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Abstract: This study demonstrates how the multiple parameters can be exactly obtained in sparse signal reconstruction
framework using a cross-dipole array. Instead of using subspace-based methods, first direction of arrival (DOA) estimation
of all sources is obtained, by solving a weighted ‘group lasso’ problem in second-order statistics domain. Then a truncated
ℓ1-function is utilised to approximate ℓ0-norm, and an unbiased estimator is successively proposed to obtain the polarisation
and power estimation. A statistical technique is introduced to select the regularisation parameter properly. Compared with the
estimation of signal parameters via rotational invariance techniques-based algorithm, the proposed algorithm can provide
improved resolution and estimation accuracy. Furthermore, the proposed algorithm can identify two sources with the same
DOA successfully, provided that the polarisation parameters are different.

1 Introduction

In the past 20 years, many array processing techniques for
direction of arrival (DOA) and polarisation estimation using
polarised array have been developed [1–5]. Among these
methods, the most representative one is the estimation of
signal parameters via rotational invariance techniques
(ESPRIT)-based algorithm introduced by Li and Compton
[1], which exploits twice invariance properties of a
cross-dipole array to estimate both DOA and polarisation
parameters. Some other ESPRIT-based algorithms for this
problem are also available, see [2, 3]. MUSIC-based
methods are presented in [4, 5]. All the methods mentioned
above rely on subspace technique. However, the
performance of these methods is generally not satisfactory
in low signal-to-noise ratio (SNR) or closely spaced sources.
In recent years, a novel approach, namely sparse signal

reconstruction, has been addressed in array signal
processing, and many algorithms are proposed for DOA
estimation with scalar sensor arrays. So far, the most
successful ones are lasso and group lasso-based methods,
such as ℓ1-singular value decomposition [6], sparse spectral
fitting [7] and sparse representation of array covariance
vectors [8]. These methods bring some superiorities in
resolution and robustness to noise. However, the ℓ1-norm
penalty associated to genuine lasso and group lasso have
been proven to produce biased estimates for large
coefficients [9]. This incurs the degradation of reconstruction
performance, and further restricts the extension of the
existing lasso-based methods to polarised array for accurate
estimation of multiple parameters (especially the polarisation
and power parameters).

In this paper, we propose a novel sparse-reconstruction-
based algorithm using a cross-dipole array, which is better
suited for DOA, polarisation and power estimation. Unlike
the existing lasso or group lasso-based source parameter
estimation methods, the proposed algorithm is unbiased and
can obtain accurate multiple parameters estimation. The
proposed algorithm includes two steps: (i) obtain DOA
estimation by solving a weighted ‘group lasso’ problem and
(ii) utilise truncated ℓ1-function to approximate ℓ0-function,
and successively propose an unbiased estimator to estimate
the polarisation and power parameters. Numerical
simulations are conducted to evaluate the performance of
the proposed algorithm.

2 Problem formulation

Consider K far-field narrow-band sources impinging on a
uniform linear array introduced by Li and Compton [1],
which consists of M dual-polarisation sensors with
inter-element spacing d, as shown in Fig. 1. All these
sensors, namely, 0, …, M− 1, lie on the y-axis.
Given a completely polarised transverse electromagnetic

(TEM) wave propagating into the array, we consider
the polarisation ellipse produced by its electric field as
the incoming wave is viewed from the coordinate origin.
The electric field is described as

E = Eff+ Euu (1)

where Ef is the horizontal component and Eθ is the vertical
component, and f and θ are the spherical unit vectors
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along the azimuth and elevation angles f and θ, respectively.
For simplicity, it is assumed that the source signal is in the y–z
plane perpendicular to that of the array which is located in the
x–y plane. Then, f = 90°, f = −x and

E = −Efx+ Euu

= −Efx+ Eu cos (u)y− Eu sin (u)z (2)

with x, y and z representing the unit vectors along the x, y and
z directions, respectively. The polarised signal can be
described as

