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Game theoretic approach to optimize the
throughput of cognitive radio networks
in physical layer attacks

Arash Ahmadfard, Azizollah Jamshidi∗ and Alireza Keshavarz-Haddad
Electrical and Computer Engineering School, Communications and Electronics Department, Shiraz University,
Shiraz, Iran

Abstract. Cognitive Radio (CR) is an adaptive, intelligent radio technology that can automatically detects available channels in
a wireless spectrum and change transmission parameters to allow more concurrent wireless communications in a given spectrum
band at a location. Physical layer attack is a common attack in these networks which can degrade the performance of cognitive
radio networks severely. In this attack, the attacker mimics the signals of the Primary Users (PU) to mislead the cognitive users
about the existence of the primary users. Two physical layer attack approaches are studied in this paper. First, we have considered
the case that the cognitive users are united against the attacker to maximize the network total throughput. Second, we have
studied the case that the cognitive users are selfish but have a common attacker. In both cases, we have assumed that the cognitive
network employs carrier sense multiple access with collision avoidance (CSMA/CA) to prevent collisions. We use the game theory
approach to model the optimization problem and then try to solve it. Some simulations are conducted to evaluate the cognitive
network performances.
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1. Introduction

Cognitive radio is an intelligent radio that can
be programmed and configured dynamically. Such
a radio automatically detects available channels in
wireless spectrum, then accordingly changes its trans-
mission or reception parameters to allow more
concurrent wireless communications in a given spec-
trum band at a location [1]. This process is a form
of dynamic spectrum management. The development
of the cognitive radio is achieved by combin-
ing two main features: cognitive capabilities and
software-defined radio (SDR). Cognitive capabilities
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include signal processing and machine learning tech-
niques which enable the cognitive users to find and
exploit the spectrum opportunities. The intelligence
techniques such as fuzzy approaches are used in these
networks to control the power of CRs [2, 3]. The authors
in [4] survey comprehensive game theoretic approaches
for spectrum sharing in the CR networks.

As all of the wireless networks, security issues in
cognitive networks are widely regarded in recent years
[5–7]. Physical layer attack is one of the severest attacks
on the cognitive radio systems. This attack is launched
as follows: The frame structure of the cognitive users
consists of two parts. In the first part, cognitive users
sense the channels to avoid interference to the primary
users and in the second part, cognitive users transmit
data if no primary user activity is sensed. Both parts
are vulnerable to attack. In the first part, an attacker
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can send signals similar to those of the primary users
to mislead the cognitive users about the existence of
the primary activity in channels. Attack in this period
is called Primary User Emulated (PUE) attack. This
attack is also referred to as spoofing. Spoofing degrades
the probability of false alarm in the detector of cogni-
tive users. Moreover, the attacker can send signals in
the data transmission period to degrade bit error rate
of the cognitive users. Attack in the second period is
called jamming. The impact of PUE attack on cog-
nitive networks is studied in [8]. In [9], the tradeoff
between spoofing and jamming is analyzed. Recently,
some methods are proposed for the detection of PUE
attacks. These works can be classified into two cate-
gories: location-based [10–13] and non location-based
contributions [14, 15]. In [14], a transmitter verification
scheme is proposed which verifies whether a signal is
from a legitimate primary user or from a PUE attacker.
This is accomplished by estimating the location of the
transmitter and comparing the estimate with a list of
locations of the primary users. Location-based contri-
butions have a major shortcoming: Most of them need to
know location and/or transmission power of the primary
users a priori. These parameters change if the primary
users are mobile or change their configurations. In [15],
a method is proposed for identification of PUE attackers
observing the received signals.

A traditional method for combating jamming attacks
is frequency hopping (FH). In this method, the defender
hops randomly over the channels to confuse the jam-
mer. Several scenarios for mitigation of the PUE attack
are considered in [16, 17]. In [16], in a first scenario,
a system consisting of a single attacker and a single
cognitive user is considered. The interactions between
those two entities are modeled as a two-player zero-sum
game. In a second scenario, a system consisting of a sin-
gle attacker and multiple cognitive users is studied. The
interactions between the attacker and the central con-
troller are modeled as a two-player zero-sum game. In
a third scenario, a system consisting of a single attacker
and multiple cognitive users is considered. It is assumed
that the cognitive network is distributed. In this paper,
similar to [16], we have presented a passive approach
for defending PUE attacks. A system consisting of a
attacker and a distributed cognitive network with mul-
tiple users is studied. In a first scenario, we assume
that the cognitive users are united against the attacker
and follow a policy that maximizes the network total
throughput. In a second scenario, we assume that the
cognitive users are self-interested but they have a com-
mon enemy.

