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Abstract: Large phased arrays are often organised by subarrays given the current state of technology. The irregular subarray
architecture, which can effectively mitigate the quantisation lobes, has received a renewed interest in recent years. Recent
researches present some innovative particular irregular subarrays to provide practical means to eliminate the quantisation lobes
using several (even only one) kinds of subarray. However, there is no single, neat theory of the irregularly partitioned array
antennas in the literature. This study presents some derivations of the beamforming properties for arrays with arbitrary
subarray partition to fill this gap. Derivations have led us to introduce a novel approach to assess the radiation properties
which is useful for the systematic design of phased arrays. Numerical experiments are carried out to validate the authors’
derivations. Additionally, an elaborate example illustrates a design discipline for a limited-field-of-view array with polyomino-
shaped subarrays.

1 Introduction

Large phased array antennas are very expensive to build given
the current state of technology [1–3]. In practice, elements of
array antennas are usually partitioned to form several
subarrays. Such technology reduces the number of controls,
which is a very effective way to reduce the complexity of
the architecture, the costs, as well as the occupied physical
space (e.g. on aircraft, satellite etc.) [4–7].
Although using subarrays is an effective way to achieve a

tradeoff between performance and cost, it is complicated to
optimise the subarray configuration. Besides, a smart
partitioning of a very large planar array into a number of
separately fed subarrays offers many interesting design
possibilities in antenna synthesis problems [8–11]. A general
conclusion is that the regularly partitioning always brings
huge grating lobes (for both narrow-band and wide-band
arrays) which deteriorate the sidelobe level of the scanning or
simultaneous beams [6, 12, 13]. Various subarray techniques
have been developed to reduce these lobes, such as irregular
or aperiodic subarray partitioning, interlaced and overlapped
subarrays. The aperture of overlapped subarray is relatively
large (the completed overlapped subarray can even employ
the whole aperture of antenna [14]). Thus the better subarray
pattern, such as the ‘flat-topped pattern’, can be approximately
obtained [15, 16]. The rationale of interlaced or overlapped
subarrays have been understood for years and already
demonstrated in practice [17]. Recently, the mathematics
theory of the design of overlapped subarray is presented in
[18] in a signal-processing viewpoint. However, the interlaced
or overlapped subarrays are relatively difficult and costly to
build [6, 17, 19]. The irregular-shaped subarray partitioning is

relatively easily realised and has been studied for many years
[1, 20, 21]. The primary principle of the irregular subarray is
that the irregular shapes can break the periodicity of the
phase-centre locations. Considering the modularisation is a
popular property in design and manufacture, especially for the
large arrays, several subarray architectures have been
proposed, such as the aperiodic array antenna using diamond
tile-shaped subarrays [22], Penrose tile-shaped subarrays [8,
23, 24], pinwheel tile-shaped subarrays [23, 25] and so on.
Note that using these subarrays always requires the aperiodic
arrangement of array elements. In fact, for the regularly
arranging elements (i.e. elements are arranged at the lattice),
one can also design the particular subarrays which are
convenient for the module production. The relevant research
was first described by Mailloux [19, 26], who had introduced
the polyomino structure to design subarrays. In [7], this paper
has been developed for arbitrary lattice structure and the
polyhex-shaped subarrays have been used. Using the
polyomino or polyhex-shaped subarrays, one can ‘exactly fill’
or ‘tile’ the array plane (i.e. without any overlaps and holes).
The irregularity, involved the exactly filling process, makes
the array migrating the quantisation lobes. A solver of the
exactly filling partition is developed based on the exact
cover theory in [7]. It has been recognised that the exactly
filling partition is one of the nondeterministic polynomial time
(NP)-complete problems [7], which means that it is
impossible to find the solution by hand for a large array.
There could be astronomical number of partitioning strategies.
Thus, it is necessary to use a convenient performance
evaluating method for the beamforming to design the irregular
subarray partition. However, the analysis and systematic
design of phased arrays with irregular subarrays are absent
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from the publications, even though for the linear arrays [27].
Using the data-compression techniques to assess the sidelobe
level is an interesting and good try [28]. This paper focuses
on the design of subarray partition. Analysis of the
beamforming properties of the subarrayed antennas, especially
the irregular-shaped subarray partitioning, is developed.
The outline of this paper is as follows. In Section 2, typical

