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A comparison between different modern multi-objective optimization methods
applied to the design of concentric rings antenna arrays is presented in this paper.
This design of concentric rings antenna arrays considers the optimization of the
amplitude and phase excitations across the antenna elements in order to generate the
trade-off curves between side lobe level and directivity for a scannable pattern
with optimal performance in the whole azimuth plane. Simulation results by using
evolutionary multi-objective optimization methods, such as: NSGA-II, DEMO, and
EM-MOPSO are provided in this document. Furthermore, a comparative analysis of
the performance between these algorithms is presented.

1. Introduction

Recently, multi-objective evolutionary algorithms have been applied to several antenna
arrays design problems.[1,2] The most representative multi-objective algorithms include
the NSGA-II,[3–4] DEMO,[5] and MOPSO,[6] among others. Since antenna arrays
design is a complex task involving multiple objectives, these techniques have received
great attention because they can solve a variety of problems and are easy to implement.

This paper presents a comparison of NSGA-II, DEMO, and EM-MOPSO for the
multi-objective design of concentric rings antenna arrays. The purpose and contribution
of this paper is to present a comparative evaluation of NSGA-II, DEMO, and
EM-MOPSO in their performances to design concentric rings antenna arrays. The
multi-objective design of concentric rings antenna arrays considers the optimization of
the amplitude and phase excitations across the antenna elements in order to generate the
trade-off curves between the side lobe level and directivity for a scannable pattern with
optimal performance in the whole azimuth plane, i.e., in a scanning range of [0°, 360°].

To the best of the authors knowledge, a performance comparison of NSGA-II,
DEMO, and EM-MOPSO applied to the design of concentric rings antenna arrays (with
a scannable pattern) has not been presented previously.

The remainder of the paper is organized as follows. Section II states the antenna
array design problem we are dealing with. Section III describes the evolutionary
multi-objective optimization algorithms employed. Section IV presents and discusses
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the simulation results. Finally, the summary and conclusions of this work are presented
in Section V.

2. Problem statement

Consider a concentric rings array of NT elements are uniformly spaced on the x–y plane
as shown in Figure 1. The array factor for this concentric ring array shown in Figure 1
is given by Balanis [7]

AFðh;u;W Þ ¼
XNr

n¼1

XNn

m¼1

wnm expf jkrn½u cosum þ v sinum�g ð1Þ

In this case, the previous array factor for concentric rings array with phase
excitation is formulated by incorporating the element phase perturbation P as follows:

AFðh;u;W ;PÞ ¼
XNr

n¼1

XNn

m¼1

wnm expf j½krnðu cosum þ v sinumÞ þ dnm�g ð2Þ

where

u ¼ sin h cosu� sin h0 cosu0 ð3Þ

v ¼ sin h sinu� sin h0 sinu0 ð4Þ

Nr represents the number of rings; Nn represents the number of elements on the ring
n; rn is the radius of ring n; k is the signal wavelength; k ¼ 2p=k is the phase constant;
um ¼ 2pðm� 1Þ=Nn represents the angular position of the element m on the ring n;
(h0;u0) is the direction of the maximum radiation; h is the angle of a plane wave in the
elevation plane; u is the angle of a plane wave in the azimuth plane; wnm and dnm are

Figure 1. Steerable concentric rings array with antenna elements uniformly spaced.
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the amplitude excitations and phase perturbations of the element m on the ring n
defined by the sets W and P. In these sets, the amplitude excitations and phase perturba-
tions for the entire rings are arranged in two vectors of real numbers as follows:

W ¼ ½w11;w12; . . . ;w1N1 ;w21;w22; . . . ;w2N2 ; . . . ;wn1;wn2; . . . ;wnNn � ð5Þ

P ¼ ½d11; d12; . . . ; d1N1 ; d21; d22; . . . ; d2N2 ; . . . ; dn1; dn2; . . . ; dnNn � ð6Þ

The sets W and P are divided into subsets for each ring on the plane. Thus, there
exist Nr subsets for amplitude excitations and Nr subsets for phase excitations. This
model considers the center of each ring as the phase reference in the array factor.
Furthermore, it is considered a symmetrical excitation for the rings and the behavior of
the array factor in the azimuth plane (0°6u0 6 360°) with an angular step of 60° in
the cut of h= 90°.