Compared to [16], our proposed approach has the
following advantages:

– In [16], it is assumed that if two or more cogni-
tive users select the same channel, they will collide
and transmission will fail. In other words, there is
no mechanism of collision avoidance like carrier
sense multiple access (CSMA) or simultaneous
multiple access like code division multiple access
(CDMA) in the cognitive network. In this paper,
we assume that the cognitive users employ car-
rier sense multiple access with collision avoidance
(CSMA/CA) protocol to resolve the contention at
the medium access control (MAC) layer on each
channel. CSMA/CA protocol is a popular protocol
which is used in IEEE 802.11 standard.

– In [16], in the case of a attacker and a distributed
cognitive network, neither explicit expression
nor iterative algorithm is proposed for obtaining
NEP(s). In that case, due to complexity of the prob-
lem, only a proposition is provided which defines
some necessary conditions for NEP(s) of the game.
In this paper, we have overcome this problem. In
particular, we have considered two cases: the case
which the cognitive users are united against the
attacker and the case that they are self-interested
but have a common enemy. Not only we have stud-
ied the interactions between the attacker and the
cognitive network for both scenarios, we have con-
sidered the competition or cooperation among the
cognitive users.

The rest of paper is organized as follows: The net-
work model is introduced in Section 1. Then, utility
function of the cognitive network and attacker are dis-
cussed in Section 1. The best response of the cognitive
network to the attacker is studied in Section 4. NEP
of the game between cognitive network and attacker is
discussed in Section 5. The performance results are pre-
sented in Section 6. Finally, conclusions are provided
in Section 7.

2. Network Model

We consider a primary network with N channels.
Primary users access the channels in a time-slotted
fashion. The primary network traffic in each channel is
modeled as a two state Markov model. The two states
are: no primary user activity and primary user exists.
ci and θi denote the ith channel and the probability
that this channel is not used by the primary users.
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Fig. 1. Network Model.

We assume a distributed cognitive radio system con-
sisting of M pairs coexists with the primary network.
An attacker is also considered which jams the chan-
nel ci with probability βi, where

∑N
i=1 βi = 1. We

assume the attacker can only jam one channel at a
time. Consequently, ci is effectively idle with prob-
ability θeff,i = θi(1 − βi). Without loss of generality,
we assume that θeff,1 ≥ θeff,2 ≥ · · · ≥ θeff,N . From the
cognitive users’ point of view, there is no difference
between the primary users and the attacker. Therefore,
the cognitive users can only estimate θeff,i. However,
the attacker can estimate both θi and θeff,i.

The cognitive users opportunistically utilize the
channels whenever the channels are idle. To achieve
this, cognitive users perform spectrum sensing. Each
time slot is divided into two parts: In the first part, cog-
nitive users select and sense the channels and in the
second part, they transmit data if the channels are sensed
to be idle. We assume that each cognitive user is able to
sense only one channel at a time due to hardware limita-
tions. Each cognitive user selects the channels based on
a probability mass function. The probability that cog-
nitive user i selects and senses channel j is denoted by
αij . If the channels sensed to be idle, cognitive users
access the channels using CSMA/CA protocol.

It is assumed that each device is able to hear the
transmissions of other devices if they operate in the
same channel. This assumption is made to avoid hid-
den terminal problem. It is true when the network scale
is small. We assume that environment is roughly the
same for the cognitive users. In this paper, we focus on
symmetric strategies, i.e. we assume the cognitive users
access the channel cj with the same probability say αj .

