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Inductive programming can liberate users 
from performing tedious and repetitive tasks.

BY SUMIT GULWANI, JOSÉ HERNÁNDEZ-ORALLO,  
EMANUEL KITZELMANN, STEPHEN H. MUGGLETON,  
UTE SCHMID, AND BENJAMIN ZORN

M UCH OF THE  world’s population use computers for 
everyday tasks, but most fail to benefit from the power 
of computation due to their inability to program. Most 
crucially, users often have to perform repetitive actions 
manually because they are not able to use the macro 
languages available for many application programs. 
Recently, a first mass-market product was presented 
in the form of the Flash Fill feature in Microsoft Excel 
2013. Flash Fill allows end users to automatically 
generate string-processing programs for spreadsheets 
from one or more user-provided examples. Flash Fill is 
able to learn a large variety of quite complex programs 
from only a few examples because of incorporation of 
inductive programming methods.

Inductive programming (IP) is an interdisciplinary 
domain of research in computer science, artificial 

intelligence, and cognitive science 
that studies the automatic synthesis 
of computer programs from examples 
and background knowledge. IP devel-
oped from research on inductive pro-
gram synthesis, now called inductive 
functional programming (IFP), and from 
inductive inference techniques using 
logic, nowadays termed inductive logic 
programming (ILP). IFP addresses the 
synthesis of recursive functional pro-
grams generalized from regularities 
detected in (traces of) input/output ex-
amples19,41 using generate-and-test ap-
proaches based on evolutionary27,34,35 
or systematic16,28 search or data-driven 
analytical approaches.6,11,17,23,38 Its de-
velopment is complementary to efforts 
in synthesizing programs from com-
plete specifications using deductive 
and formal methods.8

ILP originated from research on 
induction in a logical framework30,39 
with influence from artificial intel-
ligence, machine learning, and rela-
tional databases. It is a mature area 
with its own theory, implementa-
tions, and applications and recently 
celebrated the 20th anniversary33 of its 
inception as an annual series of inter-
national conferences.

Over the last decade IP has attracted 
a series of international workshops. 
Recent surveys7,13,18 reflect the wide va-
riety of implementations and applica-
tions in this area.

Inductive 
Programming 
Meets the 
Real World

 key insights
˽˽ Supporting end users to automate complex 

and repetitive tasks using computers is a 
big challenge for which novel technological 
breakthroughs are demanded. 

˽˽ The integration of inductive programming 
techniques in software applications 
can support users by learning domain-
specific programs from observing 
interactions of the user with the system.

˽˽ Inductive programming is being 
transferred to real-world applications 
such as spreadsheet tools, scripting, and 
intelligent program tutors.

˽˽ In contrast to standard machine 
learning, in inductive programming 
learning from few examples is possible 
because users and systems share the 
same background knowledge.

http://dx.doi.org/10.1145/2736282
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scripts to automate repetitive tasks. 
These users can easily specify their in-
tent using examples, making IP a great 
fit. For instance, consider the domain 
of data manipulation. Documents of 
various types, such as text/log files, 
spreadsheets, and Web pages, offer 
their creators great flexibility in stor-
ing and organizing hierarchical data by 
combining presentation and format-
ting with the underlying data model. 
However, this makes it extremely dif-
ficult to extract the underlying data for 
common tasks such as data process-
ing, querying, altering the presenta-
tion view, or transforming data to an-
other storage format.

Existing programmatic solutions 
to manipulating data (such as Excel 
macro language, regular expression li-
braries inside Perl/Python, and JQuery 
library for JavaScript) have three key 
limitations. First, the solutions are 
domain-specific and require expertise 
in different technologies for different 
document types. Second, they require 
understanding of the entire underlying 
document structure including the data 
fields the end user is not interested in 
(some of which may not even be visible 
in the presentation layer of the docu-
ment). Third, and most significantly, 
they require knowledge of program-
ming. As a result, users must resort to 
manually performing repetitive tasks, 
which is both time consuming and er-
ror prone.

Inductive synthesis can help out 
with a variety of data manipulation 
tasks. These include: (a) Extracting 
data from semi-structured documents 
including text files, Web pages, and 
spreadsheets23 (as shown in Figure 
1). (b) Transformation of atomic data 
types such as strings9 (as illustrated in 
Figure 2) or numbers. Transformation 
of composite data types such as tables11 
and XML.35 (c) Formatting data.36 Com-
bining these technologies in a pipeline 
of extraction, transformation, and for-
matting can allow end users to perform 
sophisticated data manipulation tasks.