In order to include the effect of mutual coupling for the concentric rings array, the
method of induced electro-motive force (EMF) [7] for thin and finite dipoles is
considered. In this case, it is considered the side-by-side configuration and dipole
lengths of l ¼ k=2.

Since Nn must be an even number, so that the symmetry could be correctly applied,
the subset of amplitude excitations for the ring n is given as Wn1, Wn2, …, WnNn/2,
Wn(Nn/2)+1 =Wn1, WnNn =WnNn/2. And the subset of phase excitations for the ring n is
given as δn1, δn2, …, δnNn/2, δn(Nn/2)+1 =�δn1, …, δnNn=�δnNn/2. The amplitude and
phase excitations in the subsets of the entire ring could be rotated on antenna element
position for beam steering.

To illustrate this, it could be considered an array of just one ring of m elements,
i.e., a circular array. If we select the number of antenna elements as N= 6 (as an
example) and there is a constant angular separation of 60° between different beam
steering angles, the optimal excitation for a particular beam steering angle should also
apply to other beam steering angles by simply substituting (Wm, δm) into (Wm+1, δm+1)
when the beam steering angle is increased by 60°.[8]

The rotation properties could be similarly applied to the entire rings as mentioned in
the case of one ring. In this design case, we consider a concentric rings array with Nr

rings. The main lobe is steered with an angular step of 60° in azimuth plane. Because
of that, the number of elements for the rings is given in other way N1 = 360°/60°,
N2 = 2N1, …, Nn= nN1 elements. In order to keep a uniform element distribution, the
radius of the rings are r1, r2 = 2r1, r3 = 3r1, …, rn= nr1 and the spacing element is set as
dn ¼ 2pNnrn. Note that the antenna elements distribution does not consider a central
element on the origin.

In this case, the optimal sets of amplitude and phase excitations for a certain direc-
tion of the beam steering u0 should also apply to other direction of beam steering
(u0 + 60°) by rotating the subsets of amplitude and phase excitations of the rings of the
array. Hence, the excitations (Wnm, δnm) for the element m of ring n are now substituted
into the positions (Wn(m+n), δn(m+n)) in the subsets of amplitude and phase excitations of
the ring n for each steering direction.

By means of this design, only one optimization is required for beam steering in
steps of 60° degrees rather than one optimization for each beam steering direction.

The objective functions of this design problem can be formulated as follows:

f1 = SLLmax(W, P) and f2 = 1/DIR(W, P).
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where SLLmax is the maximum side lobe level attained in u ¼ ½�p; p� and DIR
represents the directivity of the array factor. Thus, the optimization task is then in the
first component: the minimization of the maximum side lobe level (f1), and in the
second component it is the maximization of the directivity (f2). Then the problem can
be formulated as:

Minimize ðf1; f2Þ ð7Þ

subject toðP 2 MÞ; ðW 2 KÞ;

where M = (0, 2π]N and K= [Wmin, Wmax]
N is thez range of the weight coefficients

imposed for practical implementation of the attenuators. Notice that the relations
between the decision variables P and W with f1, f2 are not trivial, but highly nonlinear.

Please note that, once the corresponding array factor has been computed for one
desired direction i.e. u0 = 0°, the array factor could be scanned in steps of 60° in the
azimuth plane (0°6u06 360°) by rotating the phase and amplitude excitations. As an
advantage of the geometry of concentric rings for antenna arrays, the optimal properties
of the side lobe level and the directivity are remained in each scanning direction by
applying the rotation principle mentioned previously.

