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Abstract: Bio-inspired techniques, including firefly algorithm, fish school search, and particle swarm optimisation, are
utilised in this study to evaluate the optimal weighting vectors used in the data fusion centre. This evaluation is
performed for more realistic signals that suffer from non-linear distortions, caused by the power amplifiers. The
obtained optimal weighting vectors are then used for collaborative spectrum sensing and spectrum allocation in
cognitive radio networks. Numerical results show that bio-inspired techniques outperform the conventional algorithms
used for spectrum sensing and allocation by deriving optimal weights that ensure the highest value of probability of
detection and guarantee the maximum proportional fair reward for users.

1 Introduction

In collaborative spectrum sensing (CSS) with energy detection, a
data fusion centre combines energy measurements from all
collaborating cognitive radios (CRs) to make a final detection
decision. It was observed in [1] that collaborative scheme
outperforms the standalone energy detector. Chavali and Dasilva
[2] derived optimal and sub-optimal weights for a linear
combination of measurements in the data fusion centre. More
works on spectrum sensing can be found in [3] and the references
therein.

After spectrum sensing, spectrum allocation is often performed to
allocate the detected channels. A common method used for spectrum
allocation is colour-sensitive graph colouring (CSGC) [4]. In this
method, the spectrum allocation model is translated into a graph
colouring problem, but an issue with the CSGC algorithm was that
the execution time increases, when the number of channels
increases. In [5], a parallel algorithm for spectrum allocation was
presented. It achieves the same spectrum allocation benefits as the
CSGC algorithm, but with less execution time. However, it cannot
ensure the secondary user access fairness. In this paper, a CSS and
allocation framework is proposed using bio-inspired techniques
which not only provides an optimal weighting vector for data
fusion centre, but also ensures secondary user access fairness.

i. Three bio-inspired algorithms: firefly algorithm (FFA), fish school
search (FSS), and particle swarm optimisation (PSO) are used in this
paper, where FFA and FSS have not been used for both CSS and
allocation before. It will be shown that FFA and FSS algorithm
outperform previous algorithms for both CSS and allocation
scenarios.
ii. In previous works, linear primary user signals were considered.
However, in reality, primary user signals may suffer from
non-linear distortions, that is, if the power amplifier (PA) does not
have enough gain, the input of the PA at the primary user will be
non-linearly distorted. In this case, the linear weights of the
measurements as used in [2] may not be optimal any more. So, we
have considered both linear and non-linear primary input signals
with interference and fading losses in this paper.
iii. For CSS, the optimal ‘weighting vector’ in the data fusion centre
is computed using the popular algorithm ‘weighted linear combining
(WLC)’ [2], and numerical results in this paper will show that the
bio-inspired algorithms outperforms the WLC method.

iv. We have proposed a spectrum allocation approach which is
dependent on optimal ‘weighting vector’ evaluated by the data
fusion centre. The relationship between the optimal ‘weighting
vector’ computed during CSS and the spectrum allocation module
is not present before.

The rest of the paper is organised as follows. The system model is
presented in Section 2 while the description of the spectrum sensing
and spectrum allocation modules using bio-inspired techniques is
presented in Section 3. Section 4 deals with the numerical results
and discussion. Finally, conclusions are given in Section 4.

2 System model

In CSS, the binary hypothesis test is formulated as

H0:rd(m) = zd(m) (1)

H1:rd(m) = Gds(m)+ zd(m). (2)