Computer-aided education. Hu-
man learning and communication is 
often structured around examples—
be it a student trying to understand 
or master a certain concept using ex-
amples, or be it a teacher trying to un-
derstand a student’s misconceptions 
or provide feedback using example 

In the domain of end-user pro-
gramming, programming by demon-
stration approaches were proposed 
that support the learning of small rou-
tines from observing the input behav-
ior of users.5,22,24 Excel’s Flash Fill pro-
vides an impressive illustration that 
program synthesis methods devel-
oped in IP can be successfully applied 
to gain more flexibility and power for 
end-user programming.9,11 Further ap-
plications are being realized for other 
desktop applications (for example, 
PowerShell scripting in the Convert-
From-String cmdlet2) as well as for 
special-purpose devices such as home 
robots and smartphones.

In this article, several of these cur-
rent applications are presented. We 
contrast the specific characteristics 
of IP with those of typical machine 
learning approaches and we show 
how IP is related to cognitive mod-
els of human inductive learning. We 
finally discuss recent techniques—
such as the use of domain-specific 
languages and meta-level learning—

that widen the scope and power of IP 
and discuss new challenges.

Real-World Applications
Originally, IP was applied to synthesiz-
ing functional or logic programs for 
general-purpose tasks such as manip-
ulating data structures (for example, 
sorting or reversing a list). These inves-
tigations showed that small programs 
could be synthesized from a few input/
output examples. The recent IT revolu-
tion has created real-world opportuni-
ties for such techniques. Most of to-
day’s large number of computer users 
are non-programmers and are limited 
to being passive consumers of the soft-
ware that is made available to them. IP 
can empower such users to more ef-
fectively leverage computers for auto-
mating their daily repetitive tasks. We 
discuss here some such opportunities, 
especially in the areas of end-user pro-
gramming and education.

End-user programming. End users 
of computational devices often need 
to create small (and perhaps one-off) 

Figure 1. FlashExtract.23

Ana Trujillo
357 21st Place SE
Redmond, WA
(757) 555-1634

Antonio Moreno
515 93th Lane
Renton, WA
(411) 555- 2786

Thomas Hardy
742 17th Street NE
Seattle, WA
(412) 555-5719

Christina Berglund
475 22th Lane
Redmond, WA
(443) 555-6774

Hanna Moos
785 45th Street NE
Puyallup, WA
(376) 555-2462

Frederique Citeaux
308 66th Place
Redmond, WA
(689) 555-2770

(a)

(b)

(c)

Label 1 Label 2 Label 3

Ana Trujillo Redmond (757) 555-1634

Antonio Moreno Renton (411) 555-2786

Thomas Hardy Seattle (412) 555-5719

Christina Berglund Redmond (443) 555-6774

Hanna Moos Puyallup (376) 555-2462

Frederique Citeaux Redmond (689) 555-2770

PairSeq SS ::= LinesMap(λx: Pair(Pos(x, p1), Pos(x, p2)), LS)
| StartSeqMap(λx: Pair(x, Pos(R0[x], p)), PS)

LineSeq LS ::= FilterInt(init, iter, BLS)
BoolLineSeq BLS ::= FilterBool(b, split(R0,’/n’))

PositionSeq PS ::= LinesMap(λx:Pos(x, p), LS)
| FilterInt(init, iter, PosSeq (R0, rr))

Pred b ::= λx: {Starts,Ends}With(r,x) | λx: Contains(r, k, x)

A framework for extracting data from documents of various kinds such as text files and Web pages 
using examples. Once the user highlights one or two examples of each field in the text file in  
(a), FlashExtract extracts more such instances and arranges them in a structured format in the table 
in (b). This is enabled by synthesis of a program in the domain-specific language (DSL) in (c) that is 
consistent with the examples in (a) followed by execution of that program on the text file in (a).
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behaviors. Example-based reasoning 
techniques developed in the inductive 
synthesis community can help auto-
mate several repetitive and structured 
tasks in education including problem 
generation, solution generation, and 
feedback generation.10 These tasks 
can be automated for a wide variety 
of STEM subject domains including 
logic, automata theory, programming, 
arithmetic, algebra, and geometry. For 
instance, Figure 3 shows the output of 
an inductive synthesis technique for 
generating algebraic proof problems 
similar to a given example problem.