2.1. Previous work

In the application of multi-objective evolutionary optimization techniques for designing
antenna arrays, the design of different array structures has been considered. Among
these array structures, the linear and circular array has been studied in the works
presented in [1] and [3,4]. In these works, in order to determine the trade-off curves of
the side lobe level and main beam width for linear and circular antenna arrays the
application of NSGA-II is illustrated.

An interesting open problem is to determine the trade-off curves for other array
configurations, as in the case of concentric rings antenna arrays. In this case, array con-
figurations, in which the elements are placed, in concentric rings are of great interest.
They have applications in radio direction finding, air and space navigation, radar, and
other systems.[9–13]

In the study of concentric rings antenna arrays, optimizing an array to have low side
lobe level at broadside has been considered.[14–16] The design of a concentric ring
antenna array in order to have a scannable pattern is dealt with in [2] and [17–19].
However, the application of evolutionary multi-objective techniques to design concen-
tric rings antenna arrays has been rather scarce, a few related results can be found in
the literature.[2] Moreover, a performance comparison of NSGA-II, DEMO, and
EM-MOPSO applied to design concentric rings antenna arrays (with a scannable
pattern) has not been presented previously.

The main contribution of this paper is the computation of the trade-off curves
between the side lobe level and the directivity for concentric rings antenna arrays when
the scanning of the array factor is considered. The elements of novelty presented in this
paper are the application and comparison of different multi-objective evolutionary
optimization algorithms to a design problem which is both nontrivial and interesting:
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the multi-objective design of concentric rings antenna arrays with a scannable array
factor. In this case, the term multi-objective is employed to illustrate the design that
evaluates the performance criteria and at the same time in order to obtain the trade-off
curve that represents the best compromise among the objectives.

Moreover, a performance comparison of NSGA-II, DEMO, and EM-MOPSO
applied to design concentric rings antenna arrays (with a scannable pattern) has not
been presented previously. Even more studies comparing the performance of different
optimizers for antenna design have been scarce.[8]

The next section presents the multi-objective evolutionary optimization algorithms
to be evaluated when they are applied to this design problem.

3. The multi-objective evolutionary optimization algorithms

As already being pointed out, the objective of this paper is to present a comparative
evaluation of NSGA-II, DEMO, and EM-MOPSO for the design of concentric rings
antenna arrays. Therefore, the main characteristics and the procedure for each algorithm
are described in the next subsections.

3.1. The NSGA II

Genetic algorithms are especially well suited for multi-objective problems, since they are
designed to handle a multi-set of solutions in a single iteration. We chose this algorithm
proposed by Deb [20] for its easiness of implementation and its efficient computation of
non-dominated ranks. The procedure for NSGA-II is described as follows.

Algorithm 1. NSGA-II.
Step 1. Set r= 0. Generate an initial population P[r] of popSize individuals.
Step 2. Classify the individuals according to a non-dominated ranking system.
Step 3. Set i= 1.
Step 4. Use Binary Crowded Tournament Selection, apply crossover with probability

pc and mutation with probability pm.
Step 5. Set i= i+ 1. If i> popSize then go to Step 6 otherwise go to Step 4.
Step 6. REPLACEMENT. Assign ranks to individuals in the population generated

by the union of Parents and Children populations. Copy into the new
population individuals from a front with lower index as long as the number
of individuals in the front does not overflow the population size ( popSize). In
the last front to be copied sort the individuals according to their crowding
distance eliminating those individuals with smaller crowing distance, until the
total number of individuals ( popSize) is completed.

Step 7. Set r= r+ 1. If r= rmax then STOP; otherwise go to STEP 3.

The main idea in STEP 2 is to classify the individuals according to their dominance
relation, i.e. the set of non-dominated individuals are said to be in front 0. After
removing these individuals the remained nondominated solutions are in front 1. The
procedure continues until all individuals are assigned to a front. Deb [20] explains the
procedures involved at each step of this algorithm in detail. The individual representa-
tions as well as the crossover and mutation operators are explained in the following
subsections.
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3.1.1. Individual representation and decoding

Each individual is, in general, represented by two vectors of real numbers (amplitude
excitations and phase perturbations of the antenna elements). The individuals are
encoded as a vector of real numbers, that represents the amplitudes, and as a vector of
real numbers restrained to be on the range (0, 2π), that represents the phase perturbations
of the antenna elements.

