
90 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

review articles
DOI:10.1145/2736282

Inductive programming can liberate users
from performing tedious and repetitive tasks.

BY SUMIT GULWANI, JOSÉ HERNÁNDEZ-ORALLO,
EMANUEL KITZELMANN, STEPHEN H. MUGGLETON,
UTE SCHMID, AND BENJAMIN ZORN

M UCH OF THE world’s population use computers for
everyday tasks, but most fail to benefit from the power
of computation due to their inability to program. Most
crucially, users often have to perform repetitive actions
manually because they are not able to use the macro
languages available for many application programs.
Recently, a first mass-market product was presented
in the form of the Flash Fill feature in Microsoft Excel
2013. Flash Fill allows end users to automatically
generate string-processing programs for spreadsheets
from one or more user-provided examples. Flash Fill is
able to learn a large variety of quite complex programs
from only a few examples because of incorporation of
inductive programming methods.

Inductive programming (IP) is an interdisciplinary
domain of research in computer science, artificial

intelligence, and cognitive science
that studies the automatic synthesis
of computer programs from examples
and background knowledge. IP devel-
oped from research on inductive pro-
gram synthesis, now called inductive
functional programming (IFP), and from
inductive inference techniques using
logic, nowadays termed inductive logic
programming (ILP). IFP addresses the
synthesis of recursive functional pro-
grams generalized from regularities
detected in (traces of) input/output ex-
amples19,41 using generate-and-test ap-
proaches based on evolutionary27,34,35
or systematic16,28 search or data-driven
analytical approaches.6,11,17,23,38 Its de-
velopment is complementary to efforts
in synthesizing programs from com-
plete specifications using deductive
and formal methods.8

ILP originated from research on
induction in a logical framework30,39
with influence from artificial intel-
ligence, machine learning, and rela-
tional databases. It is a mature area
with its own theory, implementa-
tions, and applications and recently
celebrated the 20th anniversary33 of its
inception as an annual series of inter-
national conferences.

Over the last decade IP has attracted
a series of international workshops.
Recent surveys7,13,18 reflect the wide va-
riety of implementations and applica-
tions in this area.

Inductive
Programming
Meets the
Real World

 key insights
˽˽ Supporting end users to automate complex

and repetitive tasks using computers is a
big challenge for which novel technological
breakthroughs are demanded.

˽˽ The integration of inductive programming
techniques in software applications
can support users by learning domain-
specific programs from observing
interactions of the user with the system.

˽˽ Inductive programming is being
transferred to real-world applications
such as spreadsheet tools, scripting, and
intelligent program tutors.

˽˽ In contrast to standard machine
learning, in inductive programming
learning from few examples is possible
because users and systems share the
same background knowledge.

http://dx.doi.org/10.1145/2736282

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 91

I
M

A
G

E
R

Y
 B

Y
 P

A
V

E
L

 I
G

N
A

T
O

V

92 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

review articles

scripts to automate repetitive tasks.
These users can easily specify their in-
tent using examples, making IP a great
fit. For instance, consider the domain
of data manipulation. Documents of
various types, such as text/log files,
spreadsheets, and Web pages, offer
their creators great flexibility in stor-
ing and organizing hierarchical data by
combining presentation and format-
ting with the underlying data model.
However, this makes it extremely dif-
ficult to extract the underlying data for
common tasks such as data process-
ing, querying, altering the presenta-
tion view, or transforming data to an-
other storage format.

Existing programmatic solutions
to manipulating data (such as Excel
macro language, regular expression li-
braries inside Perl/Python, and JQuery
library for JavaScript) have three key
limitations. First, the solutions are
domain-specific and require expertise
in different technologies for different
document types. Second, they require
understanding of the entire underlying
document structure including the data
fields the end user is not interested in
(some of which may not even be visible
in the presentation layer of the docu-
ment). Third, and most significantly,
they require knowledge of program-
ming. As a result, users must resort to
manually performing repetitive tasks,
which is both time consuming and er-
ror prone.

Inductive synthesis can help out
with a variety of data manipulation
tasks. These include: (a) Extracting
data from semi-structured documents
including text files, Web pages, and
spreadsheets23 (as shown in Figure
1). (b) Transformation of atomic data
types such as strings9 (as illustrated in
Figure 2) or numbers. Transformation
of composite data types such as tables11
and XML.35 (c) Formatting data.36 Com-
bining these technologies in a pipeline
of extraction, transformation, and for-
matting can allow end users to perform
sophisticated data manipulation tasks.

Computer-aided education. Hu-
man learning and communication is
often structured around examples—
be it a student trying to understand
or master a certain concept using ex-
amples, or be it a teacher trying to un-
derstand a student’s misconceptions
or provide feedback using example

In the domain of end-user pro-
gramming, programming by demon-
stration approaches were proposed
that support the learning of small rou-
tines from observing the input behav-
ior of users.5,22,24 Excel’s Flash Fill pro-
vides an impressive illustration that
program synthesis methods devel-
oped in IP can be successfully applied
to gain more flexibility and power for
end-user programming.9,11 Further ap-
plications are being realized for other
desktop applications (for example,
PowerShell scripting in the Convert-
From-String cmdlet2) as well as for
special-purpose devices such as home
robots and smartphones.

In this article, several of these cur-
rent applications are presented. We
contrast the specific characteristics
of IP with those of typical machine
learning approaches and we show
how IP is related to cognitive mod-
els of human inductive learning. We
finally discuss recent techniques—
such as the use of domain-specific
languages and meta-level learning—

that widen the scope and power of IP
and discuss new challenges.

