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Abstract: Multiple-input multiple-output (MIMO) radar systems allow array antennas to transmit different waveforms and
enable flexible transmit beampattern synthesis. Most existing transmit beampattern synthesis methods focus on
narrowband MIMO radar system configurations. In this study, the authors propose a novel technique to design
transmit waveforms for wideband MIMO radar systems. This technique is based on the optimisation of the cross-
spectral density matrix and achieves a low peak-to-average power ratio as desired in practical radar systems.
Simulation results are provided to verify the low PAR waveform design capability corresponding to arbitrary
beampatterns.

1 Introduction

Multiple-input multiple-output (MIMO) radar is an emerging field
that has attracted increasing interests [1–4]. Compared with
conventional phased-array radar, one of the major advantages of
MIMO radar is its waveform diversity that enables synthesis of
transmit beampatterns with great flexibility [5]. Optimised MIMO
radar waveform design plays a key role in achieving the desired
system performance. Existing literature on MIMO radar waveform
design focuses on narrowband signals [6–13] which can be
generally classified into two main categories with different design
objectives. The methods in the first category, including beampattern
matching design and minimum sidelobe design, optimise the
cross-correlation matrix of the transmit waveforms so as to achieve
or closely approximate a desired transmit beampattern [5, 7, 8]. As
the transmit beampattern is a linear function of the correlation
matrix, optimised cross-correlation leads to desirable beampatterns.
On the other hand, the objective of the methods in the second
category is designing the actual transmit waveforms based on a
given cross-correlation matrix. In [10, 13], for example, partially
correlated signal design methods have been developed based on a
given cross-correlation matrix for transmit energy concentration in
an angular sector. Subarray- or subaperture-based waveform design
methods trade-off between coherent array directivity gain and
diversity gain [6, 14]. By designing the waveforms to be coherent
within each subarray but orthogonal across the different subarrays,
these methods benefit from both types of gains. These design
categories represent two-stage waveform design approaches, with
the cross-correlation matrix acting as an intermediate result.
Unfortunately, such approaches cannot be directly applied in the
waveform design for wideband MIMO radars [15]. This is
attributed to the fact that the cross-correlation matrix for wideband
signals is not only a function of the array sensors but also of the
time delays. As such, the problem is much more complicated than
the narrowband case.

Compared with the narrowbandMIMO radar, transmit beampattern
synthesis for wideband MIMO radar systems have not received
sufficient attention [15–17]. Inspired by the methods developed for
narrowband MIMO radar systems, wideband transmit beampattern
synthesis through optimising the cross-spectral density matrix
(CSDM) was first proposed in [15]. CSDM-based beampattern

design performs independent cross-correlation matrix optimisation
in each frequency, thereby avoiding the consideration of
convolutive time delays and achieving a flexible beampattern design
with a low complexity. Beampattern matching design and minimum
sidelobe design are examples of such beampattern design methods
based on CSDM optimisation for wideband MIMO radar [15, 16].
In these approaches, convex optimisation techniques are used to
generate the desired spatial beampatterns subject to transmit power
constraints. Once the optimised CSDM is obtained, the next stage is
to design the actual transmit waveforms according to the optimised
results. For example, the spectral density focusing beampattern
synthesis technique (SFBT) [17] designs actual transmit waveforms
based on the optimised CSDM. A major problem with these
methods is that, because the waveforms at different frequencies are
independently designed, the peak-to-average ratio (PAR) of
synthesised waveforms across the array sensors is generally high.
MIMO radars exploiting high PAR waveforms suffer from reduced
radiation efficiency and signal distortion, and cause problems such
as harmonic interferences, reduction of power efficiency, and, for
some systems, damages to transmitter equipment. Therefore, low
PAR waveforms are highly desirable in practice, particularly when
the transmit power is high.