In (1) and (2), d = 1, 2,…, D and m = 1, 2,…,M, where D is the total
number of radios and M is the total number of samples at each CR.
Also, rd(m), s(m), Gd, and zd(m) represent the received signal, the
primary signal, the channel gain, and the zero-mean additive white
Gaussian noise with variance s2

zd
, respectively. Both flat fading

and frequency selective gains are considered. The frequency
selectivity assumes the tapped delay line model given in [6]. The
primary signal s(m) is a non-linear signal where the non-linearity
is induced by passing the signal through the PA at the primary
user. Consider two amplitude variation (AM)/ amplitude variation
(AM) conversion methods for memory less systems. They are as
follows:
Memory less polynomial model: As explained in [7], a strictly
memory-less PA can be described in pass band as a non-linear
function that maps the real valued input to the real valued output.
This memory-less non-linearity can be approximated by a power
series as

s(m) =
∑P
p=1

bp[I(m)]
p (3)

where bp are the real-valued coefficients, I(m) is the pass-band PA

IET Communications

Research Article

IET Commun., 2015, Vol. 9, Iss. 16, pp. 1949–1959
1949& The Institution of Engineering and Technology 2015

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


input, and s(m) is the pass-band PA output signal in (3) that will be
sampled by CR.
High PA (HPA) model: The non-linear HPA model in the transmitter
represents the non-linear distortion imposed on the signal. A useful
non-linear HPA model is the Saleh model [8, 9]. Utilising the Saleh
model, the output of the HPA s(m) is given by

s(m) = I(m)A(rs) e
jf(rs)

rs
. (4)

In (4), A(rs) is an odd function of rs, with a leading term representing
AM/AM conversion and f(rs) is an even function of rs, with a
quadratic leading term representing AM/PM conversion. As AM/
AM conversion is considered in this paper only, f(rs) is not taken
into account. In (4), rs = |I(m)| and

A(rs) =
eArs

1+ fAr2s

where eA and fA are constants [9].
For spectrum sensing, the dth CR calculates its received signal

energy by using

Ed =
∑M−1

m=0

|rd(m)|2

and sends it to the fusion centre. The fusion centre evaluates an
output for decision as

ydd =
∑D−1

d=0

wdEd = wTE

where E = [E1, E2, . . . , ED] and w = [w1, w2, . . . , wD]
T represents

the weighting vector. The probability of detection (Pd) is derived
as [10]

Pd = Q
Q−1(Pf )

��������
wTX1w

√ −MEsG
T
dw��������

wTX2w
√

( )
(5)

where

Q(x) =
∫1
x

1����
2p

√ e−t2/2 dt, Pf

is the probability of false alarm, X1 = 2Mdiag2(szd
),

X2 = 2Mdiag2(szd
)+ 4Esdiag(Gd), Es =

∑M−1
m=0 |s(m)|2, szd

=
[s2

z1
, s2

z2
, . . . , s2

zD
], Gd = [|G1|

2, |G2|
2 · · · |GD|

2], and diag()
represent the diagonal matrices.

It is evident in (5) that Pd resulting from CSS can be optimised by
optimising the weighting vector w. Therefore, Pd is a function of w,
or f (w) = Pd(w).

We have used three bio-inspired techniques for optimising w,
where w represents the position of bio-creature in our system. The
motivation of using bio-inspired algorithms comes from ‘foraging’,
where every bio-creature tries to detect the best location of food
with the help of their mates. We have related the ‘high food
concentration’ concept of bio-creatures to the ‘high value of Pd’
and the ‘positions of bio-creatures’ as the ‘weighting vector’. We
have referred the bio-creatures (fire flies, fishes, and birds) as
particles in further explanation.

We assume a slow changing spectrum access of primary users and
m as the particle which represents a sample sensed by CRs. A
particle m has a specific position in D dimensions, where
dimensions are assumed equal to the number of CRs as illustrated
in Table 1 and shown in Fig. 1. Each optimal weighting vector
w = [w1, w2, . . . , wD]

T has D dimensions, where the value of
each dimension, say wD, represents the weight assigned to dth CR.