Real-World Applications
Originally, IP was applied to synthesiz-
ing functional or logic programs for
general-purpose tasks such as manip-
ulating data structures (for example,
sorting or reversing a list). These inves-
tigations showed that small programs
could be synthesized from a few input/
output examples. The recent IT revolu-
tion has created real-world opportuni-
ties for such techniques. Most of to-
day’s large number of computer users
are non-programmers and are limited
to being passive consumers of the soft-
ware that is made available to them. IP
can empower such users to more ef-
fectively leverage computers for auto-
mating their daily repetitive tasks. We
discuss here some such opportunities,
especially in the areas of end-user pro-
gramming and education.

End-user programming. End users
of computational devices often need
to create small (and perhaps one-off)

Figure 1. FlashExtract.23

Ana Trujillo
357 21st Place SE
Redmond, WA
(757) 555-1634

Antonio Moreno
515 93th Lane
Renton, WA
(411) 555- 2786

Thomas Hardy
742 17th Street NE
Seattle, WA
(412) 555-5719

Christina Berglund
475 22th Lane
Redmond, WA
(443) 555-6774

Hanna Moos
785 45th Street NE
Puyallup, WA
(376) 555-2462

Frederique Citeaux
308 66th Place
Redmond, WA
(689) 555-2770

(a)

(b)

(c)

Label 1 Label 2 Label 3

Ana Trujillo Redmond (757) 555-1634

Antonio Moreno Renton (411) 555-2786

Thomas Hardy Seattle (412) 555-5719

Christina Berglund Redmond (443) 555-6774

Hanna Moos Puyallup (376) 555-2462

Frederique Citeaux Redmond (689) 555-2770

PairSeq SS ::= LinesMap(λx: Pair(Pos(x, p1), Pos(x, p2)), LS)
| StartSeqMap(λx: Pair(x, Pos(R0[x], p)), PS)

LineSeq LS ::= FilterInt(init, iter, BLS)
BoolLineSeq BLS ::= FilterBool(b, split(R0,’/n’))

PositionSeq PS ::= LinesMap(λx:Pos(x, p), LS)
| FilterInt(init, iter, PosSeq (R0, rr))

Pred b ::= λx: {Starts,Ends}With(r,x) | λx: Contains(r, k, x)

A framework for extracting data from documents of various kinds such as text files and Web pages
using examples. Once the user highlights one or two examples of each field in the text file in
(a), FlashExtract extracts more such instances and arranges them in a structured format in the table
in (b). This is enabled by synthesis of a program in the domain-specific language (DSL) in (c) that is
consistent with the examples in (a) followed by execution of that program on the text file in (a).

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 93

review articles

behaviors. Example-based reasoning
techniques developed in the inductive
synthesis community can help auto-
mate several repetitive and structured
tasks in education including problem
generation, solution generation, and
feedback generation.10 These tasks
can be automated for a wide variety
of STEM subject domains including
logic, automata theory, programming,
arithmetic, algebra, and geometry. For
instance, Figure 3 shows the output of
an inductive synthesis technique for
generating algebraic proof problems
similar to a given example problem.

Future opportunities. We have de-
scribed important real-world applica-
tions of IP. We believe there are many
other domains to which IP can and
will be applied in the near future. Any
domain in which a set of high-level
abstractions already exists is a strong
candidate for IP. For example, the If
This Then That (IFTTT) service (http://
ifttt.com/), which allows end users to
express small rule-based programs us-
ing triggers and actions, is an excellent
candidate for application of IP. IFTTT
programs connect triggers (such as
I was tagged in a photo) with actions
(such as send an email message) over
specific channels such as Facebook. In
such a domain, IP can be used to learn
programs from examples of a user do-
ing the task. For instance, it can learn
a program to send a text message every
time a smartphone user leaves work
for home. Looking further ahead, au-
tomatically building robot strategies
from user provided examples30 is a
promising new direction for IP.

As the frameworks to build IP-based
solutions mature, including meta-syn-
thesis frameworks that simplify the
process of building synthesizers (as we
will discuss later), it will become easier
for developers to create new IP-empow-
ered applications.

IP vs. Machine Learning
IP is concerned about making ma-
chines learn programs automatically
and can hence be considered another
machine learning paradigm. So, what
is distinctive about inductive program-
ming? Table 1 outlines a series of differ-
ences, some of which we discuss here.

We will also use a running example
to indicate some of the features about
IP. Figure 4 shows an illustrative ap-

Figure 2. Flash Fill.9

An Excel 2013 feature that automates repetitive string transformations using
examples. Once the user performs one instance of the desired transformation
(row 2, col. B) and proceeds to transforming another instance (row 3, col. B),
Flash Fill learns a program Concatenate(ToLower(Substring(v,WordToken,1)),
" ", ToLower(SubString(v,WordToken,2))), which extracts the first two
words in input string v (col. A), converts them to lowercase, and concatenates them
separated by a space character, to automate the repetitive task.

Figure 3. Problem generation for algebraic proof problems involving identities over
analytic functions.