Future opportunities. We have de-
scribed important real-world applica-
tions of IP. We believe there are many 
other domains to which IP can and 
will be applied in the near future. Any 
domain in which a set of high-level 
abstractions already exists is a strong 
candidate for IP. For example, the If 
This Then That (IFTTT) service (http://
ifttt.com/), which allows end users to 
express small rule-based programs us-
ing triggers and actions, is an excellent 
candidate for application of IP. IFTTT 
programs connect triggers (such as 
I was tagged in a photo) with actions 
(such as send an email message) over 
specific channels such as Facebook. In 
such a domain, IP can be used to learn 
programs from examples of a user do-
ing the task. For instance, it can learn 
a program to send a text message every 
time a smartphone user leaves work 
for home. Looking further ahead, au-
tomatically building robot strategies 
from user provided examples30 is a 
promising new direction for IP.

As the frameworks to build IP-based 
solutions mature, including meta-syn-
thesis frameworks that simplify the 
process of building synthesizers (as we 
will discuss later), it will become easier 
for developers to create new IP-empow-
ered applications. 

IP vs. Machine Learning
IP is concerned about making ma-
chines learn programs automatically 
and can hence be considered another 
machine learning paradigm. So, what 
is distinctive about inductive program-
ming? Table 1 outlines a series of differ-
ences, some of which we discuss here.

We will also use a running example 
to indicate some of the features about 
IP. Figure 4 shows an illustrative ap-

Figure 2. Flash Fill.9

An Excel 2013 feature that automates repetitive string transformations using  
examples. Once the user performs one instance of the desired transformation  
(row 2, col. B) and proceeds to transforming another instance (row 3, col. B),  
Flash Fill learns a program Concatenate(ToLower(Substring(v,WordToken,1)),  
" ", ToLower(SubString(v,WordToken,2))), which extracts the first two  
words in input string v (col. A), converts them to lowercase, and concatenates them  
separated by a space character, to automate the repetitive task.

Figure 3. Problem generation for algebraic proof problems involving identities over  
analytic functions. 

Example Problem
^—

sin A
1+cos A

1+cos A
sinA

= 2 cscA+

Generalized 
Problem Template
^—

T1 A
1±T2 A

1±T3 A

T4 A
= 2 T5 A+

where Ti ∈ {cos, sin, tan, cot, sec, csc}
New Similar 
Problems 

cos A
1-sin  A

1-sin  A
cos A

= 2 tan A+

cos A
1+sin  A

1+sin  A
cos A

= 2 sec A+

cot A
1+csc  A

1+csc  A
cot A

= 2 sec A+

tan A
1+sec  A

1+sec  A
tan A

= 2 csc A+

sin A
1-cos  A

1-cos  A
sin A

= 2 cot A+

A given problem is generalized into a template and valid instantiations are found by testing on 
random values for free variables.
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Refinement and abstraction. An-
other particular issue about IP is the 
way the hypothesis space is arranged 
by properly combining several infer-
ence mechanisms such as deduction, 
abduction, and induction. Many early 
IP operators were inversions of deduc-
tion operators, leading to bottom-
up and top-down approaches, where 
generalization and specialization op-
erators, respectively, are used.33 More 
generally, refinement and abstraction 
operators, including the use of high-
er-order functions, predicate, and 
function invention, can be defined ac-
cording to the operational semantics 
of the language.

This configures many levels be-
tween merely extensional facts and 
more intensional knowledge, leading 
to a hierarchical structure. Actually, 
the use of the same representation lan-
guage for facts, background knowledge 
and hypotheses, as illustrated in Figure 
4, facilitates this hierarchy.

Deep knowledge. Because of the 
abstraction mechanisms and the use 
of background knowledge, IP consid-
ers learning as a knowledge acquisi-
tion process. In Figure 4, for instance, 
inductive programming has access 
to some information about contact 
groups as well as relationships between 
the contacts (such as family bonds or 
work hierarchies). Such knowledge is 
known as background knowledge and 
works as a powerful explicit bias to re-
duce the search space and to find the 
right level of generalization.

Knowledge can be considered deep 
if it references lower-level definitions, 

plication where the goal is to identify 
repetitive patterns and rules about a 
user’s personal contacts. The IP sys-
tem learns an easy rule stating the us-
er’s boss must be added to her circles 
and a more complex one that states 
any person who is married to a fam-
ily member should also be added to 
her circles. There we can see some of 
the distinctive features of IP systems, 
such as the small number of exam-
ples, the kind and source of data, the 
role of background knowledge, the in-
teraction and feedback from the user, 
the use of a common declarative lan-
guage, the use of recursion, and the 
comprehensibility and expressiveness 
of the learned patterns. Though ma-
chine learning and IP are quite com-
plementary, they can also work well 
together. For instance, if IP generates 
multiple programs that are consistent 
with the provided examples, then ma-
chine learning can be used to rank 
such programs.11

Small data. As collecting and stor-
ing data is becoming cheaper, it is 
easy to gain the impression the only 
interesting datasets today involve big 
data. However, datasets from a single 
user’s interaction with whatever kind 
of device are usually quite small, such 
as the amount of data gathered about 
a person’s agenda, as shown at the top 
of Figure 4. 