applications of the beamforming technique at subarray level
are given. Then the generic mathematics formulation for
beamforming is established and the optimal phase control
method is deduced. Examples are represented to
demonstrate the predominance of the phase control method.
In Section 3, a novel approach to assess the beamforming
properties based on the established beamforming model
is presented. Two typical requirements for the beam
scanning – a minimum gain requirement and a sidelobe level
requirement – are analysed. A selected set of numerical
results to illustrate the limited-field-of-view (LFOV)
technology and validate the analyses are also given in this
section. In Section 4, an elaborate design instance of
subarray configuration is demonstrated. Finally, some
conclusions and perspectives are given in Section 5.

2 Beamforming technology for subarrayed
antennas

2.1 Background

The ability of rapid and flexible beam scanning is the primary
advantage of the array antennas. Such ability is widely
required and used in these applications: LFOV (or limited
scanned arrays), wide-band and wide-angle scanning
(WBWS) arrays and multiple simultaneous beam (MSB)
beamforming etc.
LFOV beamforming technology has been employed in lots

of real systems, such as the aerodrome radar stations for air
traffic control and instrumental landing of aeroplanes [16];
automotive radars designed for preventing collisions [29];
shipboard fire-control radars; systems of satellite
communications, in particular, for synchronous satellites,
the earth subtends a conical angle of 8.7° half angle [16,
30]. Other satellite systems sometimes scan a
high-directivity beam over even smaller angles to do
detailed mapping [30]. Besides, fast electrical scanning in a
narrow sector can also be combined with wide-angle
mechanical rotation of the whole array.
The radar and communications applications brought in

requirements for wide-band performance [14, 31]. An
effective approach to fulfill the wide-band scanning is using
the subarrays with phase shifters at the element level and
the time delays at each subarray input.
Visually, typical subarray structures for beamforming are

shown in Fig. 1. In Fig. 1a, there is only a single phase
shifter per subarray, which is the scheme of LFOV
described in [12, 14]. Fig. 1b shows the WBWS technique
realised by subarrayed antennas. The phase shifters
arranged at the element level are used to steer the main
beam at the centre frequency, whereas the time delays
added at subarray level are used to generate correct time
delay for all frequencies at the main beam direction. Fig. 1c
gives a more flexible subarray configuration with digital
beam forming networks at subarray level. The networks can
also introduce time delay or phase shift. Additionally,
MSBs are typically formed by digitally combining the
subarrays to form beams in the required directions within
the region of interest [32].

It has been recognised that the LFOV and WBWS
applications for subarray technology exhibit similar
behaviour and suffer the same deficiencies [30]. In fact, the
above-mentioned applications (LFOV, WBWS and MSB)
place similar requirements on subarray technology and array
architecture. The following analyses are applicable to these
beamforming techniques.

2.2 Mathematical formulation

For mathematical convenience, the electromagnetic
component at the ith element with location ri for an

incident wave can be expressed as E ej(2pft+kTri), where E is
the electromagnetic vector, kT = 2π(u, v, w)/l is the wave
vector and ri = (xi, yi, zi)

T is the position of the ith element
of the array. (u, v, w) is the unit direction vector of the
incident wave on the array antenna, which is usually used
in antenna community. Suppose there are N array elements
and L subarrays. The amplitude weightings arranged at
element level are noted as wele. The phase shift value and
the amplitude attenuation of the lth subarray are cl and
wsub
l , respectively. Ignoring the polarisation and the time

domain feature of the signal, the array output can be

Fig. 1 Subarray configuration of the beamforming techniques of

a LFOV
b WBWS
c MSBs
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expressed as

∑L
l=1

wsub
l e−jcl

∑
i[{n|ln=l}

wele
i e−jfi ejk

Tri (1)

where fi is the phase shift added at the ith element (if exists)
and ln is the identifier of the subarray which the nth element
belongs to. Hence, the set {n|ln = l} are the identifiers of the
elements which belong to the lth subarray. This relationship
of subarrays and elements can be expressed by the
well-known δ function, and then the array output can be
rewritten as

∑L
l=1

wsub
l e−jcl

∑N
i=1

wele
i e−jfi ejk

Tridli , l

=
∑N
i=1

wele
i e−jfi ejk

Tri
∑L
l=1

wsub
l e−jcldli, l

=
∑N
i=1

wele
i wsub

li
ej(k

Tri−fi−cli )