Let zi(j) be a random variable that shows the status
of channel i at time-slot j. This random variable equals
1 when the channel is idle and equals 0 when it is busy.
If the channel is idle and the cognitive user sends infor-
mation without collision with the other cognitive users,

he can send B bits, otherwise he has to wait until the
next time-slot. Therefore, the time average of the num-
ber of bits that a typical cognitive user sends during a
block of T time-slots is

R = 1

T

T∑
j=1

B zi(j). (1)

We assume that the discrete random process zi(j) is
a mean ergodic process [18], i.e. the time average is
equal to the statistical average. Consequently, for large
T , (1) is equivalent to

R = B E {zi(j)} . (2)

Apparently, R depends on many parameters like the
probabilities that each user selects the channels, the
traffic of primary network and medium access protocol
employed.

The ultimate goal of the attacker is to degrade the
throughput of cognitive network as much as possible.
The interactions between the attacker and the cognitive
network is modeled as a two-player zero-sum game.

We study two scenarios for the cognitive network:
In the first scenario, the cognitive users become united
against the attacker and follow a policy that maximizes
the network total throughput. The whole cognitive users
are taken as a unit which defends the attacker. In the
second scenario, it is assumed that each cognitive user
is only concerned about his own payoff and wants to
maximize his own throughput. Although the cognitive
users are self-interested, they have a common enemy.
Modeling this situation is more difficult than the pre-
vious one. The interactions among the cognitive users
are modeled as a multi-player mixed strategy game.
Additionally, the interactions between the attacker and
the cognitive network are modeled as two-player zero-
sum game. Hence, in this situation, we have a game in
another game.

3. Utility functions

In this section, the utility functions of the cognitive
users and the attacker are derived.

3.1. Utility function of the cognitive users

We assume that cognitive users follow CSMA/CA
protocol to access the channels. Let Ki(t) denote the
random set of cognitive users who select the channel
ci at the time slot t. Cognitive users in the set Ki(t),
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first sense the channel ci at the beginning of the time
slot. If no primary user activity is sensed, then they
generate a random number according to a predefined
rule and wait the time specified by that number. After
the waiting period finished, the users in the set Ki(t)
sense that channel again. If the channel remains idle, i.e.
no cognitive user activity is detected, the users transmit
their data. It is inferred that the user with the lowest
random number wins the contention.

Lemma 1. For a typical cognitive user, the expected
payoff obtained from the channel cj is

Uj = Bθeff,j

Mαj

(
1 − (1 − αj

)M)
. (3)

Proof. Suppose a typical user selects the channel cj .
The probability that l other cognitive users select that
channel at the same time is(

M − 1

l

)
αl

j

(
1 − αj

)M−l−1
. (4)

In this situation, average number of bits transmitted in
one time slot is Bθeff,j/(l + 1) because this channel
is shared among l + 1 users. As a result, the average
number of bits a typical user sends is

Uj =
M−1∑
l=0

(
M − 1

l

)
αl

j

(
1 − αj

)M−l−1 Bθeff,j

l + 1
(5)

=
M−1∑
l=0

Bθeff,j(M − 1)!αl
j

(
1 − αj

)M−l−1

l!(l + 1)(M − l − 1)!
(6)

=Bθeff,j

Mαj

M−1∑
l=0

(
M

l + 1

)
αl+1

j

(
1 − αj

)M−l−1 (7)

=Bθeff,j

Mαj

{
M∑

l′=0

(
M

l′

)
αl′

j

(
1 − αj

)M−l′ (8)

− (1 − αj

)M}

=Bθeff,j

Mαj

(
1 − (1 − αj

)M)
. (9)

�
From Lemma 1, the expected payoff from the channel

cj is Uj . Therefore, the expected payoff from the whole
channels is

R =
N∑

j=1

αjUj (10)

= B

M

N∑
j=1

θeff,j

(
1 − (1 − αj

)M)
. (11)

3.2. Utility function of the attacker

The attacker wants to degrade the performance of the
cognitive network as much as possible. The higher the
network total throughput, the lower the payoff of the
attacker is. Since the interactions between the attacker
and cognitive network are strictly competitive, it is rea-
sonable to model the utility function of the attacker as
Uattacker = −R. Therefore, we have a zero-sum game.

4. Best response of the cognitive users

In this section, we study the best response of the
cognitive network to the attacker. Two cases are studied:
the case that the cognitive users are united and the case
that they are self-interest.

4.1. United cognitive users

In this subsection, we consider the situation in which
the cognitive users are united against the attacker and
their objective is to maximize the network total through-
put.