The weight for each CR determines its priority over the other, so
we call it as ‘priority weight’. It is evident that the change in
particle’s position will consequently affects the priority weights of
all CR’s in the system. During spectrum sensing, the fusion centre
evaluates the optimal position of the particle that yields highest Pd.
Once optimal w is known by CR, the spectrum allocation is
performed by the fusion centre as shown in Fig. 1. During
spectrum allocation, we propose that the frequency channels will
be allocated according to the value of ‘priority weights’ in optimal
w. Let w1 and w2 be two values of priority weights in optimal
w = [w1, w2, . . . , wD]

T, where w1 > w2, which shows that priority
will be given to CR1 compared to CR2. Spectrum allocation is
explained in detail in Section 3.2.

We will use Pd in (5) as an objective function for the evaluation of
both bionic spectrum sensing and bionic spectrum allocation metrics.
In the literature, the optimal value of w was determined in three
ways: equal gain combining (EGC), WLC, and optimal combining
(OC) [2]. In these techniques, it was observed that WLC and OC
outperform the EGC method because their received energy
measurements are ‘weighted’ as shown in {[2], (5)] and [2], (7)}.
To determine the optimal weighting vector in the WLC method, a
heuristic technique was proposed in [10] that minimises the
probability of detection error as

wwlc =
gd

1+ 2gd
(6)

where gd = Es|Gd |2/s2
zd

( )
is signal-to-noise ratio (SNR) and wwlc

represents the weight for each dth radio, respectively. Though
WLC outperforms EGC, the proposed bio-inspired algorithms will
perform better for the case of both linear and non-linear signals as
will be explained in Section 4.

3 Proposed algorithms and methodology

We have used bio-inspired metaheuristic algorithms for the CSS and
allocation in our approach, where metaheuristic algorithms are
iterative search processes that efficiently perform the exploration
and exploitation in the solution space for efficiently finding the
near optimal solutions. In this context, three types of bio-inspired
meta-heuristics PSO, FSS, and FFA were devised to find the
optimal solutions of noisy non-linear continuous mathematical
models. FFA is potentially more powerful in solving noisy
non-linear optimisation problems. The FFA not only includes the
self-improving process with the current space, but it also includes
the improvement in its own space from the previous stages. In
[11], it was evaluated using benchmark functions that FFA
outperforms the PSO in noisy situations and in the problems with
many local optima. PSO is a powerful optimisation tool but
sometimes it cannot tackle dynamic optimisation problems. It
occurs because the entire swarm often increases the exploitation
around a good region of the search space, reducing the overall
diversity of the population. In this regard, the FSS algorithm is
considered which is capable of auto-regulating the
exploration-exploitation trade-off compared to PSO [12]. The

Table 1 Analogies between CRN framework and proposed bio-inspired
techniques

Analogies between CRN and bio-inspired techniques

CRN Bio-inspired techniques

number of samples
sensed by CR

number of particles

number of CRs number of dimensions of the position of the
mth particle

fitness function: Pd fitness function: food concentration

optimal weighting vector best position of particle with maximum
fitness value
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proposed spectrum sensing and allocation using bio-inspired
algorithms is given as follows:

3.1 Spectrum sensing

Let wk
m = [wk

m1, w
k
m2, . . . , w

k
mD], where wk

m represents the mth
particle during iteration k in D dimensions, where m = 1, 2, …, M
and M represents the total number of particles. The optimised wk

m
is evaluated using three bio-inspired techniques in this approach
where first two steps are common in each algorithm given as

Step 1: Set k = 0, and generate initial positions of particles as wk
mea,

where a is a uniform random variable between [0,1].
Step 2: Evaluate the fitness of each particle (Pd(w

k
m)) using objective

function in (5).
Step 3: This step is specific for each technique and explained below.
i. FFA:
(a) If (Pd(w

k
2) . Pd(w

k
1)), then an update in wk

1 occurs as follows:

wk+1
1 = wk

1 + b e−gr2f (wk
2 − wk

1)+ a(rand− 0.5) (7)

rf represents the Euclidean distance between w
k
1 and wk

2, α represents
the attractiveness between particles at initial stage, β is a positive
constant, γ is the absorption co-efficient of the medium, and rand
is the uniform random number generator. The third term α (rand−
0.5) is added for randomisation with α being the randomisation
parameter [13].
(b) After comparison of the fitness of allM particles, the particle with
the highest fitness is selected; which represents the optimal
weighting vector of the kth iteration.