(2)

where dli, l =
1, li=l
0, li=l

{
, wele

i wsub
li

is noted by w̃i, which is named

as the equivalent weight of the ith element.
The beam direction is noted by uTm = (um, vm, wm), k

m is
2πθm/l and kmc is 2πθm/lc, where letters ‘m’ and ‘c’ represent
the ‘main beam’ and the ‘centre frequency’, respectively
[Since both θ and k can represent a certain orientation, we
use both these two symbols to express the beam direction in
this paper. For a planar array, the third component of θ or k
can be omitted, for example, using (um, vm) to represent the
look direction.]. T0 is a 0-1 matrix, which represents the
subarray partition (the T0[i, j] equals to 1 only if the ith
element is partitioned into the jth subarray). T is the
subarray forming matrix which contains the equivalent
weighting at element level, that is, T = diag(w̃)T0.
Theoretically, phase shifters at element level are used to
steer the beam peak to an angular position kmc by setting the
phase-shifting quantities as the phase values of the so-called
‘array manifold’: amc = {exp (jkmc · ri)}i=1, ...,N [For brevity’s
sake, the symbol ‘·’ is used hereafter to represent the inner
product of two vectors (saving many transposes).].

2.2.1 Case I (LFOV): According to Fig. 1a, without phase
shift at element level, the phase compensating can only be
fulfiled at the subarray level. The output of the lth subarray is

∑N
i=1

[dli, l w̃i e
j(km·ri−cl)]

= e−jcl
∑N
i=1

[dli, l w̃i e
jkm·ri ]

= e−jcl THam
[ ]

l

(3)

where [·]lmeans the lth component of [·]. Thus the ideal phase
compensating is determined by the array manifold at subarray
level, that is, THam. In other words, the ideal quantity of cl is
the phase value of the lth component of the vector THam, that
is

cl = / THa0
[ ]

l
(4)

where ∠ means the taking phase operation.

In practice, there are some non-ideal factors which affect
the phase values added at subarray ports. The main reason
is that, as a phase shifter, its added phase-shifting values
are strictly relevant to the carrier frequency. The subarray
phase-shifting values should be obtained based on the
frequency selectivity of the phase shifter.
Note that, to steer beam at direction umc , it is desired that

all the terms in (2) are summed up in phase, that is,
kmc · ri − cli

≃ 0. Thus according to the theorem in
Appendix, we have

∑N
i=1

[dli , l w̃i e
j(kmc ·ri−cl)]

≃
∑N
i=1

dli, l w̃i

( )
· exp j

∑N
i=1 [dli, l w̃i (k

m
c · ri − cl)]∑N

i=1 [dli, l w̃i ]

{ }

(5)

According to Appendix, as the first-order approximation, the
above approximation is quite effective. Since the maximum
of the summation in (3) is

∑N
i w̃i, we can obtain the

reasonable value of cl by simply setting∑N
i=1 [dli, l w̃i (k

m
c · ri − cl)] = 0 in (5). Then

cl =
∑N

i=1 dli, l w̃i k
m
c · ri∑N

i=1 dli, l w̃i

(6)

For the theoretic analysis, the calculation of cl mod 2π is
omitted. Define ρl via

rl W

∑N
i=1 dli, l w̃i ri∑N
i=1 dli, l w̃i

(7)

Thus the phase shift value at subarray level is given by ρl,
that is

cl = kmc · rl (8)

Intuitively, ρl can be regarded as a special position of the lth
subarray. Specifically, ρl can be simply chosen as the position
of one of the subarray elements [26]; when the equivalent
weighting at element level is uniform, ρl is just the
geometric centre of the lth subarray; when wsub

l = 1, for ∀l,
ρl is the subarray centre given in [33]. In (7), both the
element weighting and subarray weighting are considered,
so ρl is called as the generalised subarray phase centre
(GSPC) in this paper.