Example Problem
^—

sin A
1+cos A

1+cos A
sinA

= 2 cscA+

Generalized
Problem Template
^—

T1 A
1±T2 A

1±T3 A

T4 A
= 2 T5 A+

where Ti ∈ {cos, sin, tan, cot, sec, csc}
New Similar
Problems

cos A
1-sin A

1-sin A
cos A

= 2 tan A+

cos A
1+sin A

1+sin A
cos A

= 2 sec A+

cot A
1+csc A

1+csc A
cot A

= 2 sec A+

tan A
1+sec A

1+sec A
tan A

= 2 csc A+

sin A
1-cos A

1-cos A
sin A

= 2 cot A+

A given problem is generalized into a template and valid instantiations are found by testing on
random values for free variables.

94 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

review articles

Refinement and abstraction. An-
other particular issue about IP is the
way the hypothesis space is arranged
by properly combining several infer-
ence mechanisms such as deduction,
abduction, and induction. Many early
IP operators were inversions of deduc-
tion operators, leading to bottom-
up and top-down approaches, where
generalization and specialization op-
erators, respectively, are used.33 More
generally, refinement and abstraction
operators, including the use of high-
er-order functions, predicate, and
function invention, can be defined ac-
cording to the operational semantics
of the language.

This configures many levels be-
tween merely extensional facts and
more intensional knowledge, leading
to a hierarchical structure. Actually,
the use of the same representation lan-
guage for facts, background knowledge
and hypotheses, as illustrated in Figure
4, facilitates this hierarchy.

Deep knowledge. Because of the
abstraction mechanisms and the use
of background knowledge, IP consid-
ers learning as a knowledge acquisi-
tion process. In Figure 4, for instance,
inductive programming has access
to some information about contact
groups as well as relationships between
the contacts (such as family bonds or
work hierarchies). Such knowledge is
known as background knowledge and
works as a powerful explicit bias to re-
duce the search space and to find the
right level of generalization.

Knowledge can be considered deep
if it references lower-level definitions,

plication where the goal is to identify
repetitive patterns and rules about a
user’s personal contacts. The IP sys-
tem learns an easy rule stating the us-
er’s boss must be added to her circles
and a more complex one that states
any person who is married to a fam-
ily member should also be added to
her circles. There we can see some of
the distinctive features of IP systems,
such as the small number of exam-
ples, the kind and source of data, the
role of background knowledge, the in-
teraction and feedback from the user,
the use of a common declarative lan-
guage, the use of recursion, and the
comprehensibility and expressiveness
of the learned patterns. Though ma-
chine learning and IP are quite com-
plementary, they can also work well
together. For instance, if IP generates
multiple programs that are consistent
with the provided examples, then ma-
chine learning can be used to rank
such programs.11

Small data. As collecting and stor-
ing data is becoming cheaper, it is
easy to gain the impression the only
interesting datasets today involve big
data. However, datasets from a single
user’s interaction with whatever kind
of device are usually quite small, such
as the amount of data gathered about
a person’s agenda, as shown at the top
of Figure 4.

It is well known that learning from
small numbers of examples is more
difficult and unreliable than learn-
ing from lots of data. The fewer ex-
amples we have, the more prone we
are to overfitting, especially with ex-

pressive languages. IP is particularly
useful when the number of examples
is small but the hypothesis space is
large (Turing-complete).

Declarative representation. Most
(statistical) machine learning tech-
niques are based on probabilities, dis-
tances, weights, kernels, matrices, and
so on. None of these approaches, except
for techniques based on (proposition-
al) decision trees and rules, are declara-
tive, that is, expressed as potentially
comprehensible rules. Hence, another
distinctive feature of IP is it uses a rich
symbolic representation, as hypotheses
are usually declarative programs.

The declarative approach permits
the use of a single language to repre-
sent background knowledge, examples
and hypotheses, as shown in Figure
4. Apart from the accessibility of one
single language for the (end-)user,
knowledge can be inspected, revised
and integrated with other sources of
knowledge much more easily. As a re-
sult, incremental, cumulative or life-
long learning becomes easier.13 For in-
stance, NELL (Never-Ending Language
Learner)3 uses an ILP algorithm that
learns probabilistic Horn clauses.

Today, many languages in IP are hy-
brid such as functional logic program-
ming languages, logic programming
with types and higher-order constructs,
constraints, probabilities, and so on.
The logic (ILP) vs. functional (IFP) de-
bate has also been surpassed recently
by the breakthrough of domain-spe-
cific languages (DSL), which are usu-
ally better suited for the application at
hand, as we discuss later.

Table 1. A simplified comparison between inductive programming and other machine learning paradigms.

Inductive Programming Other Machine Learning Paradigms

Number of examples Small Large, for example, big data

Kind of data Relational, constructor-based datatypes Flat tables, sequential data,

Data Source Human experts, software applications, HCI, and others Transactional databases, Internet, sensors (IoT), and others.

Hypothesis Language Declarative: general programming languages or domain-
specific languages

Linear, non-linear, distance-based, kernel-based, rule-based,
probabilistic, etc.

Search strategy Refinement, abstraction operators, brute-force. Gradient-descent, data partition, covering, instance-based, etc.

Representation learning Higher-order and predicate/function invention Deep learning and feature learning.

Pattern comprehensibility Common. Uncommon.

Pattern expressiveness Usually recursive, even Turing-complete. Feature-value, not Turing complete.

Learning bias Using background knowledge and constraints Using prior distributions, parameters and features.

Evaluation Diverse criteria, including simplicity, comprehensibility Oriented to error (or loss) minimisation.

Validation Code inspection, divide-and-conquer debugging, background
knowledge consistency

Statistical reasoning (only a few techniques are
locally inspectable).