Different from the CSDM-based waveform design methods, the
wideband beampattern formation via iterative techniques (WBFIT)
directly links the beampattern to signals through their Fourier
transform [18], and the fast one-dimensional frequency invariant
wideband transmit beampattern (F1D-FIWTB) method [19] designs
waveforms through the Fourier transform by using frequency
invariant beamforming method developed in [20]. Although these
methods can achieve low PAR waveforms with a desirable
beampattern, they only solve simple beampattern matching design
problems. As these methods do not utilise CSDM optimisation, they
cannot accommodate other constraints, such as low sidelobe
beampattern or frequency-dependent beampatterns.

In this paper, we propose a novel two-stage technique for low PAR
waveform design in the wideband MIMO radar context [21]. The
proposed technique is based on CSDM optimisation and implements
low PAR constraints in the waveform synthesis stage. In the first
stage, CSDM optimisation using convex optimisation achieves the
desired beampatterns satisfying mainlobe and sidelobe constraints.
In the second stage, the proposed approach obtains low PAR
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waveforms based on the optimisedCSDM.The key contribution of this
paper lies in the development of a novel low PAR waveform design
method based on the optimised CSDM. The proposed technique also
supports waveforms design that synthesises beampatterns with other
desired constraints, such as low sidelobe levels.

The remainder of the paper is organised as follows. The signal
model is formulated in Section 2. In Section 3, we summarise
three beampattern design methods that optimise transmit
beampatterns based on CSDM. Then, the proposed waveform
design algorithm for CSDM-based wideband beampattern
synthesis is presented in Section 4. Simulation results are provided
in Section 5 to verify the effectiveness of the proposed technique.
Conclusions are drawn in Section 6.
Notations: We use lower-case (upper-case) bold characters to denote
vectors (matrices). ( · )* denotes complex conjugate, and ( · )T and
( · )H, respectively, denote transpose and conjugate transpose of a
matrix or vector. trace( · ) denotes the matrix trace, and diag(x)
denotes a diagonal matrix that uses the elements of x as its
diagonal elements. A X 0 means that A is a positive semi-definite
matrix. In addition, E( · ) denotes statistical expectation, and Re(·)
denotes the real part of a complex value. || · ||F denotes the
Frobenius norm of a matrix.

2 Signal model

Consider a uniform linear array (ULA) consisting of M
omnidirectional antennas with an inter-element spacing d. Denote
the signal transmitted by the mth antenna as sm(t) = Re{xm(t)
ej2p fct}, m = 1, …, M, where fc is the carrier frequency and xm(t)
is the complex baseband waveforms occupying the spectral band
[–B/2, B/2]. The received signal at a far-field point in the direction
of θ can be expressed as

ŝ(t, u) =
∑M
m=1

sm(t − tm(u)), (1)

where tm(θ) denotes the time delay between the mth antenna and the
reference one corresponding to the direction of θ. For notational
simplicity, we use tm instead of tm(θ) in the sequel. Then, the
total signal power due to all signals is given by [15]

E ŝ(t, u)
∥∥ ∥∥2{ }

= E
∑M
i=1

s2i (t)+
∑M

j,i=1,i=j

sj(t − tj)si(t − ti)

∥∥∥∥∥
∥∥∥∥∥

[ ]

=
∑M
i=1

∑M
j=1

Rij(ti − tj),

(2)

where

Rij(ti − tj) = E[si(t − ti)sj(t − tj)]

= E{Re[xi(t − ti)e
j2p fc(t−ti)]

Re[xj(t − tj)e
j2p fc(t−tj)]}

= 1

2
Re{�Rij(ti − tj)e

−j2p fc(ti−tj)},

(3)

with

�Rij(ti − tj) =
1

2
E{xi(t)x

∗
j (t + ti − tj)}. (4)

For the assumed ULA, the power due to all transmitted signals at
spatial angle θ can be represented as

P(u) = E ŝ(t)
∥∥ ∥∥2{ }

= 1

2
Re

∑M
i=1

∑M
j=1

�Rij(tij)e
j2p fctij

{ }
, (5)

where tij = ti− tj.