It is well known that learning from 
small numbers of examples is more 
difficult and unreliable than learn-
ing from lots of data. The fewer ex-
amples we have, the more prone we 
are to overfitting, especially with ex-

pressive languages. IP is particularly 
useful when the number of examples 
is small but the hypothesis space is 
large (Turing-complete).

Declarative representation. Most 
(statistical) machine learning tech-
niques are based on probabilities, dis-
tances, weights, kernels, matrices, and 
so on. None of these approaches, except 
for techniques based on (proposition-
al) decision trees and rules, are declara-
tive, that is, expressed as potentially 
comprehensible rules. Hence, another 
distinctive feature of IP is it uses a rich 
symbolic representation, as hypotheses 
are usually declarative programs.

The declarative approach permits 
the use of a single language to repre-
sent background knowledge, examples 
and hypotheses, as shown in Figure 
4. Apart from the accessibility of one 
single language for the (end-)user, 
knowledge can be inspected, revised 
and integrated with other sources of 
knowledge much more easily. As a re-
sult, incremental, cumulative or life-
long learning becomes easier.13 For in-
stance, NELL (Never-Ending Language 
Learner)3 uses an ILP algorithm that 
learns probabilistic Horn clauses.

Today, many languages in IP are hy-
brid such as functional logic program-
ming languages, logic programming 
with types and higher-order constructs, 
constraints, probabilities, and so on. 
The logic (ILP) vs. functional (IFP) de-
bate has also been surpassed recently 
by the breakthrough of domain-spe-
cific languages (DSL), which are usu-
ally better suited for the application at 
hand, as we discuss later.

Table 1. A simplified comparison between inductive programming and other machine learning paradigms.

Inductive Programming Other Machine Learning Paradigms

Number of examples Small Large, for example, big data

Kind of data Relational, constructor-based datatypes Flat tables, sequential data, 

Data Source Human experts, software applications, HCI, and others Transactional databases, Internet, sensors (IoT), and others.

Hypothesis Language Declarative: general programming languages or domain-
specific languages

Linear, non-linear, distance-based, kernel-based, rule-based, 
probabilistic, etc.

Search strategy Refinement, abstraction operators, brute-force. Gradient-descent, data partition, covering, instance-based, etc.

Representation learning Higher-order and predicate/function invention Deep learning and feature learning.

Pattern comprehensibility Common. Uncommon.

Pattern expressiveness Usually recursive, even Turing-complete. Feature-value, not Turing complete.

Learning bias Using background knowledge and constraints Using prior distributions, parameters and features.

Evaluation Diverse criteria, including simplicity, comprehensibility Oriented to error (or loss) minimisation.

Validation Code inspection, divide-and-conquer debugging, background 
knowledge consistency

Statistical reasoning (only a few techniques are 
locally inspectable).
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including recursively referencing itself. 
Representation of such structured and 
deep knowledge is achieved by program-
ming languages that feature variables, 
rich operational semantics and, most 
especially, recursion. Recursion is a key 
issue in inductive programming.19,30,38,41 
Note that both the background knowl-
edge and the new hypothesis in the Fig-
ure 4 example are recursive.

This is in contrast to other ma-
chine learning approaches where 
background knowledge has only the 
form of prior distributions, probabili-
ties, or features. The difference is also 
significant with other non-symbolic 
approaches to deep learning,1 a new 
approach in machine learning where 
more complex models and features 
are also built in a hierarchical way, but 
data, knowledge, and bias are repre-
sented differently.

Purpose and evaluation. In other 
machine learning approaches, hypoth-
eses are measured by different metrics 
accounting for a degree of error. The 
purpose of IP is not just to maximize 
some particular error metric, but to 
find meaningful programs that are 
operational, according to the purpose 
of the IP application. This usually im-
plies they have to be consistent with 
most of (if not all) the data but also 
with the background knowledge and 
other possible constraints. Also, as 
hypotheses are declarative (and pos-
sibly recursive), the evaluation is more 
diverse, including criteria such as sim-
plicity, comprehensibility, coherence, 
and time/space complexity.