Using (11), the following optimization problem
obtains the best response of the cognitive users to the
attacker:

max
αi

R = B

M

N∑
j=1

θeff,j

(
1 − (1 − αj

)M) (12)

s.t.

N∑
i=1

αi = 1

αi ≥ 0

This optimization problem is equivalent to the fol-
lowing problem:

min
αi

N∑
j=1

θeff,j

(
1 − αj

)M (13)

s.t.

N∑
i=1

αi = 1

αi ≥ 0
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(13) is a convex optimization problem and the solu-
tion is easily obtained solving the KKT conditions.
After some straightforward manipulations, the optimal
access policy is

αi =

⎧⎪⎪⎨
⎪⎪⎩
(

1 −
(

λ

Mθeff,i

) 1
M−1
)+

θeff,i > 0 (14a)

0 θeff,i = 0 (14b)

where (.)+ = max(0, .) and λ is the Lagrange dual mul-
tiplier that satisfies

∑N
i=1 αi = 1.

4.2. Selfish cognitive users

In this subsection, we study the best response of
a cognitive network with self-interested users to the
attacker. The interactions between the cognitive users
can be modeled as a multi-player game. Since there is
no central controller and they select the channels based
on a probability mass function, we model the interac-
tions between the cognitive users as a mixed strategy
game. In the following, some lemmas are introduced
and the NEP of this game is obtained.

Lemma 2. As stated in Section 1, the channels are
indexed such that θeff,1 ≥ θeff,2 ≥ · · · ≥ θeff,N . At NEP,
the cognitive users select the channels in the set S =
{c1, c2, . . . , cK} with positive probability, where K will
be obtained later. Moreover, the cognitive users do not
select the other channels, i.e. they choose the channels
in the set {cK+1, cK+2, . . . , cN} with probability zero.
We call the set S the support set.

Proof. We prove this via contradiction. Suppose the
support set is not of the aforementioned form. There-
fore, the support includes a channel say ch but not ch−1.
This means that at NEP, the cognitive users access
channel ch−1 with probability zero. Hence, Uh−1 =
Bθeff,h−1 and Uh= Bθeff,h

Mαh

(
1−(1−αh)M

)
. By substituting

1−(1−αh)M=αh

∑M−1
j=0

(1−αh)j in Uh, it can be rewritten as

Uh = Bθeff,h

M

∑M−1
j=0 (1 − αh)j . As can be seen, Uh is a

decreasing function of αh in the interval 0 < αh < 1.
Because lim

αh→0
Uh = Bθeff,h, it can be concluded that

Uh < Bθeff,h. Therefore, the payoff obtained from the
channel ch is less than Bθeff,h. This contradicts the
assumption that the cognitive network is operating in
NEP. This results from the fact that Uh−1 = Bθeff,h−1,
Uh < Bθeff,h and the assumption θeff,1 ≥ θeff,2 ≥ · · · ≥
θeff,N . Since Uh−1 > Uh, a rational cognitive user can
increase his payoff by unilateral deviation from his
strategy. �

In other words, Lemma 2 states that self-interested
cognitive users select the channels with lower primary
plus attacker traffic and they have no incentive to select
the channels which are too busy. This seems reasonable.
It should be emphasized that we only know the form of
the support set, i.e. K is not known at this point.

Lemma 3. At NEP, cognitive users obtain the same
payoff from the channels in the support set.

Proof. Suppose this is not true. If the expected utility
obtained from the channels in the support set are not
the same, there is a channel with the highest expected
payoff among them. This channel is the best channel. A
selfish user can increase his utility by selecting the best
channel with probability one and never selecting the
other channels. This contradicts the assumption that the
other channels are in the support set since the channels
in the support set should be allocated nonzero access
probabilities. �

Using Lemma 3, we know that the average payoff
obtained from the channels in the support set are the
same. As mentioned previously, the support set is not
known exactly. If K were known, using Lemma 3, we
could obtain NEP by solving the following simultane-
ous equation system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = θeff,1

Mα1

(
1 − (1 − α1)M

) = C (15a)

...

Ui = θeff,i

Mαi

(
1 − (1 − αi)

M
) = C (15b)

...