For narrowband signals, only the carrier frequency fc is
considered. Because �Rij(t) ≃ �Rij(0), the spatial power distribution
becomes [5]

P(u, fc) = aH(u, fc)Ra(u, fc), (6)

where R is the narrowband signal cross-correlation matrix which can
be properly chosen to synthesize the desired transmit beampattern [4,
5, 10], and a(θ, fc) is the narrowband array steering vector, which is
defined as

a(u, fc) = [1 ej2p fcd cos u/l . . . ej2p fc(M−1)d cos u/l]T, (7)

with l representing the velocity of electromagnetic wave propagation.
The narrowband transmit waveforms that satisfy the
cross-correlation matrix R can be designed using methods
proposed in, for example, [12, 13].

In the wideband case, the spatial power distribution is
frequency-dependent over the frequency band [ fc− B/2, fc + B/2].
We define the cross-spectral power density matrix (CSDM) at
frequency f as [15],

S(f ) =
∫
�R(t)e−2pf t dt, (8)

where the correlation matrix is given by

�R(t) =

�R11(t) �R12(t) · · · �R1M (t)
�R21(t) �R22(t) · · · �R2M (t)

..

. ..
. . .

. ..
.

�RM1(t) �RM2(t) · · · �RMM (t)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦. (9)

The corresponding transmit power pattern is expressed as

P(u) =
∫B/2
−B/2

aH(u, fc + f )S(f )a(u, fc + f ) df , (10)

where a(θ, fc + f ) is the frequency-dependent array steering vector at
frequency fc + f, which is similarly defined as that in (7) by replacing
the fixed frequency fc by fc + f, which varies within the signal
bandwidth. Divide the spectral range [ fc− B/2, fc + B/2] into N
frequency bins, denoted as f−N/2, f−N/2+1, …, fN/2−1, where, without
loss of generality, N is assumed to be even. The spatial angle
interval [−π/2, π/2] is divided into a K-point grid with the kth
entry denoted as θk, k = 1, …, K. The power distribution at spatial
angle θk and frequency fn can then be written as

p(uk , fn) = aH(uk , fn)S( fn)a(uk , fn). (11)

From (11), it is clear that, at each frequency bin fn, we can
appropriately choose the CSDM S( fn) to design the transmit
beampattern in a similar manner to the narrowband case.

Note that large values of N and K enable a small mismatch error
between the designed and the desired beampatterns. They require a
long waveform and a high number of frequency grids, thus
demanding a high computational complexity. On the contrarily,
small values of these parameters may yield an unacceptable
mismatch error. As such, it is important to choose the proper
values of N and K that provide an acceptable mismatch error with
an affordable computational complexity.

3 CSDM based beampattern optimisation

As discussed in the previous section, the transmit beampattern of a ULA
MIMO radar can be expressed using an integral expression in terms of
CSDM S( fn). Similar to the cross-correlation matrix in the narrowband
case, the CSDM can be designed to optimally approximate a desired
transmit beampattern in each frequency bin. In this section, effective
methods for CSDM-based wideband beampattern design are
introduced. We first summarise the beampattern matching design [15]
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and the minimum sidelobe beampattern design [16] methods. The min–
max sidelobe beampattern design method, which is developed in [22]
for narrowband waveform design, is then extended to wideband
beampattern design. Among these methods, the beampattern matching
design is useful when a specific beam shape is desired as this method
achieves a desired beampattern through the optimisation of the
CSDM. On the other hand, the minimum sidelobe beampattern design
yields a low sidelobe level, and the min–max sidelobe beampattern
design provides flatter sidelobes in the synthesised beampattern. As
such, the latter two methods are useful in applications where the
sidelobe levels are mainly concerned. It is noted that, similar to the
narrowband case, the CSDM determines the beampattern but does not
directly lead to the actual transmitted waveform. In addition, because a
wideband waveform synthesised from multiple independently
designed narrowband constant modulus waveforms is no longer
constant modulus, separately designing narrowband waveforms at
multiple subbands renders a high PAR in the yielding wideband
waveform, which is undesirable in practice. The waveform design
under low PAR constraints will be discussed in the next section.