2.2.2 Case II (WBWS): When the phase shifters are used
at the element level, the phase-shifting value provided by
the ith element can compensate the phase delay aroused by
the plane wave at the centre frequency impinging on the
array from a given direction. Using the above notations, we
can parameterise the incident wave by kmc . Correspondingly,
the phase-shifting value provided by the ith element is

fi = kmc · ri (9)

The time delays at subarray ports compensate the phase
difference of the other frequency wave at the given
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direction (km). Thus, similarly to (5), we have

∑N
i=1

dli, l w̃i (k
m · ri − kmc · ri

︷��︸︸��︷fi

−cl)

⎡
⎣

⎤
⎦ = 0 (10)

Therefore

cl = (km − kmc ) · rl (11)

A more general expression of the ideal quantity of cl similar
to (4) is

cl = / THdiag(amc )
∗am

[ ]
l

(12)

If both the phase-shifting values and the amplitude values are
included in the subarray forming matrix T, that is

T = diag(amc )diag(w̃)T0 (13)

then, both the right parts of (4) and (12) can be written as
∠[THam]l, where THam is called subarray manifold in the
literature.
Above all, the weighting methods for LFOV and WBWS

for array antennas with arbitrary subarray partitioning are

fi = 0, cl = kmc · rl (LFOV)
fi = kmc · ri, cl = (km − kmc ) · rl (WBWS)

{
(14)

where i = 1, …, N and l = 1, …, L are the indexes of all
elements and subarrays, respectively. The ideal phase

compensating at subarray level is determined by the
subarray manifold THam, where T is the subarray forming
matrix which contains the amplitude weighting and
phase-shifting weighting (if exist). It is worth mentioning
that after the digitalisation at subarray level, there are
fruitful processing technologies could be applied which are
not limited to the LFOV or WBWS. The above analysis is
limited to the typical applications such as LFOV and
WBWS, which are sufficient for most designs.
The subarray partitioning method, parameterised by the

subarray forming matrix T, is arbitrary (i.e. partitioning
could be overlapped or non-overlapped, regular or irregular
etc.). Although there is only one layer of the subarray
architecture in the above analyses, the ideas apply to
multi-layer arrays as well.

2.3 Experimental tests

In the following, we take the LFOV application as an example
to illustrate the effects of the above weighting methods.
Consider a linear array with 32 omnidirectional elements.
The array has a 35 dB Taylor taper and the inter-element
space is l/2. Fig. 2a shows the scanned pattern of the array
with two different non-overlapped partitioning strategies,
where the regular partition is (4, 4, 4, 4, 4, 4, 4, 4), and the
irregular one is (7, 4, 2, 3, 3, 2, 4, 7). The offset beam is
steered to 8.63° (or um = 0.15, vm = 0).
On the basis of the above analyses, the phase shift values

are determined by the first equation in (14). The number of
control ports of the two arrays is equal. The only factor,
which causes the differences between their patterns, is the
subarray partitioning strategy. Further discussion about the

Fig. 2 Examples of the steered and un-steered beams with different phase controlling methods and weighting tapers

a 35 dB Taylor weighting
b Uniformly excitation
c 25 dB Taylor weighting
d 45 dB Taylor weighting
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irregular subarray partition will be given in the next section.
To show the predominance of the phase weighting method
given by the GSPC, four different weighting methods are
compared:

† Method 1: All phase weights are controlled at the element
level, which is equivalent to that the subarrays does not exist.
By adjusting the phase shifters at every element, this method
can compensate the full array manifold amc .† Method 2: The ideal phase control method at subarray level
(shown by (3)).
† Method 3: Phase-shifting values at subarray level are
determined by the GSPC as shown in (6), which has been
used in Fig. 2a.
† Method 4: Phase-shifting values at subarray level are
calculated by (8), whereas the ρl is the geometric centre of
the lth subarray.

Fig. 2b shows the scanned patterns by four-phase control
methods. The vertical dashed line gives the steered
direction, that is, um = 0.15. As shown in Fig. 2b, the
Method 2 and Method 3 have a relatively small amount of
directivity loss and low side lobe level. Since the
phase-shifting values which are calculated according to
GSPC are very close to the ideal values, the differences
between the patterns given by Method 2 and Method 3 are
relatively few.
Further comparisons of different phase control methods are

shown in Figs. 2c–e. Fig. 2c shows the patterns of the array
with uniformed excitation at element level. In this case,
there is no difference between Methods 2 and 4. This is
because that the GSPCs are the same as the geometric
centres of subarrays. In Figs. 2d and e, patterns for array
with 25 and 45 dB Taylor weightings are illustrated,
respectively. According to the results in Fig. 2, one can find
that the beam-pointing direction for Method 3 does not
change with the amplitude weighting at element level. This
is a good characteristic. Although the shifting of the
beam-pointing direction corresponding to the Method 4 is
not desired, the beam-pointing error can be eliminated by
applying a precomputed correction factor.
Considering the advantage of the Method 3, we suggest to

use this method to design the phase-shifting values in
practice. The phase control method by the GSPC will be
used as the default method in the following analysis unless
with special instruction.

