its own differentiation factor (F) and crossover
constant (CR) values. Therefore, the control parameters
were self-adjusted in every generation for each individual
according to the following scheme

Fi,G+1 =
F1 + rand1 × Fu, if rand2 , 0.1
Fi,G, otherwise

{
(1)

CRi,G+1 =
rand3, if rand4 , 0.1
CRi,G, otherwise

{
(2)

where i = 1, …, Nd and G is the generation number. rand1,
rand2, rand3 and rand4, which are generated using the rand
function in Matlab, are random numbers ∈ [0, 1] and Fl, Fu

are the lower and the upper limits of F set to 0.1 and 0.9,
respectively [22]. So, by using the self-adaptive algorithm,
the user does not have to adjust the F and CR parameters,
while the time complexity does not increase.
In this paper, the DE with competitive control-parameter

setting technique [22] is used, in which the setting of the
control parameters is made adaptive through an
implementation of a competition into the DE algorithm.

2.2 BBO

Biogeography is the science specialising in studying the
geographical distribution of living organisms. During the
early 19th century, the basics of biogeography science were
written by Alfred Wallace [24] and Charles Darwin [25].
This science remained descriptive until Robert MacArthur
and Edward Wilson, in 1967, presented mathematical
models of biogeography called The Theory of Island
Biogeography [26] which is focused on the nature’s way of
species distribution. BBO, which was developed by Dan
Simon [27], is similar to artificial neural network (ANN)
[28] and GA [29], which are dependent on biological
neurons and biological genetics, respectively. Mathematical
models of BBO are based on the extinction and migration
of species between neighbouring islands. An island is any
habitat (area) that is geographically isolated from other
habitats. Islands that are more suitable for habitation than
others are said to have a high habitat suitability index
(HSI). HSI is considered as a dependent variable, because it
is correlated to many factors such as rainfall, temperature
and diversity of vegetation and topography, … etc. Another
interesting variable is called the suitability index variable
(SIV), which characterises habitability. It is an independent
variable of the habitat.
Suppose that one is faced with a global optimisation

problem and some candidate solutions. The candidate
solutions of a problem are represented by an array of
integers as Habitat = [SIV1, SIV2, SIV3, …, SIVN]. The
value of the fitness function in BBO is called HSI, which is
found by evaluating the fitness function

fitness(Habitat) = HSI

= f SIV1, SIV2, SIV3, . . . . . . , SIVN

( )
(3)

The migration process has two types: they are emigration and
immigration. Whereas migration means moving species from
habitat to habitat, emigration is the process of leaving species
the habitat to somewhere and immigration means the process
of incoming species to this habitat from somewhere. A habitat
with large number of species is characterised as follows: it has
a high HSI, high emigration rate, low immigration rate and
considered as more stable because it shall be almost filled
with species. All these characteristics are vice versa for a
habitat with less number of species. Species immigrating to
low HSI habitats may increase the HSI of the habitat,
because of the relationship between biological diversity of a
habitat and its suitability. However, if the suitability index
stays low then species that immigrate will incline to go
extinct. The BBO algorithm consists of three steps: creating
a set of solutions to the problem, where they are randomly
selected, and then applying migration and mutation steps to
reach the optimal solution.
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2.3 FA

FA is a new nature-inspired algorithm developed by Yang
[30, 31]. Several well-known optimisation techniques: such
as invasive weed optimisation (IWO) [32], ant colony
optimisation (ACO) [33], PSO [34] and recently FA mimic
insect behaviour in problem modelling and solution. FA is
based on the flashing light of fireflies, which is produced by
a process of bioluminescence. The objectives of flashing
system in fireflies are to attract marrying partners or
potential victim, and to give a warning sign. The attractive
process between fireflies is based on their light intensity
where fireflies move toward the brightest ones. FA employs
this swarm behaviour in optimisation problem where the
light intensity and location of firefly correspond to the
fitness value and a set of solutions to the optimised problem.
FA can be summarised and described as follows:

(I) – Create a set of solutions (location of n-fireflies in the
d-dimensional search space) to the problem, where they are
randomly selected within the search bound

xi = xi1, xi2, . . . , xid
( )

, for i = 1, 2, . . . , n (4)

(II) – Calculate the fitness function f (xi) (intensity (Ii)) of each
solution (each firefly position) and sort the population from
best (brightest) to worst (bright). For minimisation problem

Ii / (1)/ f (xi)
( )( )

(5)

(III) – Update fireflies’ locations depending upon the
attractiveness between the brighter one and the moving
firefly, where fireflies i (low intensity) are attracted towards
other fireflies j that are more brighter (highest intensity)
using the following formula

xi = xi + bo e
−gr2ij xj − xi

( )
+ a(rand− 0.5) (6)

rij = xi − xj =
∑d
k=1

xi,k − x j,k

( )2( )0.5

(7)

For more details about the above three optimisation
techniques, the reader can consult the references cited above.