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 95

review articles

including recursively referencing itself.
Representation of such structured and
deep knowledge is achieved by program-
ming languages that feature variables,
rich operational semantics and, most
especially, recursion. Recursion is a key
issue in inductive programming.19,30,38,41
Note that both the background knowl-
edge and the new hypothesis in the Fig-
ure 4 example are recursive.

This is in contrast to other ma-
chine learning approaches where
background knowledge has only the
form of prior distributions, probabili-
ties, or features. The difference is also
significant with other non-symbolic
approaches to deep learning,1 a new
approach in machine learning where
more complex models and features
are also built in a hierarchical way, but
data, knowledge, and bias are repre-
sented differently.

Purpose and evaluation. In other
machine learning approaches, hypoth-
eses are measured by different metrics
accounting for a degree of error. The
purpose of IP is not just to maximize
some particular error metric, but to
find meaningful programs that are
operational, according to the purpose
of the IP application. This usually im-
plies they have to be consistent with
most of (if not all) the data but also
with the background knowledge and
other possible constraints. Also, as
hypotheses are declarative (and pos-
sibly recursive), the evaluation is more
diverse, including criteria such as sim-
plicity, comprehensibility, coherence,
and time/space complexity.

Recent Techniques
IP is essentially a search problem, and
can benefit from techniques developed
in various communities. We present
here certain classes of techniques used
in recent IP work.

DSL synthesizers. DSLs have been
introduced in the IP scenario under the
following methodology:

1.	 Problem definition: Identify a ver-
tical domain of tasks and collect com-
mon scenarios by studying help fo-
rums and conducting user studies.

2.	Domain-specific language: De-
sign a DSL that is expressive enough
to capture several real-world tasks
in the domain, but also restricted
enough to enable efficient learn-
ing from examples. Figure 1(c) de-

scribes one such DSL for extracting
data from text files. (The full version
of this DSL along with its semantics is
described in Le and Gulwani.23) This
DSL allows for extracting a sequence
of substrings using composition of
filter and map operations.

3.	 Synthesis algorithm: Most of these
algorithms work by applying divide-
and-conquer deductive techniques that

systematically reduce the problem to
the synthesis of subexpressions of the
original expression (by translating the
examples for the expression to the ex-
amples for the sub-expressions). These
algorithms typically end up computing a
set of DSL programs.

4.	 Ranking: Rank the various programs
returned by the synthesizer perhaps us-
ing machine learning techniques.

Figure 4. An example of the interaction with an IP system and the key role of the back-
ground knowledge.

Environment

Added after
validation

Hypothesis

Device

Device

User

Data

Interaction

New Data

2

1

3

4

5

Inductive Programming

Do you want to add James
to your family circle?YES

NO

circle(lucas,work).
boss(me,lucas).
boss(lucas,john).
boss(john,lucy).
circle(jane,family).
married(henry,jane).
circle(ann,family).
boss(X,Y):- boss(X,Z), boss(Z,Y)
...

circle(X,work) :- boss(me,X).
circle(x,family) :- circle(Y,family),
		 (married(X,Y); married(Y,X)).

circle(john,work).
circle(lucy,work).
circle(henry,family).
...

married(james,ann).

A user interacts with several devices about his/her agenda and contact groups. The system gathers
a collection of facts, rules and operators into its background knowledge. From this background
knowledge and a few examples, the system is able to infer new rules that—once validated—can be
used to enlarge the background knowledge and also to make recommendations or suggest choices
for the user.

96 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

review articles

turn 10. Rather than learning a recur-
sive function, the IP system then only
needs to pick the suitable higher-order
function and instantiate it appropri-
ately. One of the first systems that
made use of higher-order functions in
IP was MAGICHASKELLER,16 which
generates Haskell functions from a
small set of positive inputs. The gen-
erated programs are instantiations of
a predefined set of higher-order func-
tions such as fold. An extension of the
analytical IP system Igor2, also imple-
mented in Haskell, takes a similar
approach. In contrast to Katayama,16
which finds programs by enumeration,
Igor2 analyzes the given data to decide
which higher-order function fits. The
argument function to instantiate the
higher-order function is either picked
from background knowledge or, if not
existing, is invented as an auxiliary
function. The use of this technique not
only results in a speed-up of synthesis
but also enlarges the scope of synthe-
sizable programs.14 An example for
induction with higher-order functions
in given in Figure 5. Finally, Hender-
son12 proposed to use higher order to
constrain and guide the search of pro-
grams for cumulative learning where
functions induced from examples are
abstracted and can then be used to
induce more complex programs. Un-
like a DSL, higher-orderness does not
restrict IP to a predefined domain, in-
stead it guides search.