Ef = E0 cos (g), Eu = E0 sin (g) e
jh (3)

where γ∈ [0, π/2) and η∈ [−π, π) represent the magnitude
ratio and the phase between the two polarisation
components, and E0 denotes the signal amplitude which is
an arbitrary non-zero complex constant. Consequently, the
received signals at sensor m for polarisation x and y,
denoted by u[x]m (t) and u[y]m (t), can be given by

u[x]m (t) = −
∑K
k=1

sk (t) cos (gk) e
jmvk + n[x]m (t) (4)

u[y]m (t) =
∑K
k=1

sk(t) cos (uk) sin (gk) e
jhk ejmvk + n[y]m (t) (5)

respectively, where 0≤m≤M− 1, n[l]m (t), l = x, y is the noise
component for polarisation l at the mth sensor and sk(t) is the
kth source signal. The parameter ωk is the function of the
DOA θk of the kth source, that is, ωk = −2πdsin(θk)/l,
where l is the carrier wavelength.
In vector format, (4) and (5) can be written as

u[l](t) = Bs[l](t)+ n[l](t), l = x, y (6)

where B W b(u1), . . . , b(uK )
[ ]

is the M × K steering matrix,
whose kth column is the M × 1 steering vector, and can be
expressed as

b(uk ) = 1, e−j2pd sin (uk )/l, . . . , e−j2p(M−1)d sin (uk )/l
[ ]T

(7)

and

u[l](t) = u[l]0 (t), u[l]1 (t), . . . , u[l]M−1(t)
[ ]T

(8)

n[l](t) = n[l]0 (t), n[l]1 (t), . . . , n[l]M−1(t)
[ ]T

(9)

s[x](t) = − s1(t) cos (g1), . . . , sK (t) cos (gK )
[ ]T

(10)

s[y](t)

= s1(t)cos(u1)sin(g1)e
jh1 ,

[
. . . , sK (t)cos(uK )sin(gK )e

jhK
]T

(11)

The superscript T denotes the transpose operation.
For unique parameter estimation, we make the following

assumptions:

[A1] The source signals {s1(t), …, sK(t)} are assumed to be
narrow-band, statistically independent, zero mean stationary
processes.
[A2] The noise components n [l ](t), l = x, y, are independent,
additive white Gaussian processes and independent of the
source signals.
[A3] To avoid phase ambiguity problem of parameter
estimation, the inter-element spacing of the array is d≤ l/2,
and the number of sources is less than the number of
dual-polarisation sensors, that is, K <M.

3 Parameters estimation

3.1 DOA estimation

A second-order statistic is considered to improve the
performance of the desired parameter estimation. For
simplicity, we directly take the vectorisation operation on
array covariance matrices and cross-covariance matrices,
which lead to

y1 W vec R[xx]( ) = vec E u[x](t)u[x](t)H
{ }( )

=
∑K
k=1

Pk cos
2 (gk)a(uk)+ s2P (12)

y2 W vec (R[yy]) = vec E u[y](t)u[y](t)H
{ }( )

=
∑K
k=1

Pk cos
2 (uk) sin

2 (gk )a(uk )+ s2P (13)

y3 W vec (R[xy]) = vec E u[x](t)u[y](t)H
{ }( )

= −
∑K
k=1

Pk cos (uk) cos (gk ) sin (gk ) e
−jhka(uk) (14)

y4 W vec (R[yx]) = vec E u[y](t)u[x](t)H
{ }( )

= −
∑K
k=1

Pk cos (uk ) cos (gk) sin (gk ) e
jhka(uk) (15)

where a(θk) = vec(b(θk)b
H(θk)); Pk and σ

2 are the power of the
kth signal and the power of noise, respectively. IM is anM ×M
identity matrix, Π = vec(IM). E{·} and H denote the
expectation and conjugate transpose, respectively.
To estimate the DOAs of multiple sources, we sample the

whole direction domain and form a setQ = {�u1, �u2, . . . , �u�K}

Fig. 1 Uniform linear array of crossed dipoles
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with �K ≫ K. Assume that the directions of actual sources
only lie within the �K grids, then the DOA estimation
problem can be formulated as the following sparse
representation problem

y = y1 y2 y3 y4
[ ] = A(Q)S + N (16)

where A(Q) = a(�u1), . . . , a(�u�K )
[ ]

is the overcomplete basis.
S = [S1 S2 S3 S4], S�p is a K-sparse vector whose ith element is
non-zero if source signal k comes from �ui for some k and
zero otherwise, �p [ {1, 2, 3, 4}. N = [σ2Π σ2Π 0 0], and 0
is the M2 × 1 zero vector.
In fact, we only obtain the estimated result R̂[xx] of R [xx],