3.1 Beampattern matching design

Similar to the narrowband MIMO radar beampattern design
described in [8], the wideband beampattern of MIMO radar can
also be designed by optimising the CSDM S( fn) to match a
desired beampattern [15]. For a given desired beampattern pD(θk,
fn), the CSDM S( fn) can be deigned to minimise the following
convex optimisation problem

min
S( fn){ }N/2−1

n=−N/2,b

∑N/2−1

n=−N/2

∑K
k=1

pD(uk , fn)− bp(uk , fn)
[ ]2

s.t. p(uk , fn) = aH(uk , fn)S( fn)a(uk , fn), ∀n,
S( fn) X 0, ∀n,
trace S( fn)

[ ] = 1, ∀n,

(12)

where β is an auxiliary scale variable. The last two constraints
require a semi-definite CSDM and unit transmit energy at every
discrete frequency. In this formulation, we can arbitrarily choose
the desired beampattern pD(θk, fn) to be synthesised in a wideband
MIMO radar.

3.2 Minimum sidelobe beampattern design

In some applications, the beampattern is required to satisfy strict
sidelobe constraints. This can be achieved by optimising the
CSDM S( fn) [16]. The minimum sidelobe beampattern design for
a wideband MIMO radar can be cast as the following semi-definite
programming problem

min
S( fn){ }N/2−1

n=−N/2,q
− q

s.t. S( fn) X 0, ∀n,
trace S( fn)

[ ] = 1, ∀n,
aH(u0, fn)S( fn)a(u0, fn)− aH(uk , fn)

S( fn)a(uk , fn) ≥ q, uk [ Q, ∀n,
aH(ul , fn)S( fn)a(ul , fn)

= 1

2
aH(u0, fn)S( fn)a(u0, fn), ∀n,

aH(ur, fn)S( fn)a(ur, fn)

= 1

2
aH(u0, fn)S( fn)a(u0, fn), ∀n,

(13)

where q is an auxiliary variable, Q is the sidelobe regions, θ0
represents the main beam direction, and θl and θr are the lower
and upper angles determining the 3 dB beam-width at each

frequency. The main beam direction and beam-width are
determined by properly choosing θ0, θl and θr.

3.3 Min–max sidelobe beampattern design

Another sidelobe rejection constraint was proposed in [22] to obtain
much flatter sidelobe levels than that provided by the minimum
sidelobe beampattern design. This approach, referred to as min–
max sidelobe beampattern design, can be modified for wideband
MIMO radar beampattern design, expressed as

min
S( fn){ }N/2−1

n=−N/2,q
max
uk[Q

p(uk , fn)

s.t. p(uk , fn) = aH(uk , fn)

S( fn)a(uk , fn), ∀n,
S( fn) X 0, ∀n,
trace S( fn)

[ ] = 1, ∀n,
aH(ul , fn)S( fn)a(ul , fn)

= 1

2
aH(u0, fn)S( fn)a(u0, fn), ∀n,

aH(ur, fn)S( fn)a(ur, fn)

= 1

2
aH(u0, fn)S( fn)a(u0, fn), ∀n.

(14)

This optimisation problem is also convex and thus can be
conveniently solved.

4 Low par waveforms design method

In narrowband MIMO radar, transmit waveforms can be designed
according to a given correlation matrix R [5, 7, 8]. For wideband
MIMO radars, however, transmit waveform design based on the
correlation function matrix �R(t) becomes more complicated as �R(t)
involves different lags. To the best of our knowledge, low PAR
waveform design based on the optimised CSDM has not been
considered so far. In the following, we propose a novel approach to
design low PAR waveforms that approximately satisfy a specified
CSDM. The problem is first considered for the case where
the CSDM is rank-one, and then a general case for a higher-rank
CSDM is considered.