Meta-interpretive Learning (MIL)
is a recent ILP technique31,32 aimed at
supporting learning of recursive defi-
nitions. A powerful and novel aspect of
MIL is that when learning a predicate
definition it automatically introduces
sub-definitions, allowing decomposi-
tion into a hierarchy of reusable parts.
MIL is based on an adapted version of a
Prolog meta-interpreter. Normally such
a meta-interpreter derives a proof by
repeatedly fetching first-order Prolog
clauses whose heads unify with a given
goal. By contrast, a meta-interpretive
learner additionally fetches higher-or-
der meta-rules whose heads unify with
the goal, and saves the resulting meta-
substitutions to form a program. To
illustrate this idea, consider the meta-
rule in Table 2 relating to P, Q, and R.
In this example, the Chain Hypothesis
on the boss predicate from Figure 4 is
learned from the Meta-substitutions

This methodology has been applied
to various domains including the trans-
formation of syntactic strings,9,29 se-
mantic strings, numbers, and tables.11

Meta-synthesis frameworks. Do-
main-specific synthesizers (as opposed
to general-purpose synthesizers) offer
several advantages related to efficiency
(such as the ability to synthesize pro-
grams quickly) and ranking (such as the
ability to synthesize intended programs
from fewer examples). However, the de-
sign and development of a domain-spe-
cific synthesizer is a nontrivial process
requiring critical domain insights and
implementation effort. Furthermore,
any changes to the DSL require making
nontrivial changes to the synthesizer.

A meta-synthesis framework allows
easy development of synthesizers for a
related family of DSLs that are built us-
ing the same core set of combinators.
Building such a framework involves
the following steps:

1.	 Identify a family of vertical task
domains that allow a common user in-
teraction model.

2.	 Design an algebra for DSLs. A DSL
is an ordered set of grammar rules (to
model ranking).

3.	 Design a search algorithm for
each algebra operator such that it is
compositional and inductive.

Meta-synthesis frameworks can al-

low synthesizer writers to easily develop
domain-specific synthesizers, similar
to how declarative parsing frameworks
like lex and yacc allow a compiler writer
to easily write a parser. The FlashEx-
tract framework23 and the Test Driven
Synthesis framework35 allow easy de-
velopment of synthesizers for extract-
ing and transforming data from docu-
ments of various types such as text files,
Web pages, XML documents, tables,
and spreadsheets. Figure 1(c) describes
a DSL composed of Filter and Map op-
erators, which are supported by the
FlashExtract framework.

The FlashExtract framework is thus
able to automatically construct an effi-
cient synthesis algorithm for this DSL.

Higher-order functions are a pos-
sibility to provide a bias when search-
ing for hypotheses. In contrast to DSLs,
higher-order functions do not tailor IP
to a predefined domain, but instead
provide common patterns for process-
ing recursive (linked) data as back-
ground knowledge to the IP system.
For instance, the fold higher-order
function (also known as reduce) iterates
over a list of elements and combines
the elements by applying another func-
tion that is also given as a parameter to
the fold. For example, fold (+) 1, 2,
3, 4] would combine the numbers in
the list with the plus function and re-

Table 2. Use of the chain hypothesis on the boss predicate from Figure 4 to prove a new
example of boss(lucas, lucy) using the meta-rule and the background knowledge.

Name Meta-Rule

Chain P (x , y) <- Q (x, z), R(z, y)

Example Background Knowledge

boss(lucas, lucy) boss(lucas, john). boss(john, lucy).

Meta-Substitution Chain Hypothesis

P=Q=R=boss boss(X,Y) :- boss(X,Z), boss(Z,Y)

Figure 5. Given examples to reverse a list for lengths zero to three, Igor2 synthesizes a
program using the higher-order function fold.

The auxiliary function f, which appends a single element to the end of a list and parameterizes the
fold, is not given as background knowledge but is invented.

reverse x = fold f [] x

f x0 [] = [x0]

f x0 (x1 : xs) = x1 : f x0 xs

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 97

review articles

into the X, Y, and Z meta-variables by
proving the Example using the Meta-
rule and the Background knowledge.

Given the higher-order substitu-
tions, instantiated program clauses
can be reconstructed and reused in
later proofs, allowing a form of IP
that supports the automatic con-
struction of a hierarchically defined
program.

In Lin et al.25 the authors applied
MIL to a task involving string trans-
formations tasks previously stud-
ied by Gulwani.9 Figure 6 shows the
outcome of applying MIL to learn-
ing a set of such tasks, using two
approaches, dependent and indepen-
dent learning, where in the former
new definitions are allowed to call
already learned definitions at lower
levels. Dependent learning produced
more compact programs owing to the
reuse of existing subdefinitions. This
in turn led to reduced search times
since the smaller task definitions re-
quired less search to find them.

Constraint solving. The general
idea here is to reduce the synthesis
problem to an equivalent satisfiabil-
ity problem that is expressed as a
standard logical formula. Then, this
formula can be solved by a general
off-the-shelf tool using the recent
advances made in the technology of
Satisfiability (SAT) and Satisfiabil-
ity Modulo Theory (SMT) solvers.
This approach has been applied
to synthesis from complete formal
specifications, but its applicability
has been limited to synthesizing re-
stricted forms of programs. On the
other hand, if the specification is in
the form of examples, then the re-
duction of the synthesis problem to
solving of SAT/SMT constraints can
be performed for a larger variety of
programs. These examples may be
generated inside a counter-example
guided inductive synthesis loop40
(which involves using a validation
technology to find new test inputs on
which the current version of the syn-
thesized program does not meet the
given specification), or using a dis-
tinguishing input-based methodolo-
gy15 (which involves finding new test
inputs that distinguish two semanti-
cally distinct synthesized programs,
both of which are consistent with the
given set of examples).

Challenges
There is an ongoing research effort in
IP to address increasingly challenging
problems in terms of size, effective-
ness, and robustness.