R̂[yy] of R [yy], R̂[xy] of R [xy], R̂[yx] of R [yx] and ŷ of y
according to the limited snapshots of the array output, and
they may be approximately equal. In addition, a maximum
likelihood estimate (denoted by ŝ2) of σ2 can also be given
by the average of the M− K smallest eigenvalues of R̂[xx] or
R̂[yy], which needs a prior knowledge of the number of
sources. Successively, we obtain the estimated result N̂ of
N. Then, the DOAs of multiple sources can be obtained by
solving the following ‘group lasso’ problem

min ŷ− A(Q)S − N̂
∥∥ ∥∥2

F+h s̃(ℓ2)
∥∥ ∥∥

1 (17)

where ·‖ ‖F and ·‖ ‖1 denote the Frobenius norm and ℓ1-norm,
respectively. h is the regularisation parameter that controls the
tradeoff between Frobenius norm term and ℓ1-norm term.

s̃(ℓ2) = s̃(ℓ2)1 , . . . , s̃(ℓ2)�K

[ ]T
, where s̃(ℓ2)i is the ℓ2-norm of the

ith row of S. Note that the ℓ1-norm minimisation has a
disadvantage that larger coefficients of signals are penalised
more heavily than smaller coefficients. Thus, we propose
the weighted ℓ1-norm minimisation to improve the
estimation accuracy. Let Ûn denotes the M × (M− K ) noise
subspace matrix, which corresponds to the M− K smallest
singular value of (R [xx] +R [yy])/2. The weight v̂i has the
following form

v̂i = b(�ui)
HÛnÛ

H
n b(�ui) (18)

If the value of �ui is equal to the DOA of a certain source, then
v̂i should be the small coefficient for the orthogonality
between b(�ui) and Ûn. Then, we formulate the weighted
‘group lasso’ problem as

min ŷ− A(Q)S − N̂
∥∥ ∥∥2

F+h
∑�K
i=1

v̂i s̃
(ℓ2)
i

∣∣∣ ∣∣∣ (19)

The DOA estimation in (19) can be efficiently worked out
in the second-order cone (SOC) programming framework,
and the standard SOC programming form is given by

min p+ hq s.t. zT1 , . . . , z
T
4

( )∥∥ ∥∥2
2
≤ p, and wTr ≤ q

where s̃(ℓ2)i

∣∣∣ ∣∣∣ ≤ ri, for i = 1, . . . , �K and

zk = ŷ(k)− A(Q)S(k)− N̂(k), for k = 1, . . . , 4

(20)

where w = v̂1, . . . , v̂�K

[ ]T
, r = [r1, …, rN]

T. Equation (20)
can be solved by SOC software package such as SeDuMi
[10], then the DOA estimations are obtained.

3.2 Polarisation and power estimation

To obtain polarisation and power estimation, we formulate the
following sparse representation problems

y1 = A(Q)S1 + s2P (21)

y2 = A(Q)S2 + s2P (22)

y5 = −(y3 + y4)/2 = A(Q)S5 (23)

y6 = −j(y3 − y4)/2 = A(Q)S6 (24)

where S1, S2, S5 and S6 are the K-sparse vectors, whose ith
element are non-zero and equal to Pk cos

2(γk), Pk cos
2(θk)

sin2(γk), Pk cos(θk) cos(γk) sin(γk) cos(ηk) and Pk cos(θk) cos(γk)
sin(γk) sin(ηk), respectively, if source signal k comes from �ui
for some k and zero otherwise. Obviously, we can obtain
the polarisation and power estimations if Sκ is
reconstructed, κ∈ {1, 2, 5, 6}. In general, one can use lasso
to reconstruct Sκ. However, the ℓ1-norm penalty associated
to genuine lasso has been proven to produce biased
estimates [9]. Therefore, we utilise the idea of truncated
ℓ1-function [11] to approximate ℓ0-function and
successively obtain a good polarisation and power
estimation. The truncated ℓ1-function is defined as