ii. FSS:
(a) If (Pd[w

k
m] . Pd[w

k−1
m ], then wk

m is updated as [14]

wk
m = Pd[w

k
m]− Pd[w

k−1
m ]

max |Pd[w
k
m]− Pd[w

k−1
m ]| (8a)

(b) After all particles have moved individually, a weighted average
of individual movements based on the instantaneous success of all

particles is computed and added to the current particle position
given as [14]

wk
m = wk−1

m +
∑M

m=1 DwmPd[w
k
m]− Pd[w

k−1
m ]∑M

m=1 Pd[wk
m]− Pd[wk−1

m ]
(8b)

where Dwm = wk
m − wk−1

m shows the displacement of particle due to
individual movement in step (a). This step ensures that those
particles who had successful individual movements influence the
search direction more than other ones.

iii. PSO:
(a) Initialise the particle’s velocity (vkm)e[−vmax, +vmax], where vmax

and vmin represent the maximum and minimum values of velocities.
(b) The local best particle (wk

l ) is evaluated in each iteration, which
has the highest fitness compared to others. Similarly, the global best
particle (wk

g) is selected in each iteration, which possesses the
maximum fitness value among all local best particles. The update
in (wk

m) and (vkm) given as [15]

vkm = c1v
k−1
m + c2z(w

k−1
l − wk−1

m )+ c3h(w
k−1
g − wk−1

m ) (9)

wk
m = wk−1

m + vkm (10)

where ζ and η are uniform random variables between 0 and 1, c1, c2,
and c3 are positive constants, which are selected by the practitioner to
control the behaviour and efficiency of the PSO. The selection of the
parameters is explained in detail in Section 4.1.

Step 4: If it reaches maximum generation, terminate the spectrum
sensing algorithm and assign the optimal w to the spectrum
allocation module; else, go to step 2.

3.2 Spectrum allocation

The optimal value of weighting vector w = [w1, w2, . . . , wD],
evaluated using FFA, FSS, and PSO in Section 3.1 plays a vital
role for conflict free spectrum allocation in this section. The

Fig. 1 Centralised infrastructure that contains CSS and allocation framework
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spectrum allocation of CR can be explained with channel availability
matrix, channel reward matrix, and conflict free assignment matrix. It
is assumed that D CRs needs to communicate, and U idle channels
can be used, where d = [1, 2, …, D] and u = [1, 2, …, U ]. As CRs
sense M channels, so we assume that U out of M channels are
vacant. The concerned matrices are defined as:

† Channel availability matrix (L): L = ld,u∈ [0, 1], i.e. D ×U matrix,
where ld,u = 1, if channel u can be utilised by cognitive user d
otherwise ld,u = 0.

† Conflict free channel assignment matrix (A): The conflict free
channel assignment matrix A = ad,u∈ [0, 1]D*U, is a D ×U matrix
where ad,u = 1, if channel u is assigned to user d or ad,u = 0 otherwise.

For conflict free assignment, we propose assignment precedence
matrix (C), i.e. D ×U matrix. Each row in C represents is given by

Cd = wd ∗ Ld,u (11)

where the product of each row d in L is multiplied with

Fig. 2 Using Pf = 0.1, the convergence rate of

a Rectangular pulse using model 1 (M1) and model 2 (M2)
b Cosine pulse using model 1 (M1) and model 2 (M2)
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corresponding component of optimal w as shown in Fig. 1. During
sensing, e.g.; if wd >wd+1, then more precedence is given by the
fusion centre to the dth radio. Similarly in spectrum allocation, if
two radio users try to access the same channel, then the conflict is
resolved by assigning the channel to the specific radio user, who
has higher value of wd.