UK = θeff,K

MαK

(
1 − (1 − αK)M

) = C (15c)

K∑
i=1

αi = 1, (15d)

where C is an unknown constant. In the following,
first we assume K is known and solve this equation
system. The we obtain K precisely. This simultaneous
equation system can be solved numerically. The New-
ton method is employed to achieve this target. In the
Newton method, the unknown parameters are put into
a vector x, where

x = [α1 α2 . . . αK C]T . (16)
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In every iteration, x is deviated in the direction �x until
�x converges zero. For the previous equation system,
�x is obtained from the solution of the linear equation
system ��x = B, where

� =

⎡
⎢⎢⎣

U
′
1 0 −1

. . .
...

0 U
′
K −1

1 . . . 1 0

⎤
⎥⎥⎦ (17)

and

B = −

⎡
⎢⎢⎣

U1 − C

...
UK − C∑K

i=1 αi − 1

⎤
⎥⎥⎦ , (18)

where U
′
i = dUi

dαi
. Because � is sparse, finding �−1 is

a simple task. Hence, the Newton method seems to be
an appropriate tool for solving the previous equation
system.

In the following, K is determined. According to the
definition, at NEP, the users can not increase their payoff
by changing their strategy. The payoff obtained from the
channels in the support set is C. C must be greater than
the payoff obtained from the channels out of the support
set, otherwise it is not NEP. Therefore, we must have

C ≥ Ui = Bθeff,i ∀i ∈ {K + 1, K + 2, . . . , N}
(19)

Since θeff,1 ≥ θeff,2 ≥ · · · ≥ θeff,N , (19) yields to

C ≥ Bθeff,K+1. (20)

Lemma 4. For the scenario that we are talking about,
if S = {c1, c2, . . . , cK} is the support set and C is the
expected payoff from the channels in the support set, at
NEP we have: C < Bθeff,K.

Proof. Considering the fact that Ui is a decreasing
function of αi in the interval αi ∈ (0, 1) and lim

αi→0
Ui =

Bθeff,i, we can write

0 < Ui < Bθeff,i i ∈ {1, 2, . . . , K}. (21)

Moreover, because at NEP, the payoff obtained from
the channels in the support set are the same and equals
C, (21) yields to

0 < C < Bθeff,i i ∈ {1, 2, . . . , K}. (22)

Due to the assumption θeff,1 ≥ θeff,2 ≥ · · · ≥ θeff,N ,
(22) is equivalent to

0 < C < Bθeff,K. (23)

Combining (20) and Lemma 4, it can be concludes
that K is given by

K = {k ∣∣Bθeff,k+1 ≤ C < Bθeff,k

}
. (24)

For every k that satisfies (24), we have an NEP
and this NEP is obtained by solving the equation sys-
tem (15). Since we have assumed that the number of
channels is N, θeff,N+1 is undefined in (24). It should
be mentioned that it is not necessary to check C ≥
Bθeff,N+1 in (20). Thus for correctness of (24) for all
cases, θeff,N+1 is set zero. In this situation, C is always
greater than Bθeff,N+1 and this inequality would be
dummy.

In the following theorem, we prove that the NEP
obtained in this section, is unique.

Theorem 1. NEP is unique for the game among the
cognitive users.

Proof. Please refer to the Appendix I. �

5. NEP of the game between cognitive network
and attacker

In the previous section, we studied the best response
of the cognitive network to the attacker. In this section,
we find the NEP(s) of the zero-sum game between the
cognitive network and the attacker.

The throughput of the cognitive users depends on
θeff,i which itself depends on two factors: the probabil-
ity that cognitive users select each channel αi and the
probability that the attacker jams each channel βi. In
the previous section, we showed that how the cognitive
users react to the attacker based on their preferences.
We showed that the cognitive users adjust their access
policy solving this optimization problem:

g(β) = max
αi

R(α, β) (25)

s.t. cognitive users’preferences (26)

αi ≥ 0

N∑
i=1

αi = 1

where by cognitive users’preferences, we mean
whether the cognitive users are united or self-interested.
(25) is simply obtains the best response of the cognitive
network to the attacker considering the preferences of
the cognitive users. This is discussed in detail in the
previous section.
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We consider the whole cognitive network as a unit
which defends the attacker. The interactions between
these two entities can be modeled as a two-player zero-
sum game. The NEPs of such games can be obtained
using minmax theorem [19]. Since the attacker is to
launch the severest attack, finds βi as follows:

min
βi

g(β) (27)

s.t. βi ≥ 0

N∑
i=1

βi = 1

Using (11), (27) can be rewritten as:

min
βi

B

M

N∑
j=1

θj(1 − βj)

(
1 −

(
1 − α∗

j

)M
)

(28)

s.t.