3.1.2. Genetic operators

The applied genetic operators are standard, the well-known two-point crossover [21]
along with a single mutation where a locus is randomly selected and the allele is
replaced by a random number uniformly distributed in the projection of the feasible
region on the corresponding variable.

3.2. DEMO

It is a way of extending Differential Evolution (DE) [22] to be suitable for solving
multi-objective optimization problems. The DEMO implementation differs from others
and represents a novel approach to multi-objective optimization. DEMO can be imple-
mented in three variants (DEMO/parent, DEMO/closest/dec, and DEMO/closest/obj).[5]

Algorithm 2. DEMO/parent.

Step 1. Evaluate the initial population P of random individuals.
Step 2. While the stopping criterion is not met, do:

2.1. For each individual Pi (i = 1, ... , popSize) from P repeat:
(a) Create a candidate C from parent Pi.
(b) Evaluate the candidate.
(c) If the candidate dominates the parent, the candidate replaces the

parent.
If the parent dominates the candidate, the candidate is discarded.
Otherwise, the candidate is added to the population.

2.2. If the population has more than popSize individuals, truncate it.
2.3. Randomly enumerate the individuals in P.

The main idea in STEP 2 is: the candidate replaces the parent if it dominates it. If the
parent dominates the candidate, the candidate is discarded. Otherwise (when the candi-
date and parent are non-dominated with regard to each other), the candidate is added to
the population. This step is repeated until popSize number of candidates are created.
After that, we get a population of the size between popSize and 2� popSize. If the pop-
ulation has enlarged, we have to truncate it to prepare it for the next step of the algo-
rithm. The truncation consists of sorting the individuals with non-dominated sorting and
then evaluating the individuals of the same front with the crowding distance metric.
The truncation procedure keeps in the population only the best popSize individuals
(with regard to these two metrics). The described truncation is derived from NSGA-II.
For more details of this algorithm see [5].

The described DEMO’s procedure outlined in this section is the most elementary of
the three variants: DEMO/parent. The other two variants were inspired by the concept
of Crowding DE.[23] Usually, the candidate is compared to its parent. In Crowding
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DE, the candidate is compared to the most similar individual in the population. The
applied similarity measure is the Euclidean distance between two solutions.

3.3. EM-MOPSO

This approach is based on Particle Swarm Optimization (PSO) [24] and uses Pareto
dominance criteria for selecting non-dominated solutions; an external repository (ERP)
for storing the best solutions found (elitism); crowding distance operator for creating
effective selection pressure among the swarm to reach true Pareto optimal fronts; and
incorporates an effective elitist-mutation (EM) strategy for effective exploration of the
search space. The proposed elitist-mutated multi-objective PSO (EM-MOPSO) [25]
algorithm is discussed in the following sections. More details of this algorithm can be
found in [25].

Algorithm 3. EM-MOPSO.

Step 1. Initialize population. Set iteration counter t= 0.
1. The current position of the i-th particle Xi is initialized with random real

numbers within the established decision variable range; each particle velocity
vector Vi is initialized with a uniformly distributed random number in [0,1].

2. Evaluate each particle in the population. The personal best position Pi is set
to Xi.

Step 2. Identify particles that give non-dominated solutions in the current
population and store them in an ERP.