3 Beamforming properties for subarrayed
antennas

3.1 Antenna pattern

Although the subarray configuration and the weighting
strategy given, the antenna pattern for an array with
omnidirectional elements can be calculated via

F(k) = (wsub)H(THa) (15)

where a = {exp(jk·ri)}i = 1,…,N is the array manifold – the
complete knowledge of the array outputs for a plane wave
impinging on the array. Without any superscript and
subscript, k represents the monochromatic plane
electromagnetic wave with any frequencies and incident
direction.

Theoretically, beam direction can be adjusted at element or
subarray level. The phase steering vector corresponding to the
direction adjusting at element level is noted as a ele(k1) =
{exp(jk1·ri)}i=1, …, N. Then, the array manifold at subarray
level is

{diag[wele]diag[aele(k1)]T0}
Ha={diag[wele⊙aele(k1)]T0}

Ha

(16)

where ⊙ means the Hadamard product, that is, the
element-wise multiply. The amplitude and phase weights at
subarray level can be written as wsub ⊙ asub(k2). The phase
weighting of beam scanning at subarray level is determined
by the GSPC, thus

[wsub ⊙ asub(k2)]l = wsub
l exp (jk2 · rl) (17)

Therefore after two stages adjusting (element level and
subarray level), the antenna pattern can be expressed as

F(k) = [wsub ⊙ asub(k2)]
H{diag[wele ⊙ aele(k1)]T0}

Ha (18)

If required, one can extend the above derivations to the
subarrayed antennas with multiple layers. With some
shorthand notations, the antenna pattern for an antenna with
multi-layer subarrays (M− 1 layers in total) is

F(k) = (wM ⊙ aM )
H

× [diag(wM−1 ⊙ aM−1)TM−2]
H

..

.

× [diag(w1 ⊙ a1)T0]
Ha

(19)

where the numbered subscripts are used to distinguish the
subarray processing between different layers. wm and am are
the m− 1th subarray’s amplitude weights and phase-shifting
weights, respectively (w1 and a1 are arranged at element
level). The Tm−1 is the subarray partitioning matrix of the
mth layer subarray. The steering vector km of the m− 1th
layer subarray is implied in am, while the symbol a, without
any subscripts, is corresponding to the monochromatic
plane electromagnetic wave parameterised by k. If we are
only interested in the beam scanning, we can display these
beam steering vectors in pattern function, that is, F(k, k1,
k2, …, kM).
Note that there no constraints on subarray configuration in

(19). Thus, this antenna pattern calculation method is
applicable for any subarray architectures. Besides,
conventionally, only the last stage is digital, but in principle
analogue-to-digital conversion can take place between any
two processing layers or not at all. For antennas with
special subarray architectures, the calculation in (19) can be
simplified into particular forms, such as the analysis for
the overlapped multi-layer subarray shown in [18]. In fact,
the key to do the further simplification is the regularity of
the architecture, for example, the regularly contiguous
subarrays or the periodically overlapped subarrays. This
paper is limited to antennas with irregularly subarray
partitioning, and we focus on the single-layer subarray
architecture.
As a single-layer architecture, the beam scanning can be

realised by adjusting k1 and k2. In summary, the antenna
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patterns for LFOV and WBWS are F(k, k1 = 0, k2 = kmc )
and F(k, k1 = kmc , k2 = km), respectively. Specific analysis
for the LFOV is developed as follows.
The ith element pattern is noted as f e(k)i , then one can write

the pattern by superposition

F(k) =
∑N
i=1

w̃i e
j(k·ri−kmc ·rli )f ei (k)

=
∑N
i=1

w̃i e
j(k·rli−kmc ·rli ) ej(k·ri−k·rli )f ei (k)