4.1 Single-rank case

We first consider the simple case where the CSDM S( fn) at each
frequency has a single primary eigenvalue, whereas the other
eigenvalues are negligible. In this case, S( fn) can be expressed as

S( fn) = yny
H
n , (15)

where yn represents the primary eigenvector. Performing
eigen-decomposition of S( fn) for each frequency fn, n = −N/2,
…, N/2− 1, we express the transmit waveforms in the frequency
domain as

Y = [y−N/2, y−N/2+1, . . . , yN/2−1] = [ỹ1, ỹ2, . . . , ỹM ]
T, (16)

where ỹTm denotes the mth row of Y, m = 1,…, M. The N-symbol
transmit sequence xm corresponding to each ỹm can then be
computed through inverse discrete Fourier transform (IDFT).

As the waveform is independently optimised in each frequency,
the yielding waveforms that combine all the frequency components
will have a high PAR. Maintaining a low PAR is important in
practice to minimise energy loss and signal distortions. For this
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purpose, the low PAR waveform design problem is described as

min
X ,f

‖Z − X‖F

s.t. PAR(xm) ≤ r, ∀m,
‖xm‖22 = c, ∀m,

(17)

where

Z = [z̃1, z̃2, . . . , z̃M ]
T
M×N , (18)

z̃m = IDFT[diag(f)ỹm], (19)

X = [x1, x2, . . . , xM ]
T
M×N , (20)

IDFT(·) is the IDFT operator, and f = [f−N/2, …, fN/2−1] represents
the phase ambiguities because S( fn) is transparent to the signal group
phase, that is, ynfnf

∗
ny

H
n = yny

H
n = S( fn). In addition, c is the energy

transmitted from each transmitter, and ρ ≥ 1 is the maximum
permissible PAR of the mth sequence, defined as

PAR(xm) =
N max |xm(n)|2∑

n |xm(n)|2
. (21)

Note that ρ = 1 implies that the resulting waveform is
constant-modulus.

Because of the complex expression (21), the minimisation in (17)
with respect to X and f does not have a closed-form solution.
However, several local optimal solutions with respect to either X
or f dimension are available. In the proposed iterative algorithm,
this optimisation problem is solved by iteratively updating the
individual optimisation problems with respect to the transmit
waveforms X and the phase ambiguity f. This kind of
optimisation techniques has been applied in, for example, [23, 24]
with a guaranteed convergence. The proposed iterative algorithm
is summarised in Algorithm 1.

Algorithm 1: Iterative algorithm for waveform design

1: Apply eigen-decomposition to the given S( fn), and initialisef =
[ej0, …, ej0];
2: Compute Y and Z by (16), (18), and (19);
3: For each m, m = 1, …, M, solve the nearest-vector problems [25]
to obtain xm based on f:

min
xm

‖z̃m − xm‖2

s.t. PAR(xm) ≤ r,

‖xm‖22 = c.

(22)

4: For each n, n = −N/2, …, N/2− 1, update fn based on the
estimated X by solving

min
fn

‖ynfn − ŷn‖2, (23)

where ŷn is the nth column of [DFT(x1), DFT(x2),…, DFT(xM)]
T,

with DFT(·) representing the discrete Fourier transform operator.
This minimisation problem (23) has a closed-form solution

fn = exp{jarg[yHn ŷn]}. (24)

5: Repeat steps 2–4 until convergence is achieved.