Step 3. t= t+ 1.
Step 4. Repeat the loop (step through PSO operators):

1. Select randomly a global best gbest for the i-th particle from the ERP.
2. Calculate the new velocity Vi based on Equation (8), and the new Xi by

Equation (9).

vid ¼ wvid þ c1r1ð pbesti;d � xidÞ þ c2r2ðgbestd � xidÞ; vi 6 vd;max 8d ð8Þ

xid ¼ xid þ vidDt ð9Þ

where each particle Xi = (xi1, …, xiD) represents a potential solution (amplitude
excitations and phase perturbations of the antenna elements) defined as a point
in a D-dimensional space. The limits of the parameters xid to be optimized,
define the search space in D-dimensions. Iteratively, each particle i within the
swarm flies over the solution space to a new position Xi with a velocity Vi =
(vi1,…,viD), both updated along each dimension d; w is known as the inertial
weight, c1 and c2 are the acceleration constants and determine how much the
particle is influenced by its best location (usually referred to as memory,
nostalgia, or self-knowledge) and by the best position ever found by the swarm
(often called shared information, cooperation, or social knowledge), respectively.
Moreover, r1 and r2 represent two separate calls to a random number function U
[0, 1], vd,max is the maximum allowed velocity for each particle used as a
constraint to control the exploration ability of the swarm and usually set to the

1106 M.A. Panduro et al.



dynamic range of each dimension,[26] and Δt is a time-step usually chosen to be
1.0. The detailed interpretations of these step terms may be found in [26].
3. Repeat the loop for all the particles.

Step 5. Evaluate each particle in the population.
Step 6. Perform the Pareto dominance check for all the particles: if the current

local best Pi is dominated by the new solution, then Pi is replaced by the
new solution.

Step 7. Set ERP to a temporary repository, TempERP and empty ERP.
Step 8. Identify particles that give non-dominated solutions in the current iteration

and add them to TempERP.
Step 9. Find the non-dominated solutions in TempERP and store them in ERP. The

size of ERP is restricted to the desired set of non-dominated solutions; if it
exceeds, use the crowding distance operator to select the desired ones.
Empty the TempERP.

Step 10. Perform EM operation on established number of particles.
Step 11. Check for termination criterion; if it is not satisfied, then go to step 3;

otherwise output the non-dominated solution set from ERP.

The main operators used in this algorithm are explained below.

3.3.1. Variable size ERP

The global best guide of the particles is selected from a restricted variable size ERP.
This restriction on ERP is done using the crowding distance operator. This operator
ensures that those non-dominated solutions with the highest crowding distance values
are always preferred to be in the ERP. For effective exploration in the objective
functions space, the size is initially set to 10% of maximum ERP, then the value is
increased in a stepwise manner, so that at the start of 90% of maximum iterations, it
reaches the maximum size of ERP. Selecting different guides for each particle from a
restricted repository allows the particles to better explore the true Pareto optimal region.
More details can be found in [25].

The results of using these evolutionary multi-objective optimization algorithms for
the design of concentric rings antenna arrays are described in the next section.

4. Experimental setup and results

The methods of NSGA-II, DEMO, and EM-PSO were implemented to study the
behavior of the array factor in the azimuth plane (0°6u06 360°) with an angular step
of 60° in the cut of h = 90°. As mentioned before, the steerable concentric rings array
considers a uniform distribution on a plane. To achieve so, it is proposed, NT= 90 ele-
ments are distributed in Nr = 5 rings. Thus, the elements distribution is N1 = 6, N2 = 12,
N3 = 18, N4 = 24, and N5 = 30 for the array. Furthermore, the radius for the ring n= 1 is
defined as r1 ¼ 0:5k. For this configuration, the element spacing is dn � 0:5k. We give
all algorithms the same computation time with equal computational resources.

In the case of EM-MOPSO we have set c1 = c2 = 2.0 as suggested by Eberhart and
Shi [27] and Jin and Rahmat-Samii [28] for the sake of convergence. To further acceler-
ate the convergence, a time-varying inertial weight, w, is utilized and varied from 0.9 at
the beginning to 0.4 toward the end of the optimization.[29] The value of vd,max in (8)
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is set to 0.9r where r is the difference between the maximum and minimum values,
each decision variable can achieve. For the case of NSGA-II, we have set the proposed
parameters based mainly on our previous experience in solving similar problems.[1,3].
Two-point crossover along with standard single point mutation were used. In the
DEMO algorithms the value of F is set to 0.5. The stopping criterion in each algorithm
is the number of iterations. In order to have similar computation time, the number
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Figure 2. Trade-off curves between the side lobe level and the directivity for the concentric
rings antenna array obtained by NSGA-II, EM-MOPSO, DEMO/parent and DEMO/closest/dec.