J x| |( ) = min x| |/t, 1( )
(25)

with t > 0 is a tuning parameter controlling the degree of
approximation. This t decides which individual coefficients
to be shrunk towards zero. Consequently, we propose an
iterative convex approach based on reweighted lasso, that
is, at iteration �m, the optimisation problems transform into

min ŷk − A(Q)Sk − ŝ2P
∥∥ ∥∥2

2

+ h

t

∑�K
i=1

Sk(i)
∣∣ ∣∣I Ŝ(�m−1)

k

∣∣ ∣∣ ≤ tk
( )

, k = 1, 2 (26)

min ŷk − A(Q)Sk

∥∥ ∥∥2
2+

h

t

∑�K
i=1

Sk(i)
∣∣ ∣∣I Ŝ(�m−1)

k

∣∣ ∣∣ ≤ tk
( )

, k = 5, 6 (27)

where Ŝ(�m−1)
k is the estimation result of the (�m− 1)th iteration,

and the initial estimation Ŝ(0)
k is provided by genuine lasso. In

these two formulations (26) and (27), the parameter tκ is
tuned such that tk , min Sk(�k)

{ }
: �k [ X0 to make the

approximation error of truncated ℓ1-function and
ℓ0-function to become zero, where X0 denotes the support
of the non-zero in Sκ. The indicator function I(·) is given by

I(a ≤ b) = 1, if a ≤ b
0, otherwise

{
(28)

As stated in [11], the truncated ℓ1-function can lead to a good
approximation of ℓ0-function, and the corresponding
estimator is convergent, and is also unbiased and selection
consistent. This means that (26) and (27) can obtain a much
better estimation result of Sκ. Let Ŝk (κ = 1, 2, 5, 6) be the
final estimation results of (26) and (27), then the
polarisation and power parameters can be successively
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obtained from

ĝk = arctan
����������������������������
Ŝ2(kc)
∣∣ ∣∣/ Ŝ1(kc)

∣∣ ∣∣ cos2 (ûk )
√( )

(29)

P̂k = Ŝ1(kc)
∣∣ ∣∣/cos2 (ĝk ) (30)

ĥk = sign Ŝ6(kc)/Ŵk

( )× arccos Ŝ5(kc)/Ŵk

( )
(31)

where Ŵk = P̂k cos (ûk ) cos (ĝk) sin (ĝk ), k∈ [1, K ]. kc is
the index of the kth non-zero element in Ŝk.

Define ρk = S1(c)S2(c)− S5(c)
2− S6(c)

2, if only one source
signal impinging on the array from θ, then ρk = 0. In contrast,
if two source signals impinge on the array from the same θ,
while the polarised parameter γ1 and γ2 are different, then

rk = P1P2 cos
2 (u) cos2 (g1) sin

2 (g2)+ cos2 (g2) sin
2 (g1)

[
−2 cos (g1) sin (g2) cos (g1) sin (g2) cos (h2 − h1)

]
≥ P1P2 cos

2 (u) sin2 (g2 − g1)

(32)

Note that γ2− γ1∈ (−π, π) and γ2≠ γ1, therefore ρk > 0. This
indicates that the proposed algorithm can identify two sources
with same DOA successfully, and the identification
performance becomes better with |γ2− γ1|→ π/2.
The regularisation parameter h plays an important role

in the final performance. The simulation results suggest that
h = 1 is a good choice for 0–20 dB SNR. While in low
SNR cases, we use 2-fold cross-validation [12] to select it
properly. We divide the data ŷk(k = 1, 2) into two roughly
equal parts, including training set and validation set. For
each set g = 1, 2, fit the model with parameter h to the other
part, giving Ŝk,g and compute its error in predicting the gth
part, then the cross-validation error is given by

e(h) = 1

2

∑2
k=1

∑2
g=1

ŷgk − Ag(Q)Ŝk,g(h)− ŝ2Pg
∥∥∥ ∥∥∥2

2
(33)

where ŷgk, A
g(Θ), Πg are the gth part of ŷk, A(Θ) and Π,

respectively. Repeat this operation for some values of h
around 1 and select the value of h that makes e(h) smallest.