Recent Techniques
IP is essentially a search problem, and 
can benefit from techniques developed 
in various communities. We present 
here certain classes of techniques used 
in recent IP work.

DSL synthesizers. DSLs have been 
introduced in the IP scenario under the 
following methodology:

1.	 Problem definition: Identify a ver-
tical domain of tasks and collect com-
mon scenarios by studying help fo-
rums and conducting user studies.

2.	Domain-specific language: De-
sign a DSL that is expressive enough 
to capture several real-world tasks 
in the domain, but also restricted 
enough to enable efficient learn-
ing from examples. Figure 1(c) de-

scribes one such DSL for extracting 
data from text files. (The full version 
of this DSL along with its semantics is 
described in Le and Gulwani.23) This 
DSL allows for extracting a sequence 
of substrings using composition of 
filter and map operations.

3.	 Synthesis algorithm: Most of these 
algorithms work by applying divide-
and-conquer deductive techniques that 

systematically reduce the problem to 
the synthesis of subexpressions of the 
original expression (by translating the 
examples for the expression to the ex-
amples for the sub-expressions). These 
algorithms typically end up computing a 
set of DSL programs.

4.	 Ranking: Rank the various programs 
returned by the synthesizer perhaps us-
ing machine learning techniques.

Figure 4. An example of the interaction with an IP system and the key role of the back-
ground knowledge. 

Environment

Added after 
validation

Hypothesis

Device

Device

User

Data

Interaction

New Data

2

1

3

4

5

Inductive Programming

Do you want to add James 
to your family circle?YES

NO

circle(lucas,work).
boss(me,lucas).
boss(lucas,john).
boss(john,lucy).
circle(jane,family).
married(henry,jane).
circle(ann,family).
boss(X,Y):- boss(X,Z), boss(Z,Y)
...

circle(X,work) :- boss(me,X).
circle(x,family) :- circle(Y,family),
		  (married(X,Y); married(Y,X)).

circle(john,work).
circle(lucy,work).
circle(henry,family).
...

married(james,ann).

A user interacts with several devices about his/her agenda and contact groups. The system gathers 
a collection of facts, rules and operators into its background knowledge. From this background 
knowledge and a few examples, the system is able to infer new rules that—once validated—can be 
used to enlarge the background knowledge and also to make recommendations or suggest choices 
for the user.
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turn 10. Rather than learning a recur-
sive function, the IP system then only 
needs to pick the suitable higher-order 
function and instantiate it appropri-
ately. One of the first systems that 
made use of higher-order functions in 
IP was MAGICHASKELLER,16 which 
generates Haskell functions from a 
small set of positive inputs. The gen-
erated programs are instantiations of 
a predefined set of higher-order func-
tions such as fold. An extension of the 
analytical IP system Igor2, also imple-
mented in Haskell, takes a similar 
approach. In contrast to Katayama,16 
which finds programs by enumeration, 
Igor2 analyzes the given data to decide 
which higher-order function fits. The 
argument function to instantiate the 
higher-order function is either picked 
from background knowledge or, if not 
existing, is invented as an auxiliary 
function. The use of this technique not 
only results in a speed-up of synthesis 
but also enlarges the scope of synthe-
sizable programs.14 An example for 
induction with higher-order functions 
in given in Figure 5. Finally, Hender-
son12 proposed to use higher order to 
constrain and guide the search of pro-
grams for cumulative learning where 
functions induced from examples are 
abstracted and can then be used to 
induce more complex programs. Un-
like a DSL, higher-orderness does not 
restrict IP to a predefined domain, in-
stead it guides search.

Meta-interpretive Learning (MIL) 
is a recent ILP technique31,32 aimed at 
supporting learning of recursive defi-
nitions. A powerful and novel aspect of 
MIL is that when learning a predicate 
definition it automatically introduces 
sub-definitions, allowing decomposi-
tion into a hierarchy of reusable parts. 
MIL is based on an adapted version of a 
Prolog meta-interpreter. Normally such 
a meta-interpreter derives a proof by 
repeatedly fetching first-order Prolog 
clauses whose heads unify with a given 
goal. By contrast, a meta-interpretive 
learner additionally fetches higher-or-
der meta-rules whose heads unify with 
the goal, and saves the resulting meta-
substitutions to form a program. To 
illustrate this idea, consider the meta-
rule in Table 2 relating to P, Q, and R. 
In this example, the Chain Hypothesis 
on the boss predicate from Figure 4 is 
learned from the Meta-substitutions 

This methodology has been applied 
to various domains including the trans-
formation of syntactic strings,9,29 se-
mantic strings, numbers, and tables.11

Meta-synthesis frameworks. Do-
main-specific synthesizers (as opposed 
to general-purpose synthesizers) offer 
several advantages related to efficiency 
(such as the ability to synthesize pro-
grams quickly) and ranking (such as the 
ability to synthesize intended programs 
from fewer examples). However, the de-
sign and development of a domain-spe-
cific synthesizer is a nontrivial process 
requiring critical domain insights and 
implementation effort. Furthermore, 
any changes to the DSL require making 
nontrivial changes to the synthesizer.