N∑
i=1

βi = 1

βi ≥ 0

where θeff,j = θj(1 − βj) and α∗
j is the optimal cog-

nitive users’ access probabilities obtained from (25).
Because the constraints in the aforementioned opti-
mization problem builds a convex set, we can employ
the gradient projection method [20] to solve the prob-
lem. In this method, βi is obtained iteratively as detailed
in Table 1.

In the following, we explain Table 1 in more detail.
Let bk = [β1, β2, . . . , βN ]Tk denote the access proba-
bilities of the attacker at the kth iteration. In gradient
projection method, starting at point bk, we take a step
−µgk along the negative gradient of the objective func-
tion (28), where 0 < µ < 1 is step size. Since (28) is
a constrained optimization problem, the point b

′
k+1 =

bk − µgk might be infeasible. To overcome this prob-
lem, in gradient projection method [20], we project
b

′
k+1 on the nearest point in the domain of the optimiza-

Table 1
Attacker’s access strategy

1) repeat
2) Update α∗

j using (25)

3) gk = ∇βj

{
B
M

∑N

j=1 θj(1 − βj)
(

1 −
(

1 − α∗
j

)M
)}

4) b
′
k+1 = bk − µgk

5) bk+1 =
[
b

′
k+1

]∗
6) until ||bk+1 − bk||2 < ε

tion problem to make it feasible, i.e. bk+1 =
[
b

′
k+1

]∗
.

This procedure is repeated until ||bk+1 − bk||2 < ε,
where ε is a small threshold.

The projection is accomplished by solving the fol-
lowing convex optimization problem

min
bk+1

||bk+1 − b
′
k+1||2 (29)

s.t. 1T bk+1 = 1

bi,k+1 ≥ 0 i ∈ {1, 2, . . . , N}

where bi,k+1 is the ith element of vector bk+1 and
1 denotes a column vector with all entities equal to
one. As shown in (29), projection yields to a con-
vex optimization problem. After some straightforward
manipulations, the solution of this optimization prob-
lem can be obtained easily:

bi,k+1 =
(
b

′
i,k+1 − ν

)+
(30)

where (.)+ = max(0, .) and ν is the Lagrange dual mul-
tiplier that satisfies 1T bk+1 = 1.

In the following, we provide a theorem in which we
prove that convergence of the procedure summarized
in Table 1, yields to an NEP of the game between the
cognitive network and attacker.

Theorem 2. Convergence of the gradient-projection-
based procedure studied in this section yields to an NEP
of the zero-sum game between the cognitive network
and attacker.

Proof. According to the definition, a strategy profile is
NEP iff no player can increase his payoff by unilateral
deviation in his strategy. In other words, every player
responds at his best to the other players. Since the cog-
nitive network always responds best in every iteration,
apparently, it is true at the convergence point. More-
over, the operating point of the attacker is obtained by
solving the optimization problem (27). Two cases can
be considered for the operating point of the attacker:
First, the operating point is a local minimizer and sec-
ond, it is a global minimizer of (27). Clearly, if the
operating point of the attacker is a local minimizer, the
attacker can improve his payoff. As a result, this point
is not NEP. In the following, we prove this is not true
at the convergence point. If we look more carefully at
(28), we see that it is simply a linear programming (LP)
problem for fixed α∗

j . LPs are convex and for convex
optimization problems, any local minimum is also the
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global minimum [21]. As can be seen in Table 1, in
every iteration, we assume α∗

j is fixed and take a step
towards the minimizer. At convergence point, we are
at a global minimizer because as discussed before, for
fixed α∗

j , (28) is convex. Therefore, attacker responds
best to the cognitive network at the convergence point.
Consequently, the operating point is an NEP. �

Remarks:

1. A major question arises as to whether or not the
procedure summarized in Table 1 converges to
the best NEP. A theorem by von Neumann [19]
answers this question: In two-player zero-sum
games, each player receives the same payoff in
any NEP. The game studied in this section is a two-
player zero-sum game between the attacker and
cognitive network. Consequently, even if there are
multiple NEPs, the payoff obtained in all of them
are the same and there is no difference among
them from a rational player’s perspective.