Compositionality. The ability of IP
to perform adequately for more com-
plex tasks will require breakthroughs
in several areas. First, the underly-
ing complexity of the search space for
correct solutions limits the overall
usability of IP, especially in interac-
tive settings where instant feedback is
required. There will undoubtedly be
improvements in the performance of
such algorithms, including approach-
es such as version space algebras that
provide compact representations of
the search space. Ultimately, there will
be limits to complexity that no algo-
rithm improvements can address. In
such cases, new approaches are need-
ed that allow users to decompose more
complex tasks into sufficiently small
subtasks and then incrementally com-
pose the solutions provided by IP for
each subtask.

New kinds of brute-force search.
The general idea here is to systemati-
cally explore the entire state space of
artifacts and check the correctness of
each candidate against the given ex-
amples. This approach works relatively
well when the specification consists of
examples (as opposed to a formal re-
lational specification) since checking

the correctness of a candidate solution
against examples can be done much
faster than validating the correctness
against a formal relational specifica-
tion. However, this is easier said than
done because of the huge underlying
state space of potential artifacts and
often requires innovative nontrivial
optimizations, such as goal-directed
search, branch and bound, complexity-
guided evolutionary approaches, clues
based on textual features of examples,28
and offline indexing.16

Domain change. Applying IP to
new domains efficiently will also re-
quire new approaches, including the
creation of meta-synthesizers as men-
tioned earlier. Because the application
of IP techniques in real-world applica-
tions is relatively new, there is insuffi-
cient experience in exploring the space
of applications to clearly identify com-
mon patterns that might arise across
domains. It is likely that in the short
term, domain-specific IP systems will
be developed in an ad hoc way, and
which over time, as experience with
such systems grows, new approaches
will systematize and formalize the
ad hoc practices, so systems become
more general and reusable across dif-
ferent domains.

Validation. It is important that the
artifacts produced by IP give the end
user confidence that what they have
created is correct and makes sense. For

Figure 6. A comparison of the programs generated by Dependent and Independent Learning
using MIL.

Size Bound

Time Out

5

5 7 8 87

59 17 9

3 3 13

13 11

11

4

4

4 6 6

3

2 2

12

10

14 1416 16

1017

15

15

12

2

1

1

1

Dependent Learning Independent Learning

Nodes marked n correspond to programs that solve task n, and nodes are arranged vertically according to
their sizes. For Dependent Learning (left), the arrows correspond to the calling relationships of the induced
programs. Dependent learning produces reuse of existing subdefinitions that in turn leads to reduced search
times.

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

review articles

result is equivalent to the generaliza-
tion from three disc to n disc problems
(some) humans would infer from the
same examples.20 However, up until
now there are no empirical studies
that allow for a detailed comparison
between high-level human learning
of complex routines and the training
input and the induced programs of IP
systems, to see whether they lead to
similar solutions and, when they di-
verge, to see whether the IP solution is
still comprehensible to humans.

Presupposing the declarative na-
ture of learning in IP systems is suf-
ficiently similar to knowledge-level
learning in humans, IP systems could
be augmented with a Cognitive User
Interface43 with the ultimate goal that
machines interact like humans, and
evaluate whether in this way they can
become more intuitive, trustable,
familiar, and predictable—includ-
ing predicting when the system is
going to fail. In order to achieve this
through IP we need to settle the inter-
action model. For instance, the super-
vision from the user can be limited to
some rewards (“OK” buttons) or penal-
ties (“Cancel” buttons) about what the
system is doing, as illustrated in Fig-
ure 4. Alternatively, the user can give
a few examples, the IP system makes
guesses for other examples and the
user corrects them.5,11 In this interac-

instance, the plethora of automatically
named hierarchy of invented sub-tasks
generated by approaches such as Meta-
Interpretive Learning (as discussed
previously) can lead to confusion if
the new names do not bear a clear cor-
respondence to the semantics of the
sub-tasks being defined. To address
such challenges, we must find new
approaches to explain the behavior of
the resulting program to the user in
intuitive terms and find ways for them
to guide the solution if it is incorrect.
There is great room for creativity on
this problem, such as the use of ab-
stractions that connect the user to the
IP result, the ability to highlight those
inputs where the tool is less confident
and the user should consider inspect-
ing the results, explicitly showing the
inferences the synthesized program is
applying in domain-specific intuitive
ways (for example, using pictures), and
paraphrasing synthesized programs in
natural language and letting the user
make stylized edits.

Noise tolerance. Real data is often
unclean—some values might be miss-
ing and/or incorrect, while some val-
ues might occur in different formats
(as in representations for dates and
numbers). Sometimes even the back-
ground knowledge can be incorrect if
the user accidentally makes mistakes
in providing it.

Addressing the issue of robustness
to such noise may be best done in a
domain-specific manner. For example,
if a table contains mostly correct data
with a few outliers, existing techniques
to detect and report outliers (or even
just missing values) will help the IP
process. Fortunately, there is a body of
work in the existing ML literature that
can be applied to this problem (see, for
example, Chandola et al.4).

Making IP more cognitive. Cog-
nitive science and psychology have
shown that humans learn from a small
number of—usually positive—ex-
amples and are relatively intolerant
to exceptions.26 Coherence, simplic-
ity and explanatory power are guiding
rules in human inductive inference.
The role of background knowledge and
the necessary constructs that need to
be developed in order to acquire more
abstract concepts have also been stud-
ied in cognitive science.42 The progres-
sive acquisition of deep knowledge
in humans is especially prominent in
language learning but also in learning
from problem-solving experience. Re-
cently, IP has been used in the context
of cognitive modeling, demonstrating
that generalized rules can be learned
from only a few positive examples.37
For instance, Figure 7 shows the result
of learning the Tower of Hanoi problem
induced by the IP system Igor2. This

Figure 7. Input of the Tower of Hanoi problem for Igor2 and the induced recursive rule set.