A meta-synthesis framework allows 
easy development of synthesizers for a 
related family of DSLs that are built us-
ing the same core set of combinators. 
Building such a framework involves 
the following steps:

1.	 Identify a family of vertical task 
domains that allow a common user in-
teraction model.

2.	 Design an algebra for DSLs. A DSL 
is an ordered set of grammar rules (to 
model ranking).

3.	 Design a search algorithm for 
each algebra operator such that it is 
compositional and inductive.

Meta-synthesis frameworks can al-

low synthesizer writers to easily develop 
domain-specific synthesizers, similar 
to how declarative parsing frameworks 
like lex and yacc allow a compiler writer 
to easily write a parser. The FlashEx-
tract framework23 and the Test Driven 
Synthesis framework35 allow easy de-
velopment of synthesizers for extract-
ing and transforming data from docu-
ments of various types such as text files, 
Web pages, XML documents, tables, 
and spreadsheets. Figure 1(c) describes 
a DSL composed of Filter and Map op-
erators, which are supported by the 
FlashExtract framework.

The FlashExtract framework is thus 
able to automatically construct an effi-
cient synthesis algorithm for this DSL.

Higher-order functions are a pos-
sibility to provide a bias when search-
ing for hypotheses. In contrast to DSLs, 
higher-order functions do not tailor IP 
to a predefined domain, but instead 
provide common patterns for process-
ing recursive (linked) data as back-
ground knowledge to the IP system. 
For instance, the fold higher-order 
function (also known as reduce) iterates 
over a list of elements and combines 
the elements by applying another func-
tion that is also given as a parameter to 
the fold. For example, fold (+) 1, 2, 
3, 4] would combine the numbers in 
the list with the plus function and re-

Table 2. Use of the chain hypothesis on the boss predicate from Figure 4 to prove a new 
example of boss(lucas, lucy) using the meta-rule and the background knowledge.

Name Meta-Rule

Chain P ( x , y) <- Q (x, z), R(z, y)

Example Background Knowledge

boss(lucas, lucy) boss(lucas, john). boss(john, lucy).

Meta-Substitution Chain Hypothesis

P=Q=R=boss boss(X,Y) :- boss(X,Z), boss(Z,Y)

Figure 5. Given examples to reverse a list for lengths zero to three, Igor2 synthesizes a 
program using the higher-order function fold.

The auxiliary function f, which appends a single element to the end of a list and parameterizes the 
fold, is not given as background knowledge but is invented.

reverse x = fold f [] x

f x0 [] = [x0]

f x0 (x1 : xs) = x1 : f x0 xs
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into the X, Y, and Z meta-variables by 
proving the Example using the Meta-
rule and the Background knowledge.

Given the higher-order substitu-
tions, instantiated program clauses 
can be reconstructed and reused in 
later proofs, allowing a form of IP 
that supports the automatic con-
struction of a hierarchically defined 
program.

In Lin et al.25 the authors applied 
MIL to a task involving string trans-
formations tasks previously stud-
ied by Gulwani.9 Figure 6 shows the 
outcome of applying MIL to learn-
ing a set of such tasks, using two 
approaches, dependent and indepen-
dent learning, where in the former 
new definitions are allowed to call 
already learned definitions at lower 
levels. Dependent learning produced 
more compact programs owing to the 
reuse of existing subdefinitions. This 
in turn led to reduced search times 
since the smaller task definitions re-
quired less search to find them.