2. Any time, the cognitive network responds to the
environment at best. This is accomplished by solv-
ing (25). However, attacker does not necessarily
launch the severest attack. To be more specific,
attacker may not be smart enough to adjust his
policy according to (27). If the attacker launches
the severest attack, he forces the cognitive net-
work to operate in an NEP. However, if he is not
smart enough, the throughput of the cognitive net-
work is higher. This is an important property of
the proposed algorithm.

6. Simulation results

In this section, we have conducted numerical sim-
ulations to evaluate the proposed channel selection
method.

A comparison between the performance of united
and self-interested users is shown in Fig. 2. We have
assumed that the network consists of 9 channels with
effective probability of idleness θeff,1 = 0.9, θeff,2 =
0.8, θeff,3 = 0.7, . . . , and θeff,9 = 0.1. We assume B

is 1 bit per time-slot. In this figure, the total through-
put of the cognitive network is plotted as a function
of the number of cognitive users. The achievable total
throughput is B

∑N
i=1 θeff,i = 4.5 bits per time slot. For

both cases, the total throughput rises as the number
of cognitive users increases because more spectrum
opportunities are exploited. Obviously, unity results in
higher performance in comparison to being selfish. This
is easily seen in Fig. 2.

Fig. 2. Network total throughput.

The network studied in this paper was distributed. An
important thing about distributed networks is that the
users might not be willing to cooperate to fulfil network
functions. This selfish misbehavior can cause severe
performance degradation. Price of anarchy (PoA) can
be employed as a factor for measurement of the perfor-
mance loss owing to selfish misbehavior. By definition,
PoA is defined as the ratio of maximum total utility
to the total utility obtained from the worst case equi-
librium. For the case in question, PoA is the ratio of
throughput obtained by united users to the one obtained
by self-interested users. A network consisting of 10
channels and 4 cognitive pairs is considered. The effec-
tive probability of idleness for these 10 channels are
selected randomly and independently from a uniform
distribution in the interval (0.1, 0.9). Figure 3 shows
PoA for 100 random cases for the studied network.
As can be seen, PoA is near 1 for many cases. This
means that selfishness of cognitive users does not cause
considerable drop in network total throughput.

Another performance metric simulated is antijam-
ming efficiency (AJE). AJE is defined as the ratio of
the expected throughput of a cognitive user when the
attacker exists to the expected throughput of the cogni-
tive user when no attacker exists. A cognitive network
consisting of 10 channel and 4 users is simulated. The
effective probability of idleness for these 10 channels
are chosen randomly and independently from a uni-
form distribution in the interval (0.1, 0.9). An attacker
is also considered which launches the severest attack.
This scenario is repeated 100 times and for each one,
AJE is simulated. Figure 4 plots AJE for each random
scenario. Since we have assumed that attacker launches
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Fig. 3. PoA in 100 different random situations.

Fig. 4. Effect of attacker on united cognitive network in 100 different
random situations.

the severest attack, the obtained AJE relates to the worst
case.

7. Conclusions

A severe attack on cognitive radio systems is PUE
attack. In this attack, the attacker mimics the signals
of the primary users to mislead the cognitive users
about the existence of the primary users. Two passive
approaches, similar to frequency hopping (FH) in tradi-
tional anti-jamming schemes, are studied in this paper.
First, we have considered the case that the cognitive
users are united against the attacker and adjust their
access policy such that the network total throughput is
maximized. Second, we have studied the case that the
cognitive users are selfish but have a common enemy. In

both cases, we have assumed that the cognitive network
is distributed and users employ carrier sense multiple
access with collision avoidance (CSMA/CA) to prevent
collisions. Simulation results are presented to show the
performance of the proposed methods.
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Appendix I: Proof of Theorem 1

Uniqueness of NEP for the game among cognitive
users is proved via contradiction. Suppose this game
has two NEPs. Let S′ = {c1, c2, . . . , cK