† Channel reward matrix (T): The channel reward matrix T = td,u is
a D ×U matrix where td,u represents the reward attained by user d for
utilising channel u. The reward attained by user d for utilising
channel u is rd, i.e. given by

rd =
∑U
u=1

ad,u ∗ td,u (12)

By following the above model, the spectrum allocation problem can
be defined as the optimisation problem that is dependent on the
optimisation of rd. The objective functions considered in this
model for optimised spectrum allocation are (a) maximum
proportional fair (MPF) reward:

MPF =
∏D
d=1

rd + 10−6

( )1/D

Maximum sum reward (MSR) MSR = ∑D
d=1 rd and max–

min-reward (MMR): MMR =min1<=d<=D rd. The performance
analysis is given in Section 4.

4 Numerical results and discussion

4.1 Parameter selection for bio-inspired algorithms

The convergence speed and optimisation accuracy of the
bio-inspired algorithms is affected by the choice of parameters
[16]. For FFA, β represents the attractiveness and for most cases
β = 1 and αe[0, 1]. The parameter γ characterises the variation of
the attractiveness, and its value is crucially important in
determining the convergence speed and behaviour of FFA. Thus,
in most applications, it typically varies from 0.01 to 100 [13].
Following the constraints in [13], we have chosen α = 1, β = 1,
and γ = 1.3. The parameters c2 and c3 are the learning parameters
or acceleration constants in PSO. A traditional way of improving
the PSO method is by manually changing its behavioural
parameters. We have used the standard version of PSO with the
learning parameters c2≃ c3≃ 2 [17, 18]. Various studies have been
reported in the literature [19, 20] regarding the choice of the
inertia weight (c1) and the velocity boundaries in PSO, which is
believed to influence the degree of exploration versus exploitation.
After conducting extensive survey and experiments, it is
recommended in [21] that c1e[−2, 2] and vkme[− 4, 4] for
optimisation experiments. Following [21], we have chosen c1 = 1
and vkm = [−2, 2]. Similarly in [8], the effect of non-linear
distortion produced by HPAs on the performance of multiple input
and multiple output system is analysed using different values of eA
and fA. Following [8], we have chosen eA = 1 and fA = 0.25, for
HPA model (model 1). The sum of coefficients of memory less
polynomial model (model 2) are assumed to be unity, so we set bp
coefficients as 0.4, 0.2, and 0.4, where P = 3. For our initial
analysis, we assume the number of particles as M = 15, the number
of radios as D = 7, where the received SNR of each radio is in
range of [0, −5] dB given as: 0, −0.75, −1.5, −2.25, −3, −3.75,
and −4.5 dB. We have also analysed different values of D and
SNR in Sections 4.4 and 4.5, respectively.

4.2 Comparison of PSO, FFA, and FSS

i. Non-linear signals: In order to compare the convergence
performances of the bio-inspired algorithms, the relationship
between the ‘number of iterations’ and the maximum value of ‘Pd’

is demonstrated in Fig. 2, by setting Pf = 0.1. A rectangular pulse
is considered in Fig. 2a as the input pulse and undergoes
non-linear distortion using model 1 and model 2, whileFig. 2b
deals with cosine pulse. The results have shown that FFA
outperformed PSO and FSS for both non-linear models. The
maximum value of Pd attained by PSO, FFA, and FSS for
rectangular pulse: using model 1 is 0.9709, 0.9749, 0.9623 and
using model 2 is 0.8528, 0.8632, 0.8565, respectively. However,
the maximum value of Pd attained by PSO, FFA, and FSS for
cosine pulse: using model 1 is 0.9424, 0.9760, 0.9615 and using
model 2 is: 0.8491, 0.8602, 0.8555, respectively. It is observed
that model 1 performed better than model 2 for both input pulses.
The difference in performance of model 1 and model 2 is due to
the nature of non-linear functions involved in the system.
ii. Linear signals: We have also considered both rectangular and
cosine pulses without non-linearities in Fig. 3. It was observed that
FFA outperforms PSO and FSS again. The maximum value of Pd