Table 1. Average time for the 30 runs of each algorithm and the number of iterations employed.

Average time (minutes) Algorithm Number of iterations

64.99 DEMO/closest/dec 250
65.8 DEMO/parent 400
65.34 NSGA-II 400
64.99 EM-MOPSO 700

Table 2. Set coverage C(A,B) between each pair of algorithms.

A B Set coverage

DEMO/parent DEMO/closest/dec 0.25
DEMO/parent NSGA-II 1
DEMO/parent EM-MOPSO 1
DEMO/closest/dec DEMO/parent 0.6383
DEMO/closest/dec NSGA-II 1
DEMO/closest/dec EM-MOPSO 1
NSGA-II DEMO/parent 0
NSGA-II DEMO/closest/dec 0
NSGA-II EM-MOPSO 0.976
EM-MOPSO DEMO/parent 0
EM-MOPSO DEMO/closest/dec 0
EM-MOPSO NSGA-II 0.0441
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of iterations was set as follows: 400 for NSGA-II, 400 for DEMO/parent, 250 for
DEMO/closest/dec, and 700 for EM-MOPSO. The population size for each algorithm is
set to 500. Each algorithm was executed 30 times and the consolidated front for each
run is considered.

Figure 2 shows the trade-off curves between the side lobe level and the directivity for
the concentric rings antenna array obtained by NSGA-II, EM-MOPSO, DEMO/parent,
and DEMO/closest/dec. The results shown in Figure 2 illustrate that the DEMO/parent
and the DEMO/closest/dec algorithms found better non-dominated solutions as an
approximation to the Pareto solution. The average time for the 30 runs of each algorithm
and the number of iterations employed in each run are illustrated in Table 1. As it can be
seen in Table 1 similar computation time was provided for each algorithm.

Table 2 shows the Set Coverage [30] between each pair of algorithms. As it can be
seen in this table, DEMO/parent and DEMO/closest/dec covered totally to NSGA-II
and to EM-MOPSO. Considering the Set Coverage between DEMO/parent and DEMO/
closest/dec, it is observed that 64% of the solutions of DEMO/closest/dec covered to
DEMO/parent. In this pair of algorithms, 25% of the solutions of DEMO/parent
covered to DEMO/closest/dec. From this, DEMO/closest/dec presented a better perfor-
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Figure 3. Non-dominated front of the best solutions obtained by each algorithm that are
considered as the Pareto front in the calculus of the binary epsilon indicator.

Table 3. Value of the unary epsilon indicator for each algorithm.

PARETO FRONT (Figure 3) DEMO/parent 1
PARETO FRONT (Figure 3) DEMO/closest/dec 1
PARETO FRONT (Figure 3) NSGAII 0.9873
PARETO FRONT (Figure 3) EM-MOPSO 0.9615
DEMO/parent PARETO FRONT (Figure 3) 1.0053
DEMO/closest/dec PARETO FRONT (Figure 3) 1.1286
NSGAII PARETO FRONT (Figure 3) 1.856
EM-MOPSO PARETO FRONT (Figure 3) 1.5566
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mance with respect to DEMO/parent, NSGA-II, and EM-MOPSO for this performance
metric.