Src Aux

1

2 3

IGOR2

Dest

eq Hanoi (0, Src, Aux, Dst, S) = move(0, Src, Dst, S).
eq Hanoi (s0, Src, Aux, Dst, S) =

move(0, Aux, Dst, move(s 0, Src, Dst),
move(0, Src, Aux, S))).

eq Hanoi(s s 0, Src, Aux, Dst, S) =
move(0, Src, Dst, move(s 0, Aux, Dst,
move(0, Aux, Src, move(s s 0, Src, Dst,
move(0, Dst. Aux, move(s 0, Src, Aux,
move(0, Src, Dst, S))))))).

Hanoi(0, Src, Aux, Dst, S)= move(0, Src, Dst,S)
Hanoi(s D, Src, Aux, Dst,S)=

Hanoi(D,Aux,Src,Dst,
move(s D, Src, Dst,

Hanoi(D, Src, Dst, Aux, S)))

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 99

review articles

tive (or query) learning process the
user can choose among a set of can-
didate hypotheses by showing where
they differ, using a distinguishing input
generated by the user—or more effec-
tively—by the IP system itself.15

Conclusion
Since the 1970s, basic research in IFP
and ILP resulted in the development
of fundamental algorithms tackling
the problem of inducing programs
from input/output examples. Howev-
er, these approaches remained within
the context of artificial intelligence re-
search and did not trigger a successful
transfer into technologies applicable
in a wider context. In 2009, Tessa Lau
presented a critical discussion of pro-
gramming by demonstration systems
noting that adoption of such systems
is not yet widespread, and proposing
this is mainly due to lack of usabil-
ity of such systems.21 In this article,
we have presented recent work in IP
where we identified several new ap-
proaches and techniques that have
the potential to overcome some re-
strictions of previous systems: learn-
ing from very few positive examples
becomes possible when users and
systems share background knowl-
edge that can be represented in a de-
clarative way, which, combined with
name inference, is likely to be more
easily understandable. Using algorith-
mic techniques developed in either or
both ILP and IFP as well as the use of
higher-order functions and meta-in-
terpretative learning resulted in more
powerful IP algorithms; the adoption
of techniques based on domain-spe-
cific languages has allowed the real-
ization of technologies ready to use
in mass-market products as demon-
strated by Flash Fill. Hopefully, the
recent achievements will attract more
researchers from the different areas
in which IP originated—AI, machine
learning, functional programming,
ILP, software engineering, and cogni-
tive science—to tackle the challenge
of bringing IP from the lab into the
real world.	

References
1.	 Bengio, Y., Courville, A. and Vincent, P. Representation

learning: A review and new perspectives. Pattern
Analy. Machine Intell. 35, 8 (2013), 1798–1828.

2.	 Bielawski, B. Using the convertfrom-string cmdlet to
parse structured text. PowerShell Magazine, (Sept. 9,
2004); http: // www. powershellmagazine. com/ 2014/

09/09/ using-the-convertfrom-string-cmdlet-to-
parse-structured-text/

3.	 Carlson, A., Betteridge, J., Kisiel, B., Settles, B.,
Hruschka-Jr, E.R. and T.M. Mitchell, T.M. Toward an
architecture for never-ending language learning. In
AAAI, 2010.

4.	 Chandola, V., Banerjee, A. and V. Kumar, V. Anomaly
detection: A survey. ACM Computing Surveys 41, 3
(2009), 15.

5.	 Cypher, A. (Ed). Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

6.	 Ferri-Ramírez, C., Hernández-Orallo, J. and Ramírez-
Quintana, M.J. Incremental learning of functional
logic programs. In Proceedings of FLOPS, 2001,
233–247.

7.	 Flener , P. and Schmid, U. An introduction to inductive
programming. AI Review 29, 1 (2009), 45–62.

8.	 Gulwani, S. Dimensions in program synthesis. In
Proceedings of PPDP, 2010.

9.	 Gulwani, S. Automating string processing in
spreadsheets using input-output examples. In
Proceedings of POPL, 2011; http://research.microsoft.
com/users/sumitg/flashfill.html.

10.	 Gulwani, S. Example-based learning in computer-aided
STEM education. Commun. ACM 57, 8 (Aug 2014), 70–80.

11.	 Gulwani, S., Harris, W. and Singh, R. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8
(Aug. 2012), 97–105.

12.	 Henderson, R.J. and Muggleton, S.H. Automatic
invention of functional abstractions. Latest Advances
in Inductive Logic Programming, 2012.

13.	 Hernández-Orallo, J. Deep knowledge: Inductive
programming as an answer, Dagstuhl TR 13502, 2013.

14.	 Hofmann, M. and Kitzelmann, E. I/O guided detection
of list catamorphisms—towards problem specific
use of program templates in IP. In ACM SIGPLAN
PEPM, 2010.

15.	 Jha, J., Gulwani, S., Seshia, S. and Tiwari, A. Oracle-
guided component-based program synthesis. In
Proceedings of the ICSE, 2010.

16.	 Katayama, S. Efficient exhaustive generation of
functional programs using Monte-Carlo search with
iterative deepening. In Proceedings of PRICAI, 2008.