′
}

and S′′ ={
c1, c2, . . . , cK

′′
}

represent the corresponding support

sets. Let C′ and
(
α

′
1, α

′
2, . . . , α

′
K

′
)

denote the expected

payoff from the channels in the support set S′ and the
strategy corresponding to that NEP, respectively. Also

C
′′

and
(
α

′′
1, α

′′
2, . . . , α

′′
K

′′
)

denote the expected payoff

from the channels in the support set S′′ and the strategy
corresponding to that NEP, respectively. Without loss
of generality, let K

′′
> K

′
. To prove the uniqueness of

NEP, we introduce the following lemma first.

Lemma 5. For the scenario that is been discussed, we
have α

′
i > α

′′
i ∀i ∈ {1, . . . , K′}.

Proof. Suppose this is not true. Therefore, we
can write ∃j ∈ {1, . . . , K′} : α

′
j ≤ α

′′
j . Since Ui

is a decreasing function of αi, we have: U
′
j =

Bθeff,j

Mα
′
j

(
1−
(

1−α
′
j

)M
)

≥U
′′
j
= Bθeff,j

Mα
′′
j

(
1−
(

1−α
′′
j

)M
)

. At NEP,

the payoff obtained from all the channels in the support
set is same. Because U

′
j = C

′
and U

′′
j = C

′′
, we have

C
′ ≥ C

′′
. Again, using the fact that the payoff from

all the channels in the support set is the same, we

can write: U
′
i = Bθeff,i

Mα
′
i

(
1 −

(
1 − α

′
i

)M
)

≥ U
′′
i =

Bθeff,i

Mα
′′
i

(
1 −

(
1 − α

′′
i

)M
)

∀i ∈ {1, . . . , K′}. Again,

using the fact that Ui is a decreasing function of
αi, we can write: α

′
i ≤ α

′′
i ∀i ∈ {1, . . . , K′}. Hence,∑K

′
i=1 α

′
i ≤∑K

′
i=1 α

′′
i . Therefore,

∑K
′

i=1 α
′′
i ≥ 1. In the

following, we show that this is not true and lemma is
proved.

Because K
′′

> K
′

and
∑K

′′
i=1 α

′′
i = 1, we have∑K

′
i=1 α

′′
i +∑K′′

i=K
′+1 α

′′
i = 1. According to the defini-

tion of the support set, all the channels in the support set
S′′

are allocated positive probability, i.e. α
′′
j > 0∀j ∈

{1, . . . , K
′′ }. Using this and the equation

∑K
′

i=1 α
′′
i +∑K′′

i=K
′+1 α

′′
i = 1, we can write

∑K
′

i=1 α
′′
i < 1. This is

in direct contradiction to
∑K

′
i=1 α

′′
i ≥ 1. This concludes

the proof of Lemma 5. �
Using the previous Lemma, we know that if

K
′
> K

′′
we have α

′
i > α

′′
i ∀i ∈ {1, . . . , K

′ }. Since
Ui is a decreasing function of αi, we have

U
′
i = Bθeff,i

Mα
′
i

(
1−
(

1−α
′
i

)M
)

<U
′′
i
= Bθeff,i

Mα
′′
i

(
1−
(

1−α
′′
i

)M
)

∀i ∈
{1, . . . , K

′ }. Since at NEP, the payoff from all channels
in the support set is same, we can write C

′
< C

′′
.

In the following we show that this contradicts the
assumption K

′′
> K

′
and as a result, the uniqueness of

NEP is proved. From (24) we can write

θ
eff,K

′′+1 ≤ C
′′

B
< θ

eff,K
′′ (31)

and

θ
eff,K

′+1 ≤ C
′

B
< θ

eff,K
′ . (32)

Combining (31) and (32) and the assumption θeff,1 ≥
θeff,2 ≥ · · · ≥ θeff,N , we have

θ
eff,K

′′ +1
≤ C

′′
B

<θ
eff,K

′′ ≤θ
eff,K

′ +1
≤ C

′
B

<θ
eff,K

′ (33)

Hence, C
′
> C

′′
which is in direct contradiction

to C
′
< C

′′
. Consequently, the uniqueness of NEP is

proved.
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