Another metric to evaluate the relative performance of an evolutionary multi-objective
optimization algorithm is the binary epsilon indicator.[30] This indicator takes two
nondominated fronts as input and gives a measure of how much one of them needs to be
improved, in order to dominate the other, i.e. it tells us how much two fronts are separated
from each other. In this design problem, the set of Pareto solutions is not known. There-
fore, to calculate the binary epsilon indicator and in order to make a fair comparison
among the algorithms, the “best of the best” of all algorithms is obtained and considered
as the Pareto front for the calculation of this metric, i.e. the nondominated front of the best
solutions obtained by each algorithm after 30 runs was taken as representative front for
that algorithm. Figure 3 shows the non-dominated front of the best solutions obtained by
each algorithm. This figure shows a wide range of solutions between the directivity and
the side lobe level for the design of concentric rings antenna arrays. The value of the
binary epsilon indicator for each algorithm is illustrated in Table 3. This Table shows a
better behavior on this metric for DEMO/parent and DEMO/closest/dec. However,
DEMO/parent presented a better approximation to the Pareto front with respect to
DEMO/closest/dec, NSGA-II, and EM-MOPSO.

As an interesting aspect, it included an example for computation of optimized
values of amplitude (only) and for optimized values of amplitude and phase (simulta-
neously). In this case, the method of DEMO/parent was used in order to determine the
optimized values for each case. The value of F is set to 0.5, the population size is set
to 500, and the number of iterations is set to 1000. Figure 4 shows the trade-off curves
between the side lobe level and the directivity for the concentric rings antenna array for
each case. As it can be shown, the trade-off between the side lobe level and the direc-
tivity is better explained by optimizing the amplitude and phase (simultaneously) with
respect to the amplitude only case. From a design point of view, a concentric rings
antenna array with the amplitude and phase optimized simultaneously could provide a
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Figure 4. Trade-off curves between the side lobe level and the directivity for the concentric
rings antenna array for optimized values of amplitude (only) and for optimized values of
amplitude and phase (simultaneously).
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better performance than a concentric rings antenna array with the optimization of the
amplitude values only.

When obtaining multiple Pareto solutions the decision-maker, i.e. the antenna
designer, needs to specify a posteriori choice criterion that helps to select a single
solution. In this case, the criterion will usually consider the following aspect: the two
criteria, i.e. the side lobe level and the directivity, can be weighted in accordance with
the designer’s specific design goal. For instance, some applications may require a given
directivity and the lowest possible side lobe level. As a design example, consider the
case of lowest side lobe level obtained in Figure 3 (SLL=�25.66 dB and
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Figure 5. Array factor generated by the designed solution (SLL=�25.66 dB and DIR = 15.36 dB).
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Figure 6. Comparison between the array factor generated by the multi-objective design solution
and the Taylor method.
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DIR = 15.36 dB). The array factor generated by this design solution is illustrated in
Figure 5. As shown in Figure 5, the optimization of the array can maintain a low side
lobe level and directivity without pattern distortion during beam steering.

Finally, Figure 6 illustrates a comparison between the array factor generated by the
multi-objective design solution (shown in Figure 5) and the array factor generated by
the Taylor method.[7,31] As illustrated in Figure 6, the design case obtained by
using multi-objective optimization presents a significant improvement in terms of the
side lobe level (around 10 dB) considering the same directivity in both the cases. The
method of Taylor provides an array factor considering the optimization of the amplitude
values and a progressive phase excitation for beam-scanning. The evolutionary optimi-
zation allows us to deal with models of any degree of freedom in the multi-objective
design case. Therefore, the multi-objective design solution provides an array factor
considering the optimization of the values of amplitude and phase.

5. Conclusions

This paper illustrated the multi-objective design of concentric rings antenna arrays. In
this design problem, a performance comparison to four evolutionary optimization algo-
rithms was achieved. The obtained results illustrate that the methods of DEMO/parent
and DEMO/closest/dec present a better performance in the trade-off curve computation
in terms of the side lobe level and the directivity with respect to NSGA-II and
EM-MOPSO under equal computation time. For the Set Coverage DEMO/closest/dec,
a better performance with respect to DEMO/parent is presented. However, for the
performance metric of the binary epsilon indicator DEMO/parent presented a better
approximation to the Pareto front with respect to DEMO/closest/dec.

Furthermore, the results illustrated that the optimization of the array could provide low
side lobe levels and high values of the directivity. This performance of the array is achieved
without pattern distortion during beam steering in the whole azimuth plane (360°).
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