Constraint solving. The general 
idea here is to reduce the synthesis 
problem to an equivalent satisfiabil-
ity problem that is expressed as a 
standard logical formula. Then, this 
formula can be solved by a general 
off-the-shelf tool using the recent 
advances made in the technology of 
Satisfiability (SAT) and Satisfiabil-
ity Modulo Theory (SMT) solvers. 
This approach has been applied 
to synthesis from complete formal 
specifications, but its applicability 
has been limited to synthesizing re-
stricted forms of programs. On the 
other hand, if the specification is in 
the form of examples, then the re-
duction of the synthesis problem to 
solving of SAT/SMT constraints can 
be performed for a larger variety of 
programs. These examples may be 
generated inside a counter-example 
guided inductive synthesis loop40 
(which involves using a validation 
technology to find new test inputs on 
which the current version of the syn-
thesized program does not meet the 
given specification), or using a dis-
tinguishing input-based methodolo-
gy15 (which involves finding new test 
inputs that distinguish two semanti-
cally distinct synthesized programs, 
both of which are consistent with the 
given set of examples).

Challenges
There is an ongoing research effort in 
IP to address increasingly challenging 
problems in terms of size, effective-
ness, and robustness. 

Compositionality. The ability of IP 
to perform adequately for more com-
plex tasks will require breakthroughs 
in several areas. First, the underly-
ing complexity of the search space for 
correct solutions limits the overall 
usability of IP, especially in interac-
tive settings where instant feedback is 
required. There will undoubtedly be 
improvements in the performance of 
such algorithms, including approach-
es such as version space algebras that 
provide compact representations of 
the search space. Ultimately, there will 
be limits to complexity that no algo-
rithm improvements can address. In 
such cases, new approaches are need-
ed that allow users to decompose more 
complex tasks into sufficiently small 
subtasks and then incrementally com-
pose the solutions provided by IP for 
each subtask.

New kinds of brute-force search. 
The general idea here is to systemati-
cally explore the entire state space of 
artifacts and check the correctness of 
each candidate against the given ex-
amples. This approach works relatively 
well when the specification consists of 
examples (as opposed to a formal re-
lational specification) since checking 

the correctness of a candidate solution 
against examples can be done much 
faster than validating the correctness 
against a formal relational specifica-
tion. However, this is easier said than 
done because of the huge underlying 
state space of potential artifacts and 
often requires innovative nontrivial 
optimizations, such as goal-directed 
search, branch and bound, complexity-
guided evolutionary approaches, clues 
based on textual features of examples,28 
and offline indexing.16

Domain change. Applying IP to 
new domains efficiently will also re-
quire new approaches, including the 
creation of meta-synthesizers as men-
tioned earlier. Because the application 
of IP techniques in real-world applica-
tions is relatively new, there is insuffi-
cient experience in exploring the space 
of applications to clearly identify com-
mon patterns that might arise across 
domains. It is likely that in the short 
term, domain-specific IP systems will 
be developed in an ad hoc way, and 
which over time, as experience with 
such systems grows, new approaches 
will systematize and formalize the 
ad hoc practices, so systems become 
more general and reusable across dif-
ferent domains.

Validation. It is important that the 
artifacts produced by IP give the end 
user confidence that what they have 
created is correct and makes sense. For 

Figure 6. A comparison of the programs generated by Dependent and Independent Learning 
using MIL. 
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result is equivalent to the generaliza-
tion from three disc to n disc problems 
(some) humans would infer from the 
same examples.20 However, up until 
now there are no empirical studies 
that allow for a detailed comparison 
between high-level human learning 
of complex routines and the training 
input and the induced programs of IP 
systems, to see whether they lead to 
similar solutions and, when they di-
verge, to see whether the IP solution is 
still comprehensible to humans.

Presupposing the declarative na-
ture of learning in IP systems is suf-
ficiently similar to knowledge-level 
learning in humans, IP systems could 
be augmented with a Cognitive User 
Interface43 with the ultimate goal that 
machines interact like humans, and 
evaluate whether in this way they can 
become more intuitive, trustable, 
familiar, and predictable—includ-
ing predicting when the system is 
going to fail. In order to achieve this 
through IP we need to settle the inter-
action model. For instance, the super-
vision from the user can be limited to 
some rewards (“OK” buttons) or penal-
ties (“Cancel” buttons) about what the 
system is doing, as illustrated in Fig-
ure 4. Alternatively, the user can give 
a few examples, the IP system makes 
guesses for other examples and the 
user corrects them.5,11 In this interac-

instance, the plethora of automatically 
named hierarchy of invented sub-tasks 
generated by approaches such as Meta-
Interpretive Learning (as discussed 
previously) can lead to confusion if 
the new names do not bear a clear cor-
respondence to the semantics of the 
sub-tasks being defined. To address 
such challenges, we must find new 
approaches to explain the behavior of 
the resulting program to the user in 
intuitive terms and find ways for them 
to guide the solution if it is incorrect. 
There is great room for creativity on 
this problem, such as the use of ab-
stractions that connect the user to the 
IP result, the ability to highlight those 
inputs where the tool is less confident 
and the user should consider inspect-
ing the results, explicitly showing the 
inferences the synthesized program is 
applying in domain-specific intuitive 
ways (for example, using pictures), and 
paraphrasing synthesized programs in 
natural language and letting the user 
make stylized edits.