4.2 General case

We now extend the proposed method to the general case where the
rank of the CSDM S( fn) is larger than one. In this case, S( fn) is

expressed as

S( fn) = en1yn1y
H
n1
+ en2yn2y

H
n2
+ . . .+ enDynDy

H
nD
, (25)

where D is the number of the primary eigenvalues of S( fn), and end
and ynd denote the dth largest eigenvalue and the corresponding
eigenvector, respectively. Similar to the single-rank case as
described in Section 4.1, each set of {ynd}

N/2−1
n=−N/2 can be used to

compute a set of {Yd, Zd, Xd}, d = 1,…, D.
It is noted that simultaneous transmission of the optimised

waveforms Xd, d = 1, …, D, will violate the PAR constraints. As
such, the D waveforms are sequentially transmitted, that is, the
transmit waveforms are expressed as

X̂ = [X1, X2, . . . , XD]M×DN . (26)

Consequently, the low PAR waveform design problem in (17) can be
modified as

min
X̂ ,f

‖Ẑ − X̂‖F

s.t. PAR(x̂m) ≤ r, for eachm,

‖x̂m‖22 = c, for each m,

(27)

where Ẑ = [Z1, Z2, . . . , ZD]M×DN . The solution for the
minimisation problem in (27) follows the same iterative steps as in
Algorithm 1.

Note that, as the D waveforms are sequentially transmitted, the
overall waveforms span a longer time period as the number of
significant eigenvalues increases. In practice, therefore, there is a
trade-off between the pulse width and the code width such that the
total waveform length is acceptable.

4.3 Analysis

Unlike the WBFIT method [18], which only solves the beampattern
matching problem, and the SFBT method [17], which does not
design low PAR waveforms based on a given CSDM, the
proposed algorithm can synthesize low PAR transmit waveforms
which match any given CSDM corresponding to an arbitrary
beampattern. The proposed method is generally suboptimal
because there are distortions between the resulting beampattern
and the desired one due to two factors. One is caused by the
negligence of insignificant eigen-terms in (15) and (25). This error
can be controlled by properly choosing the number of effective
eigenvalues of S( fn). A large value of D generally yields a smaller
error in (25), but will result in a longer transmit sequence. Note
that each eigen-term requires a separate waveform to be cascaded,
and the waveform magnitude is determined to meet the PAR
requirement. Therefore, when a low PAR is required, the
waveform corresponding to a small eigenvalue, which has to be
transmitted with a similar power so as to meet the PAR
requirement, yields overall beampattern distortion. Consequently,
we should choose a minimum number of primary eigenvalues, D,
such that their sum exceeds a certain percentage (say, 99%) of the
sum of all eigenvalues, as suggested in [26]. On the other hand, a
strict low PAR constraint also results in mismatches between the
optimised and desired beampatterns, especially in multi-rank case.
This can only be relieved by choosing a larger value of ρ within
the acceptable limit.

The overall computational complexity of the proposed method is
O(L1KN (M2I2.5 + I3)+ NM 3 + L2DMN (N + log2 N )), where L1
and L2 are the numbers of iterations in each stage, and I is the
number of the constraints. In comparison, the complexities of
WBFIT in [18] and F1D-FIWTB in [19] are O(L3(K+ M )NM2 +
L4MN (N + log2 N )) and O(M1N log2 M1 + L5MN (N + log2 N )),
respectively, where L3, L4, and L5 are, respectively, the numbers of
iterations in different stages, and M1≥M. The computational
complexity of the proposed method is similar to the WBFIT
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method, and is slightly higher than the F1D-FIWTB because the
latter does not require iterations when computing the first term.

5 Simulation results

In this section, we provide simulation results to demonstrate the
effectiveness of the proposed algorithm for wideband MIMO
waveform design based on a given CSDM, which can be obtained
by the optimisation methods described in Section 3. Throughout
the simulations, the carrier frequency of the transmitted signals is
fc = 1 GHz. The signal bandwidth is set as B = 100 MHz, and N =
64 frequency-domain samples are used. The inter-element spacing
is set as half wavelength at the highest in-band frequency to avoid
grating lobes. In addition, the spatial region is divided into K =
181 grid points.