3 Geometry and array factor of elliptical
antenna array

The geometry of an EAAwhose N isotropic antenna elements
lie on an ellipse placed in the x–y plane (θ = 90°) is shown in
Fig. 1. The origin is considered to be the centre of an ellipse.
In free space, the array factor for this elliptical array is given
by [13, 14] (see (8))

where

k = 2p

l
(9)

In the above equations, In and αn represent the excitation
amplitude and phase of the nth element. Øn is the angular
position of the nth element in the x–y plane, Ø is the
azimuth angle measured from the positive x-axis, θ is the
elevation angle measured from the positive z-axis (in our
examples, the array factor in the x–y plane, that is, θ = 90°,
is considered). Moreover, a and b are, respectively, the
semi-major axis and semi-minor axis lengths. It should be
mentioned here that the circular antenna array is a special
case of an EAA when the eccentricity (e) equals to zero.
The value of e is given as follows

e =









1− b2

a2

√
(10)

To direct the peak of the main beam in the (θo, φo) direction,
the excitation phase is chosen to be [1]

an = − k sin uo
( )

a cos Øn

( )
cos fo

( )+ b sin Øn

( )
sin fo

( )( )
(11)

In our design problems, θo and φo are chosen to be 90° and
0°, respectively, that is, the peak of the main beam is
directed along the positive x-axis. The ellipse eccentricity is
fixed in all elliptical array examples (e = 0.5). a is chosen
depending on the number of elements. Here, it is chosen as
0.5λ, 1.15λ and 1.6λ for 8, 12 and 20 elements EAAs,
respectively. These values, which are found by several trial
runs, provide maximum reduction in the SLL.

4 Fitness function

In antenna array problems, there are many parameters that can
be used to evaluate the fitness (or cost) function such as gain,
SLL, radiation pattern and size. Here, the goal is to design
arrays with minimum side lobe levels for a specific first null
beamwidth (FNBW). Thus, the following fitness function is

Fig. 1 Geometry of an EAA lying in the xy-plane with isotropic
radiators

AF(u, Ø) =
∑N
n=1

In exp j k sin(u) a cos Øn

( )
cos (Ø)+ b sin Øn

( )
sin(Ø)

( )+ an

[ ]( )
(8)
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used

Fitness = W1F1 +W2F2

( )
/ AFmax

∣∣ ∣∣2 (12)

F1 = AF Ønu1

( )∣∣ ∣∣2+ AF Ønu2

( )∣∣ ∣∣2 (13)

F2 = max AF Øms1

( )∣∣ ∣∣2, AF Øms2

( )∣∣ ∣∣2{ }
(14)

where Ønu is the angle at a null. Here, the array factor is
minimised at the two angles Ønu1 and Ønu2 defining the
major lobe, that is, an FNBW = φnu2− φnu1 = 2φnu2. Øms1

and Øms2 are angles where the maximum SLL is attained
during the optimisation process in the lower band (from −
180° to Ønu1) and the upper band (from Ønu2 to 180°),
respectively. An increment of 1° is used in the optimisation
process. Thus, the function F2 minimises the maximum
SLL around the major lobe.
Moreover, AFmax is the maximum value of the array factor,

that is, its value at (θo, φo). W1 and W2 are weighting factors,
which are chosen here to be unity. It should be mentioned
that since the gradient of an AF is, as a rule, not small at the
nulls, we use (13) instead of, for instance, squared distortion
of a specified FNBW. Thus, for the design of an EAA with
minimum SLL, the optimisation problem is to search for the
element positions (Øn’s) that minimise the maximum SLL
with the constraint of a fixed major lobe beamwidth for
uniformly excited EAA, that is, In’s are assumed to be unity.

5 Numerical results and comparisons

5.1 Example 1: 8 elements EAA

Using the equation of fitness function associated with the
array factor for eight elements EAA, the three optimisation
codes are run for 20 independent times. The control
parameters of each technique were tuned by trial until the
best solutions were obtained. Table 1 and Fig. 2 show the
best obtained optimum positions and the obtained radiation
patterns. The best SLL, which is obtained by BBO, is
−19.763 dB, whereas the maximum SLL obtained using the
SADE and FA are −19.12 and −19.43 dB, respectively. It
is worth mentioning that a uniform EAA with the same
number of elements that are uniformly distributed along the
perimeter of the ellipse has a maximum SLL of −8.02 dB.

5.2 Example 2: 12 elements EAA

In the second example, a 12-element EAA is optimised. Table 2
shows the SADE, BBO and FA results for 12 elements EAA,
whereas Fig. 3 shows a comparison between the array factors
obtained using the different optimisation methods as
compared with a uniform array. The maximum SLL obtained

using SADE, BBO and FA methods are: −10.37, −9.76 and
−9.96 dB, respectively, while that obtained using the uniform
array is −3.60 dB. It can be noted that the SADE gives
slightly better SLL than other methods.