Noise tolerance. Real data is often 
unclean—some values might be miss-
ing and/or incorrect, while some val-
ues might occur in different formats 
(as in representations for dates and 
numbers). Sometimes even the back-
ground knowledge can be incorrect if 
the user accidentally makes mistakes 
in providing it.

Addressing the issue of robustness 
to such noise may be best done in a 
domain-specific manner. For example, 
if a table contains mostly correct data 
with a few outliers, existing techniques 
to detect and report outliers (or even 
just missing values) will help the IP 
process. Fortunately, there is a body of 
work in the existing ML literature that 
can be applied to this problem (see, for 
example, Chandola et al.4).

Making IP more cognitive. Cog-
nitive science and psychology have 
shown that humans learn from a small 
number of—usually positive—ex-
amples and are relatively intolerant 
to exceptions.26 Coherence, simplic-
ity and explanatory power are guiding 
rules in human inductive inference. 
The role of background knowledge and 
the necessary constructs that need to 
be developed in order to acquire more 
abstract concepts have also been stud-
ied in cognitive science.42 The progres-
sive acquisition of deep knowledge 
in humans is especially prominent in 
language learning but also in learning 
from problem-solving experience. Re-
cently, IP has been used in the context 
of cognitive modeling, demonstrating 
that generalized rules can be learned 
from only a few positive examples.37 
For instance, Figure 7 shows the result 
of learning the Tower of Hanoi problem 
induced by the IP system Igor2. This 

Figure 7. Input of the Tower of Hanoi problem for Igor2 and the induced recursive rule set.

Src Aux

1

2 3

IGOR2

Dest

eq Hanoi (0, Src, Aux, Dst, S) = move(0, Src, Dst, S).
eq Hanoi (s0, Src, Aux, Dst, S) =

move(0, Aux, Dst, move(s 0, Src, Dst),
move(0, Src, Aux, S))).

eq Hanoi(s s 0, Src, Aux, Dst, S) =
move(0, Src, Dst, move(s 0, Aux, Dst,
move(0, Aux, Src, move(s s 0, Src, Dst,
move(0, Dst. Aux, move(s 0, Src, Aux,
move(0, Src, Dst, S))))))).

Hanoi(0, Src, Aux, Dst, S)= move(0, Src, Dst,S)
Hanoi(s D, Src, Aux, Dst,S)=

Hanoi(D,Aux,Src,Dst,
move(s D, Src, Dst,

Hanoi(D, Src, Dst, Aux, S)))
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tive (or query) learning process the 
user can choose among a set of can-
didate hypotheses by showing where 
they differ, using a distinguishing input 
generated by the user—or more effec-
tively—by the IP system itself.15

Conclusion
Since the 1970s, basic research in IFP 
and ILP resulted in the development 
of fundamental algorithms tackling 
the problem of inducing programs 
from input/output examples. Howev-
er, these approaches remained within 
the context of artificial intelligence re-
search and did not trigger a successful 
transfer into technologies applicable 
in a wider context. In 2009, Tessa Lau 
presented a critical discussion of pro-
gramming by demonstration systems 
noting that adoption of such systems 
is not yet widespread, and proposing 
this is mainly due to lack of usabil-
ity of such systems.21 In this article, 
we have presented recent work in IP 
where we identified several new ap-
proaches and techniques that have 
the potential to overcome some re-
strictions of previous systems: learn-
ing from very few positive examples 
becomes possible when users and 
systems share background knowl-
edge that can be represented in a de-
clarative way, which, combined with 
name inference, is likely to be more 
easily understandable. Using algorith-
mic techniques developed in either or 
both ILP and IFP as well as the use of 
higher-order functions and meta-in-
terpretative learning resulted in more 
powerful IP algorithms; the adoption 
of techniques based on domain-spe-
cific languages has allowed the real-
ization of technologies ready to use 
in mass-market products as demon-
strated by Flash Fill. Hopefully, the 
recent achievements will attract more 
researchers from the different areas 
in which IP originated—AI, machine 
learning, functional programming, 
ILP, software engineering, and cogni-
tive science—to tackle the challenge 
of bringing IP from the lab into the 
real world.	
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