5.1 Performance comparison

In this example, the number of transmit antennas is set as M = 16.
The minimum sidelobe beampattern design method is adopted to
design the desired beampattern pointing at 0° with a main beam
width of 8°. The sidelobe regions are set as

Q = [− 90◦, − 9◦]< [9◦, 90◦], − N/2 ≤ n , N/2. (28)

Note that buffer zones with a width of 5° are assumed between the
−3 dB power points and the sidelobe regions. By solving the
optimisation problem (13), we obtain the CSDM S( fn) at each
frequency fn. The desired beampattern computed from the
optimised CSDM is shown in Fig. 1a. In the proposed method, D
is chosen to be 2, and the PAR constraint is set as ρ = 2. As
shown in Fig. 1b, the beampattern synthesised by the actual
waveforms is very close to the desired one except small distortions
in the sidelobe region. As shown in Fig. 2, when compared with
the synthesised beampattern using the method introduced in [18],
the proposed method achieves a lower sidelobe level as a result of
the sidelobe constraint in the CSDM optimisation, although the
mainlobe beamwidth becomes slightly wider. However, such
constrained problem cannot be solved by the method developed in
[18].

5.2 Beampattern design with wide main beam

The rank of CSDM may increase with the increase of the width of
main beam or the number of main beams. In this example, the
beampattern matching method is adopted to design the transmit
beampattern with a wide beam under the low PAR constraint. The
ULA is assumed to have M = 10 antennas. The desired

beampattern is assumed as

pD(uk , fn) = 1, −20◦ ≤ uk ≤ 20◦,
0, otherwise,

{
(29)

for all fn. That is, the beampattern has a main beam pointing at 0°
with a beam-width of 40° across the entire frequency band. The
desired transmit beampattern in spatial angle-dimension is shown
in Fig. 3. According to the optimised CSDM obtained by solving
the problem in (12), a set of frequency-domain waveforms {Y1, Y2,
Y3} are generated, that is, D = 3. The beampattern synthesised by
the optimised CSDM is shown in Fig. 4. By applying the
proposed method in (27), the final extended transmit sequences
can be obtained as X̂ = [X1, X2, X3]M×3N . We perform the
proposed method under two different PAR constraints of ρ = 1 and
ρ = 2, respectively. The corresponding beampatterns are shown in
Fig. 5. The beampatterns with respect to the spatial angle
computed from the optimised CSDM and the designed waveforms
are also shown in Fig. 3 along with the desired one. It is evident
from Fig. 5a that the transmit beampattern synthesised by the
actual waveforms suffers distortions owing to the strict constant
modulus (ρ = 1) constraint. By relaxing the constraint to ρ = 2, as
shown in Fig. 5b, the beampattern distortions become much less
significant. As such, we would need to trade off the PAR
constraint and acceptable beampattern distortions.

Fig. 1 Beampatterns synthesised with respect to spatial angle and frequency using

a Optimised CSDM
b Proposed iterative algorithm with ρ = 2

Fig. 2 Comparison of beampatterns generated by two different methods
with respect to spatial angle dimension
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5.3 Beampattern design with multiple frequency
subbands

In this experiment, the ULA is assumed to haveM = 12 antennas. As
shown in Fig. 6, a beam pointing at 20° with a 10° beam-width is

desired in one of the two equally divided subbands, whereas
another beam, pointing at −30° with the same 10° beam-width, is
desired in the other subband. In this case, the sidelobe regions are
set as

Q = [− 90◦, 10◦]< [30◦, 90◦], −N/2 ≤ n , 0,
[− 90◦, − 40◦]< [− 20◦, 90◦], 0 ≤ n , N/2.