17.	 Kitzelmann, E. Analytical inductive functional
programming. LOPSTR 2008, LNCS 5438. Springer,
2009, 87–102.

18.	 Kitzelmann, E. Inductive programming: A survey of
program synthesis techniques. In AAIP, Springer,
2010, 50–73.

19.	 Kitzelmann, E. and Schmid, U. Inductive synthesis
of functional programs: An explanation based
generalization approach. J. Machine Learning
Research 7, (Feb. 2006), 429–454.

20.	 Kotovsky, K., Hayes, J.R. and Simon, H.A.. Why are
some problems hard? Evidence from Tower of Hanoi.
Cognitive Psychology 17, 2 (1985), 248–294.

21.	 Lau, T.A. Why programming-by-demonstration
systems fail: Lessons learned for usable AI. AI Mag.
30, 4, (2009), 65–67.

22.	 Lau, T.A., Wolfman, S.A., Domingos, P. and Weld, D.S.
Programming by demonstration using version space
algebra. Machine Learning 53, 1-2 (2003), 111–156.

23.	 Le, V. and Gulwani, S. FlashExtract: A framework
for data extraction by examples. In Proceedings of
PLDI, 2014.

24.	 Lieberman, H. (Ed). Your Wish is My Command:
Programming by Example. Morgan Kaufmann, 2001.

25.	 Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B. and
Muggleton, S.H. Bias reformulation for one-shot
function induction. In Proceedings of ECAI, 2014.

26.	 Marcus, G.F. The Algebraic Mind. Integrating
Connectionism and Cognitive Science. Bradford,
Cambridge, MA, 2001.

27.	 Martìnez-Plumed, C. Ferri, Hernández-Orallo, J. and
M.J. Ramírez-Quintana. On the definition of a general
learning system with user-defined operators. arXiv
preprint arXiv:1311.4235, 2013.

28.	 Menon, A., Tamuz, O., Gulwani, S., Lampson, B. and Kalai,
A. A machine learning framework for programming by
example. In Proceedings of the ICML, 2013.

29.	 Miller, R.C. and Myers, B.A. Multiple selections in smart
text editing. In Proceedings of IUI, 2002, 103–110.

30.	 Muggleton, S.H. Inductive Logic Programming. New
Generation Computing 8, 4 (1991), 295–318.

31.	 Muggleton, S.H. and Lin, D. Meta-interpretive learning
of higher-order dyadic datalog: Predicate invention
revisited. IJCAI 2013, 1551–1557.

32.	 Muggleton, S.H., Lin, D., Pahlavi, N. and Tamaddoni-Nezhad,
A. Meta-interpretive learning: application to grammatical
inference. Machine Learning 94 (2014), 25–49.

33. Muggleton, S.H., De Raedt, L., Poole, D., Bratko, I.,

Flach, P. and Inoue, P. ILP turns 20: Biography and
future challenges. Machine Learning 86, 1 (2011), 3–23.

34.	 Olsson, R. Inductive functional programming using
incremental program transformation. Artificial
Intelligence 74, 1 (1995), 55–83.

35.	 Perelman, D., Gulwani, S., Grossman, D. and Provost, P.
Test-driven synthesis. PLDI, 2014.

36.	 Raza, M., Gulwani, S. and Milic-Frayling, N.
Programming by example using least general
generalizations. AAAI, 2014.

37.	 Schmid, U. and Kitzelmann, E. Inductive rule learning
on the knowledge level. Cognitive Systems Research
12, 3 (2011), 237–248.

38.	 Schmid, U. and Wysotzki, F. Induction of recursive
program schemes. ECML 1398 LNAI (1998), 214–225.

39.	 Shapiro, E.Y. An algorithm that infers theories from
facts. IJCAI (1981), 446–451.

40.	Solar-Lezama, A. Program Synthesis by Sketching.
Ph.D thesis, UC Berkeley, 2008.

41.	 Summers, P.D. A methodology for LISP program
construction from examples. J ACM 24, 1 (1977), 162–175.

42.	 Tenenbaum, J.B., Griffiths, T.L. and Kemp, C. Theory-
based Bayesian models of inductive learning and
reasoning. Trends in Cognitive Sciences 10, 7 (2006),
309–318.

43.	 Young, S. Cognitive user interfaces. IEEE Signal
Processing 27, 3 (2010), 128–140.

Sumit Gulwani (sumitg@microsoft.com) is principal
researcher and research manager of a programming-by-
example research and engineering group at Microsoft
Corp., Redmond, WA.

José Hernández-Orallo (jorallo@dsic.upv.es) is a reader
at the Universitat Politècnica de València. He is supported
by EU (FEDER) and Spanish projects PCIN-2013-037, TIN
2013-45732-C4-1-P and GV PROMETEOII2015/013.

Emanuel Kitzelmann (ekitzelmann@gmail.com) is a
teacher at Adam-Josef-Cüppers Commercial College,
Ratingen, Germany.

Stephen H. Muggleton (s.muggleton@imperial.ac.uk) is
a professor in the Department of Computing at Imperial
College London, U.K.

Ute Schmid (ute.schmid@uni-bamberg.de) is a professor
at University of Bamberg, Germany.

Benjamin Zorn (Ben.Zorn@microsoft.com) is principal
researcher and research co-manager of the Research in
Software Engineering (RiSE) group at Microsoft Research
in Redmond, WA.

Copyright held by authors.
Publication rights licensed to ACM. $15.00

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