=
∑L
l=1

[ej(k−kmc )·rl
∑N

i=1
d(li, l)w̃i e

j(k·ri−k·rl)f ei (k)︸������������������︷︷������������������︸
f s
l
(k)

]

=
∑L
l=1

ej(k−kmc )·rl f sl (k)

(20)

where f sl (k) is the lth subarrays pattern and kmc is the direction
the array electronically scanned to.
According to the concept of the GSPC, subarray array

factor (SAF) is defined as

SAF(k, kmc ) =
∑L
l=1

ej(k−kmc )·rl (21)

Treating the GSPC as phase centres of omnidirectional
‘super-array’ elements [33], one can find that the SAF is
just the antenna pattern of the super-array.

Generally, each subarray has a relatively broad pattern. If
the scanning region is relatively small, it is acceptable to
neglect the differences between subarrays’ patterns.
Therefore f sl (k) ≃ f s(k), ∀l. Thus, in a small scanning
coverage, the antenna pattern can be approximated as

F(k, kmc ) ≃ SAF(k, kmc )f
s(k) (22)

Thus, one can think of the pattern as being the product of the
average subarray pattern and SAF. This conclusion can be
thought as the generalisation the ordinary product principle
of array antennas. The arithmetic mean of f sl (k) is a simple
way to estimate fs(k), that is

f s(k) = 1

L

∑L
l=1

f sl (k)

= 1

L

∑L
l=1

∑N
i=1

dli, lw̃i e
j(k·ri−k·rl)f ei (k) (23)

Equation (22) illustrates a simple method to assess the
performance of the beam pattern. Specifically, the effect of
grating-lobe-level can be described by SAF; the loss of the
offset beam can be calculated by the average subarray pattern.

3.2 Numerical results

To show the performance of the proposed analysis method,
we design reasonable subarray configurations which are
shown in Fig. 3. Fig. 3b shows an exact partition of an
array with 64 × 32 elements by L-octomino-shaped
subarrays. For the sake of comparison, an ordinary design
of subarrays is shown in Fig. 3a, in which the individual

Fig. 3 Two arrays with different partitioning strategies and their patterns

a First array
b Second array
c Pattern of the first array
d Pattern of the second array
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elements are grouped into 256 rectangular subarrays (two
elements in the elevation plane and four in the azimuth
plane). With 40 dB Taylor taper arranging at the array face,
the inter-element space is l/2. The element pattern is
assumed to be cos θ, while θ is the angle of beam
deflection from the boresight. Consider the LFOV

application, thus the phase shifters are installed at the
subarray ports not at the element level.
We set the beam-pointing direction is (um, vm) = (0.15,

0.15). Figs. 3c and d show the normalised patterns of the
above described arrays. The pattern for the ordinary
designed array (Fig. 3a) has five quantisation lobes. The

Fig. 4 SAF for two arrays

a SAF of the first array
b SAF of the second array

Fig. 5 Scanning patterns of two arrays

a Scanning pattern of the first array
b Scanning pattern of the second array
c Scanning in elevation (the second array)
d Scanning in azimuth (the second array)
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largest one of these lobes is −7.5 dB. Although the pattern of
the array with irregular subarrays (Fig. 3b) has no
quantisation lobes and the side lobes are lower than −20 dB.
By applying the concept of the approximate relation given

in (22), it is convenient to obtain the useful description and
conclusion of the beamforming properties. The relative
results for the above rectangular arrays are shown as follows.

(1) Grating lobes: According to (22), the emergence of
grating lobes can be ascribed to the periodically distribution
of the GSPCs. Fig. 4 shows the comparison of the SAF
different arrays, which are calculated according to (21). For
the regular partitioning, the distribution of GSPCs has a
strong periodicity (although the tapering weights at element
level can weaken the periodicity to some extent), which
results in the very high quantisation lobes in the total
pattern (Fig. 4a). Although the irregular partitioning
strongly distorts the periodicity of the GSPCs. Thus, the
grating lobes of SAF are migrated considerably (Fig. 4b).
(2) Gain loss: According to the approximate product relation
given by (22), the gain loss of the offset beam can be
estimated by the average subarray pattern. Figs. 5a and b
show the patterns for different steered elevations (with um
fixed at zero). The black dashed curve is the average
subarray pattern calculated by (23), and the scanned

patterns pointing at different steered directions are
calculated by (20). Fig. 5c shows the partial enlarged details
of Fig. 5b; Fig. 5d shows the similar results for the second
antenna scanning along the azimuth direction. It is shown
that the changing of the gain of the main lobe is nearly in
accordance with the changing of the average subarray pattern.