5.3 Example 3: 20 elements EAA

Similar to the previous examples, Table 3 shows the optimum
results for 20 elements EAA, whereas Fig. 4 shows a

Fig. 3 Radiation pattern for the optimised N = 12 EAA

Fig. 2 Radiation pattern for the optimised N = 8 EAA

Table 2 Positions for the optimised N = 12 EAA

N = 12
φnu2 = 22°

[Ø1, Ø2, Ø3, …, Ø12] in degrees Max SLL, dB

SADE [13.57, 61.10, 101.10, 121.03,
157.57, 180.10,

−10.372

196.06, 203.53, 254.08, 266.70,
327.94, 349.25]

BBO [25.25, 49.84, 90.87, 121.82, 155.25,
179.38,

−9.762

204.15, 235.15, 271.03, 310.91,
336.84, 359.41]

FA [0.15, 24.20, 46.19, 87.97, 127.67,
156.54,

−9.966

181.47, 206.66, 240.97, 273.94,
310.98, 336.81]

uniform [0, 30, 60, 90, 120, 150, 180, 210,
240, 270, 300, 330]

−3.60

Table 1 Positions for the optimised N = 8 EAA

N = 8
φnu2 = 51°

[Ø1, Ø2, Ø3, …, Ø8] in degrees Max SLL, dB

SADE [33.18, 53.49, 130.78, 150.20, 209.64,
230.74, 305.92, 333.58]

−19.124

BBO [33.95, 51.90, 127.37, 145.91, 206.57,
233.52, 305.95, 331.42]

−19.763

FA [30.56, 53.93, 125.89, 149.16, 210.99,
233.52, 306.57, 329.13]

−19.430

uniform [0, 45, 90, 135, 180, 225, 270, 315] −8.02
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comparison between the array factors obtained using the
different optimisation methods as compared with a uniform
array. The maximum SLLs obtained using the SADE, BBO
and FA methods are −11.22, −11.02 and −11.27 dB,
respectively. It can be noted that both the SADE and FA
give slightly better SLLs than the BBO method.

5.4 Comparisons

Tables 4 and 5 show a comparison between the used
optimisation techniques with respect to the simulation time
and the total number of function evaluations. The number
of function evaluations is computed based on the
population size and the maximum number of generation,
which are set by tuning until the optimal SLL is obtained.
It can be seen from Table 5 that, for eight-element EAA,

the number of function evaluations of the BBO is about

Table 3 Positions for the optimised N = 20 EAA

N = 20
φnu2 = 16°

[Ø1, Ø2, Ø3, …, Ø20] in degrees Max SLL, dB

SADE [0.57, 18.00, 38.74, 68.69, 86.32, 93.87,
110.80, 140.92, 161.99, 179.62, 180.06,
198.00, 216.00, 248.96, 267.47, 273.53,

290.71, 323.67, 341.99, 359.15]

−11.225

BBO [2.80, 18.03, 38.06, 71.99, 84.08, 92.73,
108.96, 140.55, 161.82, 178.23, 181.78,
198.07, 219.26, 248.84, 266.82, 271.33,

292.57, 323.54, 341.53, 359.07]

−11.020

FA [0.77, 18.00, 37.25, 68.33, 88.66, 93.51,
113.53, 143.98, 162.00, 179.98, 180.63,
198.00, 216.99, 248.14, 264.62, 273.40,

289.05, 321.28, 342.00, 358.30]

−11.272

uniform [0, 18, 36, 54, 72, 90, 108, 126, 144,
162, 180, 198, 216, 234, 252, 270, 288,

306, 324, 342]

−7.17

Fig. 4 Radiation pattern for the optimised N = 20 EAA

Table 4 Comparison between the simulation time for the
optimisation techniques (units: s)

Number of elements SADE BBO FA

8 82.1727 43.9015 175.1540
12 145.8874 196.5913 269.0191
20 541.6746 287.9012 510.5234
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46.87 and 25% of that needed by the SADE and FA,
respectively. While for 12-elements EAA, the number of
function evaluation used by the FA is 166.66 and 288.46%
greater than that of needed by SADE and BBO,
respectively. Finally, for 20-element EAA, SADE and FA
have the same number of function evaluations to reach the
best values that is 375% greater than that of needed by
BBO. In all of the above-mentioned comparisons, the BBO
showed better performance in terms of computation cost
(i.e. number of function evaluations and simulation time).

6 Conclusions

In this paper, for the first time, the evolutionary algorithms:
SADE, BBO and FA were used to adjust the elements
positions, which were uniformly excited, in an EAA. Three
examples were investigated: 8, 12 and 20-element EAAs.
The design objective was to provide a radiation pattern with
an optimum SLL reduction with the constraint of a fixed
major lobe beamwidth. The obtained optimised array factor
and the performance of evolutionary algorithms were
compared. The comparison showed that the design of
non-uniform EAAs using evolutionary algorithms presents a
good side lobe reduction in the radiation pattern for the
optimised design. It has been found that BBO is the most
efficient among the investigated methods (for the problem
under consideration).
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