4 Simulations

In this section, the performance of the proposed algorithm is
investigated, and compared with conventional scalar ESPRIT
method (CESPRIT), polarised ESPRIT (PESPRIT) [1] and
Cramer–Rao lower bound. For fair comparison, the
CESPRIT does not incorporate the signal polarisations. A
uniform linear array composed of five pairs of crossed
dipoles with half-wavelength element spacing is considered.
We divide the direction domain into 181 grids from −90°
to 90° with 1° interval, and then set a finer grid around the
estimated DOAs.
In the first experiment, we show the probability of

separation of different methods against SNR and angle
separation, whose curves are plotted in Figs. 2 and 3,
respectively. In Fig. 2, two sources are located at {θ1 = 10°,
θ2 = 16°}, and the SNR varies from −15 to 15 dB in 5-dB
steps. The number of snapshots is fixed at 500. In Fig. 3,
the first DOA is fixed at 10°, whereas the second DOA
varies from 12° to 30° in 2° steps. The SNR and the
number of snapshots are set to be 0 dB and 500,

respectively. The polarisation parameters (γ, η) of the two
sources are (5°, 60°) and (10°, 30°). By definition, the
two sources are resolved in a given run if both the bias of
two sources directions are smaller than |θ1− θ2|/2. Also, the
curves are obtained by 200 independent Monte-Carlo trails.
We observe that the resolution performance of the proposed
algorithm outperforms others, followed by PESPRIT. This
super-resolution feature is achieved by jointly using sparse
signal reconstruction and polarised array.
In the second experiment, we evaluate the root mean square

error (RMSE) of the DOA estimations produced by the
proposed algorithm at different SNRs and different number
of snapshots, respectively. The RMSE curves are obtained
by 500 independent Monte-Carlo trails. Two sources
located at {θ1 =−15.6°, θ2 = 12.3°} are considered, and the
polarisation parameters are the same with the first experiment.
In Fig. 4, we vary the SNR from −15 to 15 dB in 5-dB
steps with 500 snapshots. Whereas, in Fig. 5, we fix the
SNR to be 0 dB, and vary the number of snapshots from
100 to 800 in steps of 100. The simulation results show that
the proposed algorithm outperforms the compared methods
when SNR is low. Meanwhile, we can easily observe that
the RMSE of DOA estimations of the proposed algorithm
decreases monotonically with the number of snapshots.

Fig. 3 Probability of separation against angle separation with 500
snapshots and 0 dB SNR

Fig. 2 Probability of separation against SNR with 500 snapshots
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In the third experiment, three sources located at {θ1 =−20°,
θ2 = −20°, θ3 = 30°} with P1 = P2 = P3 = 1 are considered, and
the corresponding polarisation parameters (γ, η) are (10°,
20°), (60°, 20°) and (30°, 20°), respectively, SNR = 20 dB
and the number of snapshots is 800. The simulation result
is illustrated in Fig. 6. Although there only emerges two
peaks, we find ρ1 = 0.5272, ρ2 = 0.0052, which means that
there are two sources impinging on the array from the same
DOA, that is, θ = −20°. This simulation shows that the
proposed algorithm can identify the two sources with same
DOA successfully. Moreover, if only one source signal is
impinging on the array from θk or ρk = 0, we can also
obtain a good polarisation and power estimation.

5 Conclusion

In this paper, we present a novel sparse-reconstruction-based
algorithm for DOA, polarisation and power estimation in
sparse signal reconstruction framework. The proposed
algorithm utilises the weighted ‘group lasso’ and truncated
ℓ1-function penalty to obtain DOA, polarisation and power
estimation, respectively. A proper regularisation parameter
selection strategy is also given. The simulation results

illustrate that it has higher estimation precision and
resolution ability than the compared methods when SNR is
low. In addition, the proposed algorithm can also identify
two sources with the same DOA successfully using their
polarisation characteristics.
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