Besides, the approximate error of (22) becomes large far
away from the beam-pointing direction. Thus, the sidelobe
level cannot be estimated by the average subarray pattern.
However, for the high quantisation lobes, the average
subarray pattern also provides good estimation for their
levels (as shown in Fig. 5a).
Interestingly, the maximum of the total pattern is not

always at the kmc which is set in advance (shown in (20)).
The pointing errors for different scanning are illustrated in
Figs. 5c and d at the beam-pointing locations. The main
reason for the existence of pointing error is that the
subarray pattern is not omnidirectional.

4 Elaborate subarray partitioning

We now turn to the question of how to optimise the subarray
configuration according to the beamforming properties.

Fig. 6 Average subarray pattern

a Average pattern of the first array
b Average pattern of the second array

Fig. 7 Patterns of subarrays with different shapes

a Subarrays ①–④
b Subarrays ⑤–⑧
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Considerations for the above rectangular array with
polyomino-shaped subarrays are shown as follows.

4.1 Subarray configuration and angular coverage

It has been recognised that the average subarray pattern gives
the gain loss of the scanned beam. Thus, considering the
requirement of the antenna gain, an upper bound for LFOV
scanning can be simply determined by the half-power
region of the average subarray pattern. In this paper, using
the average subarray pattern, we can obtain an estimation of
the bound (angular field of view) for LFOV scanning.
Fig. 6 shows the average subarray pattern for the above two

arrays in the entire visible region. The contour levels at
decibel values −3 and −20 dB are illustrated with different

colour lines. The region of the half-power beam of the first
array is larger than the second one. However, it does not
mean the first array has a larger angular field of view,
because the grating-lobes are not negligible for the first
array. Anyhow, one can use the average subarray pattern to
estimate the gain loss of the beam at the pointing direction.
As an array partitioned by irregular-shaped subarrays, the
average subarray pattern is a good estimation for the
angular coverage.
In fact, the shape of subarray is also the key factor which

impacts the average subarray pattern. To illustrate this
point, Fig. 7 shows the patterns of the eight different
subarrays which are indexed by ①–⑧. Without considering
the tapering effect in these subarrays, whole patterns for the
subarrays ①, ③, ⑤ and ⑦ are completely shown in Fig. 7.
Subarrays ① and ③ have the same pattern which is shown
in Fig. 7a, and the similar result for subarrays ⑤ and ⑦ is
shown in Fig. 7b. Considering the symmetry, we only show
the half-power beam region of the pattern for subarrays ②

and ④ by a white dashed line in Fig. 7a, and the similar
result for subarrays ⑥ and ⑧ is shown in Fig. 7b. The
careful readers can find that the patterns shown in Fig. 7b
can be obtained by those patterns shown in Fig. 7a with
90° rotation.
The number of subarrays with different shapes is listed in

Table 1. Obviously, subarrays ②, ④, ⑥ and ⑧ are more than
the others. From Figs. 6 and 7, we know that the difference
between the numbers of different subarray shapes is the
primary cause for the squint of the average subarray pattern.
Take the 3 dB contour line in Fig. 6b as an example to
describe the squint of pattern, the farthest points away from

Table 1 Number of subarrays with different shapes

Subarray Number

① 30
② 40
③ 23
④ 39
⑤ 32
⑥ 34
⑦ 22
⑧ 36
① +③ 53
② +④ 79
⑤ +⑦ 54
⑦ +⑧ 70

Fig. 8 Array with symmetric subarray configuration and special control of subarray number and its patterns

a Array architecture
b Average subarray pattern
c Steered antenna pattern
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(0,0) in the first quadrant is (0.18,0.20) (and the
corresponding point in the second quadrant is
(−0.19,0.23)). If we use the 3 dB contour line to assess
angular coverage of the antenna, which means that the gain
loss is about 3 dB at the maximum scanning location, one
can obtain the maximum offset angle in the first and third
quadrants is about 15.6°, while is 17.4° in the second and
fourth quadrants.