attained by PSO, FFA, and FSS for rectangular pulse is 0.9722,
0.9754, and 0.9630, while the maximum Pd value attained by
PSO, FFA, and FSS for cosine pulse is 0.9259, 0.9432, and
0.9234, respectively. The value of Pd for linear signals is higher
than non-linear signals. The non-linear distortions induced by
model 1 and model 2 are responsible for the Pd degradation in
non-linear signals.

4.3 Comparison of bio-inspired algorithms with WLC

The convergence of bio-inspired algorithms is examined for fixed
values of Pf in Figs. 2 and 3. However, in real scenarios, Pf can
change anytime so the effect of a changing value of the Pf on Pd

is plotted as the ROC curve in Figs. 4a and b. The value of Pf is
changed in each iteration by setting its Pf = 0.01 in the first
iteration and incremented by a value of Pf = 0.01 in each iteration.
The performance of WLC is compared with bio-inspired
techniques and the results have shown that all three bio-inspired
algorithms outperform the WLC method.

Fig. 3 Using Pf = 0.1, the convergence rate of linear rectangular and
cosine pulses
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4.4 Effect of SNR

In the above subsections, different values of SNR for each radio
are used while keeping the SNR for an individual radio constant

for all simulation runs. The effect of different SNR sets is
demonstrated in Fig. 5a, where SNR set 1 is assumed to be the
same as mentioned in Section 4.1. SNR set 2 is assumed as:
−5.25, −6, −6.25, −7, −7.75, −8.5, and −9.25 dB. It was

Fig. 4 Comparison of rectangular and cosine pulses for different values of Pf using

a Model 1 (M1)
b Model 2 (M2)
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observed that the performance of SNR set 2 is low compared to SNR
set 1. This is because SNR set 2 ranges between [−5, −10] dB, while
SNR set 1 ranges between [0, −5] dB. As Pd is directly proportional
to SNR, so the value of Pd increases with an increase in the value of
SNR for each radio.

4.5 Effect of the number of radios

We have checked the effect of increasing the number of CR’s from
D = 7 to D = 14 in Fig. 5b, where the SNR of D = 14 also lies in the
range [0, −5] dB as D = 7 explained above. By increasing D, we

Fig. 5 Effect of

a Different values of SNR on the value of Pd

b Changing the number of radios on the value of Pd
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actually increase the dimensions of particle’s position, which
eventually results in better performance. It is observed in Fig. 5b,
that FFA and FSS outperforms WLC for both cases, D = 7 and
D = 14. Though increase in the number of radios, increases the
mean Pd value for all algorithms, however, it results an increase in

the computational time and memory as well. Using MATLAB on
a system with Core i7 system and 8 GB RAM, we found that the
occupied memory and execution time for D = 7 is 964 MB and
15.9 s, respectively, however, the occupied memory and execution
time for D = 14 is 975 MB and 20.6 s, respectively.

Fig. 6 Effect on the value of Pd using

a Different modulation schemes (QPSK and QAM)
b Modulation schemes plus interference
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4.6 Effect of modulation, interference and fading

We have considered two modulation schemes [64 quadrature amplitude
modulation (QAM) and quadrature phase shift keying (QPSK)] for
analysing the case, when I(m) is fed into a non-linear amplifier as
modulated input. The result is shown in Fig. 6a using rectangular
input pulse. It is observed in Fig. 6a, that modulated rectangular
pulse using QPSK attains higher Pd than 64 QAM. The FFA has
outperformed other algorithms, but there is 11% decrease in the value
of its Pd compared to the non-linear model 2 without modulation.