{
(30)

The min–max sidelobe beampattern design in (14) is adopted to
design the transmit beampattern, and the single-rank CSDM is
obtained. Fig. 6 shows the beampattern synthesised from the
optimised CSDM with respect to spatial angle and frequency. The
transmit beampatterns synthesised by the actual waveforms under
the constraints of ρ = 1 and ρ = 2 are respectively shown in
Figs. 7a and b. The comparison clearly shows that a higher PAR
constraint allows the synthesised beampattern to be smoother and
less distorted. As the CSDM at each frequency only has a single
primary eigenvalue, the main beams suffer less distortion than the
higher-rank case in Section 5.2. It is also revealed that the transmit
waveforms can be effectively generated by the proposed method
under a lower PAR or constant-modulus constraint with a tolerable
distortion in the single-rank case.

5.4 Beampattern design under special constraints

In some applications, special transmit beampatterns are desired. For
example, certain airborne radars require extreme low sidelobe in one

Fig. 3 Comparison of beampatterns generated by four different methods

Fig. 4 Beampattern synthesised using the optimised S(f) with respect to
spatial angle and frequency

Fig. 5 Beampatterns synthesised using the proposed method with respect to spatial angle and frequency

a ρ = 1
b ρ = 2

Fig. 6 Beampattern synthesised using the optimised CSDM with respect to
spatial angle and frequency
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side of the spatial angle regions to suppress ground clutter. Other
applications require no transmission to be made to a spatial region
to avoid interference. Such constraints must be reflected in the
waveform design. In this example, a beampattern with single-side
extreme low sidelobe (less than –20 dB) is desired with a ULA of
M = 15 antennas. The beampattern matching design in (12) is
adopted, and the desired beampattern is assumed as

pD(uk , fn) = 1, −5◦ ≤ uk ≤ 5◦,
0, uk [ Q,

{
(31)

for all fn, where Θ = [−90°,−10°], for all n. Note that in this example
the sidelobe level in the other side is not of a concern because it does
not cause undesired interference. In this case, the extra sidelobe
constraint for the extreme low sidelobe requirement in the
concerned single-side is set as

10log10(a
H(uj, fn)S( fn)a(uj, fn)− aH(u0, fn)

S( fn)a(u0, fn)) ≤ −30 dB, uk [ Q.
(32)

The WBFIT [18] and F1D-FIWTB [19] approaches provide a
closed-form solution to obtain the waveforms in the frequency
domain in each iterative process. They are, however, effective only
when the optimisation is unconstrained and thus fail to solve this
waveform design problem for the particular constraint described in
(32). However, the approach proposed in this paper can obtain the
CSDM corresponding to the desired beampattern by solving the
optimisation problem in (12) subject to the additional constraint

(32). Applying the proposed waveform design algorithm to the
optimised CSDM, the extended waveforms (D = 2) are obtained
under a PAR constraint of ρ = 2. The beampatterns synthesised by
the optimised CSDM and the actual waveforms are shown in
Fig. 8 with respect to the spatial angle and frequency. Both
requirements described in (31) and (32) are satisfied, and the
distortion of the beampattern synthesised by the actual waveforms
is insignificant and is confined within the sidelobe regions.

6 Conclusion

In this paper, we proposed a novel optimisation method to design
transmit waveforms based on arbitrary CSDM for wideband
MIMO radars. In particular, the proposed waveform design
methods yield waveforms that satisfy low PAR constraints while
meeting the specified CSDM. The proposed techniques were
successfully applied to handle both single-rank and multi-rank
cases, and to support multiple frequency subband and single-side
beampattern syntheses. Simulation results verified the effectiveness
of the proposed algorithm for designing low PAR waveforms that
synthesize the desired beampatterns.
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Fig. 7 Beampatterns synthesised using the proposed method with respect to spatial angle and frequency

a ρ = 1
b ρ = 2

Fig. 8 Comparison of beampatterns with respect to spatial angle and frequency

a Synthesised by optimised CSDM
b Synthesised by actual waveforms with ρ = 2
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