4.2 Optimisation example of subarray partitioning

The average subarray pattern determines a basic angular field
of view, and this field can never be adjusted in the
post-processing. Therefore, to design a desired angular
coverage region, it is necessary to optimise the design of
each subarray.
According to the analysis above, the angular coverage can

be adjusted by designing the average subarray pattern. We
give a simple example here. Making the number of
subarrays ① and ③ (N1 +N3) equals to the subarrays ② and
⑥ (N2 +N4), meanwhile, the number of subarrays ⑤ and ⑦

(N5 +N7) equals to the subarrays ⑥ and ⑧ (N6 + N8), one
can obtain a symmetrical average subarray pattern. In
another words, there is no squint of the angular coverage as
shown in Fig. 6b by this design. Note the existence of the
cross-polarisation with the non-ideal factors. It is suggested
to design an array with symmetry. In fact, the symmetry of
the array is important in determining the characteristics of
the co-polarisation and cross-polarisation array factors.
Inspired by the research on the control of polarisation in
[34–36], we give a special symmetric subarray
configuration in Fig. 8a. Thanks to the symmetric
architecture, the lower cross-polarisation than the design
given in Fig. 3b can be obtained. The number of subarrays
satisfies: N1 +N3 =N2 +N4 = 80 and N5 +N7 =N6 +N8 = 48.
How much improvement could be obtained by the
symmetric design primarily depends on the type of array
element and the feeding circuitry. Owing to the page
limitation, the further discussion is not given in this paper.
Fig. 8b shows the average pattern of this array with

symmetric subarray configuration. As shown in Fig. 8b,
there is no squint of the average pattern. The steered pattern
is shown in Fig. 8c, while the beam direction is (um, vm) =
(0.15, 0.15).

5 Conclusion

This paper investigated the beamforming technologies for the
subarrayed array antennas. The uniform model of the
beamforming for arrays with arbitrary subarray partition
was established, and the architecture with irregular-shaped
subarrays was treated as the key point in this paper. The
widely used beamforming technologies, such as LFOV,
WBWS and MSB, were summarised and analysed. The
approximate product principle of antenna pattern was
presented to describe the beamforming properties of the
irregularly subarrayed antennas. The following
characteristics can be used for the subarray analysis and
design: (i) both the mechanism of the tapering weights and
the irregularly subarray partitioning on the migrating of
grating lobes can be explained by applying the SAF, or
equivalently, the distribution of the GSPCs; (ii) the average
subarray pattern can be used to estimate the gain of the
main lobe as well and the quantisation lobes; and (iii) the
shapes and locations of subarrays directly impact the effects

of grating-lobe. One can use SAF to obtain the number and
location of the quantisation lobe.
A simple example illustrated the design discipline for an

LFOV array with polyomino-shaped subarrays.
These new results of the irregular-shaped subarrays are

useful for the analysis and further studies on the subarray
technique.
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8 Appendix

A theorem is given here to obtain the optimal phase shift
values at subarray level.

Theorem: A function f :Rn � C is defined as

f (x) =
∑n
i=1

[ri e
j(u+xi)] (24)

where ρi≥ 0 for ∀i∈ {1, …, n} and
∑n

i=1 ri = 0,
u = ∑n

i=1 (riui)/
∑n

i=1 ri
( )

, ui = u+ xi. Then the first-order
approximation of f at the point 0 is

∑n
i=1

ri e
ju (25)

Proof: According to the definition of f, we have

f (x) = eju
∑n
i=1

(ri e
jxi )

= eju
∑n
i=1

ri(1+ jxi + O(x2i ))

=
∑n
i=1

ri e
ju + j

∑n
i=1

rixi e
ju +

∑n
i=1

O(x2i )

(26)

where O(x2i ) is the infinitesimal of the same order of x2i . Note
that

∑n
i=1

rixi =
∑n
i=1

ri(ui − u) =
∑n
i=1

riu−
∑n
i=1

riu = 0 (27)

and

∑n
i=1

O(x2i ) = O(‖x‖2 ) (28)

Therefore

f (x) =
∑n
i=1

ri e
ju + O(‖x‖2 ) (29)

Therefore
∑n

i=1 ri e
ju is the first-order approximation of f (x)

at 0. □
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