Further, we introduce external interference following the model in
[6] to the non-linear model modulated using QPSK and 64 QAM.
The interference represents the noise faced by each CR caused due
to PU’s. It is observed in Fig. 6b, that the value of Pd decreases
more with the introduction of interference. The degradation in the
value of Pd occurs because rd(m) faces both white Gaussian noise
and interference in the channel. It is again observed that FFA has
outperformed other schemes, but interference degrades the
performance of FFA 10% more compared to non-linear modulated
model mentioned above.

Fig. 7 Effect on

a Modulated QPSK signal passed through non-linear frequency selective faded model using k = 205
b Spectrum allocation rewards using rectangular pulse and model 2
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Further, Fig. 7a analyses the effect of frequency selective fading
channels for the non-linear modulated model with interference
mentioned above. We considered the channel impulse response
(Gd) modelled as T time delayed taps with independent Rayleigh
fading gains [22] for 250 iterations. We considered QPSK as the
modulation schemes. The mean Pd values attained by PSO, FFA,
FSS, and WLC are 0.5519, 0.6704, 0.6506, and 0.5615,
respectively. The performance of FFA is decreased 7% more with
the introduction of fading, however, the execution time increases
compared to all models. The time required for 250 iterations is 1 h
(3545.35 s). The detailed comparison of these models is presented
in Table 2.

4.7 MPF reward

The spectrum allocation objective function: MSR, MMR, and MPF
are plotted in Fig. 7b using model 2, where the rectangular pulse is
used as an input primary signal. The mean MSR attained by PSO,
FFA, and FSS are 1.6641, 20.2950, and 9.8550, respectively,
while MMR is 0.1404, 1.7332, and 0.8628, respectively, and MPF
is 0.8678, 1.1987, and 1.0831, respectively. It was observed that
FFA outperformed FSS and PSO for all three objective functions.

4.8 Performance comparison

We have compared the performance of linear, non-linear, non-linear
modulated, and non-linear modulated faded primary user signals in
Table 2. We have chosen mean MPF, mean Pd, and T′ as the
performance metric, where T′ represents the total time required by
iterations: k = 25 or k = 45. The time required by each iteration (t′′)
can be calculated using t′′ = T′/k. It was observed that increase in
the value of radio users (D = 7 to D = 10) increases the value of
Pd, MPF and computational time for all iterations. It was also
observed that linear signals have higher Pd, MPF and
computational cost compared to the non-linear signals. The value
of Pd, MPF decreases and the computational cost increases as we
move from a linear model to faded model (the left side to the right
side) in Table 2 due to the increase in losses and distortions faced
by the input signals.

5 Discussion and conclusion

We have presented a framework for CSS and allocation in CRs using
used bio-inspired techniques. We have considered both linear and
non-linear signals. It was observed that the non-linearities induced
using HPA model degrades the performance of spectrum sensing
more compared to memory less polynomial model.

We also found that all bio-inspired techniques performed equally
well in the presence of Gaussian noise and outperformed the
conventional spectrum sensing weighting method: WLC.

Bio-inspired techniques performed better because they are the
iterative search processes which efficiently find near optimal
solutions using exploration and exploitation principles. However,
we observed that bio-based solutions and WLC are affected by the
change in SNR values. The increase in noise, interference, and
fading degrades the performance of all algorithms. PSO is affected
more compared to FFA, because FFA is potentially more powerful
in solving noisy non-linear optimisation problems compared to
PSO. Similarly FSS auto-regulates its exploitation and exploration
capabilities compared to PSO, so we found that FSS performed
better in noisy conditions compared to PSO, but its performance is
worse than FFA.

We have also developed a precedence-based spectrum allocation
framework which is dependent on spectrum sensing weighting
vector. It was found that bio-inspired techniques not only help to
attain higher value of probability of detection, but also ensure
conflict free spectrum allocation. The collaboration between
different fusion centres will be studied as a future work for
improving the performance of the system.
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