
Spectrum combinatorial double auction for
cognitive radio network with ubiquitous
network resource providers

ISSN 1751-8628
Received on 27th November 2014
Revised on 21st June 2015
Accepted on 8th July 2015
doi: 10.1049/iet-com.2015.0315
www.ietdl.org

Long Chen ✉, Liusheng Huang, Zehao Sun, Hongli Xu, Hansong Guo

School of Computer Science and Technology, University of Science and Technology of China (USTC) Suzhou Institute for Advanced

Study, Hefei 230027, People’s Republic of China

✉ E-mail: lonchen@mail.ustc.edu.cn

Abstract: Spectrum auction is an emerging economic scheme to stimulate both primary spectrum operators (POs) and
secondary users (SUs) to be involved in spectrum sharing. Previous spectrum auction works mostly assume each PO
can only have one type spectrum or each SU can only buy homogeneous spectrum bands from the same PO.
However, in a ubiquitous network scenario, each PO possesses heterogeneous spectrum resources such as WiFi, 3G
and each SU may request different types of spectrum bands from the same PO. Existing auction schemes cannot be
used to effectively solve the problem. Therefore, the authors come out with a lightweight combinatorial double auction
to tackle this challenge. Since spectrum combinatorial double auction problem is NP-hard, the authors develop a
general greedy algorithm G-Greedy to solve the problem. Inspired by the recent group-buying discounts, they also
invent an enhanced scheme E-Greedy to further optimise total utility. They theoretically prove the economy properties
of the proposed schemes such as individual rationality, budget balance and truthfulness. Simulation results show that
both of the two algorithms can yield higher utilities and are effective.

1 Introduction

With tremendously increasing number of ubiquitous wireless
communication devices, spectrum resource has become scarcity.
On one hand, due to the static allocation of wireless bands, some
spectrums are not fully utilised. On the other hand, spectrum
starvation is becoming ever more severe. Cognitive radio (CR) [1]
is a promising paradigm to mitigate the contradiction between
spectrum under-utilisation and starvation problems. With the
capability to sense, detect and access the frequency bands that are
not currently being occupied, the CR technology permits
secondary users (SUs) to exploit unused bands owned by primary
users (PUs) to enhance spectrum utilisation efficiency.

To optimally allocate and utilise spectrums in CR networks
(CRNs), there have been extensive literatures dealing with this
issue. Traditional methodologies such as game model and
Markovian decision process on opportunistic spectrum access can
be found in a recent survey [2]. Different from those in [2],
auction-based spectrum allocation in CRNs is an essential
requirement mainly for three reasons: first, it is efficient [3] to
handle spectrum allocation, which stimulates methodological
innovation from an economical point of view [4]. Second, with
SUs’ changing transmission requirements and PUs’ on–off
behaviours, auction can handle market changes with perceived
fairness and allocation efficiency [5]. What is more, compared
with most game models in which statistical information of primary
channels is a priori request [2], auction is more suitable for
dynamic spectrum supply and demand. Third, although economic
tools such as price [6], game theory [7] and auction have been
widely applied on spectrum marketing in recent years [8], auction
is the preeminent due to its fairness and efficiency.

In this paper, we mainly study spectrum auction problem with
heterogeneous spectrum providers in a ubiquitous network setting.
This can be characterised as multiple primary operators (POs) with
multiple SUs and each PO has multiple types of spectrum bands,
which is different from one PO that has different bands but not
different types. Although in the latter network (one PO has
different bands but not different types) scenario, each

homogeneous spectrum owned by one PO may be divided into
multiple sub-bands; however, each PO possesses the same kind of
spectrum. When PUs utilising that primary spectrum come back,
SUs should vacate the spectrum immediately. This may cause
additional network delay and congestion. The motivation of this
work (one PO has multiple types of spectrum bands) is multi-fold.
First, with the explosively growing number of wireless
communication devices such as smartphones, laptops and tablets,
bandwidth demand is becoming larger than ever before. Mobile
data offloading for cognitive M2M communication [9] is able to
deal with burst bandwidth requirement by delivering part of
application data traffic which is originally flowed to the cellular
network over other networks such as TV broadcast networks. In
this way, congestion is alleviated and spectrum utilisation
efficiency is achieved by CR technology [10]. Second, when each
PO has multiple types of spectrums and each SU may bid a
combination of different types of spectrums from the same PO
(Just as same as [11], we assume each SU can only get channels
from the same PO.), SUs’ transmission delay can be mitigated due
to spectrum redundancy in case of some primary bands are
interrupted by the corresponding PUs. Third, due to the fast
mobility of SUs, for example, in a cognitive vehicular network,
vehicles on the road that act as SUs may traverse through multiple
POs. Therefore, SUs may bid from a set of POs, which is much
more practical.

To solve spectrum combinatorial double auction problem with the
scenario proposed in this paper, existing methods cannot be directly
applied. The work in [11] was the first work to study sellers’
heterogeneity, however, it only considered buying the same
spectrum from the same PO, which was not practical. As in real
situations, one SU may require different types of spectrums such
as data offloading [12, 13]. For combinatorial double auction, PUs
send their redundant spectrums to auction agents which are named
as POs for profits and SUs act as buyers buy the resource from
POs. Existing methods like [14] proposed a subgradient algorithm
to find near optimal solutions to the combinatorial double auction
problem. The problem in [14] was decomposed into multiple
subproblems and the subgradient algorithm was used to iteratively
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derive the optimal assignment. However, auction was not used and
each bidder could be attached to multiple sellers. In this paper, we
focus on the scenario where each SU bidder can only be attached
to one PO. In [11], a spectrum combinatorial auction scheme was
proposed. However, each PO in [11] had homogeneous bands and
each SU bids for a bundle spectrums of different types from a
combination of POs. Although [15] formulated the grid resource
combinatorial double auction problem as a traditional winner
determination problem, the algorithm was suitable for the scenario
proposed in [11], and not for this paper. As just as same as [14],
each SU in [15] may attach to multiple POs.

Multi-round executions of methods like McAfee scheme [16] for
the homogeneous scenario are not effective for this paper, because
the execution result of the corresponding algorithm may be one
SU that attaches to multiple POs. However, for the heterogeneous
scenario in this paper, the spectrum bundle is acquired from one
PO. How to efficiently allocate the spectrum bundles to SUs when
there are large numbers of POs and SUs in the network system is
the main challenge. In real situations, for example, in urban cities
mobile devices such as smartphones or on-board devices [17] in a
vehicular network have limited computational ability and they are
moving very fast. Efficient algorithms should be invented to cope
with spectrum allocation problem before those devices moving out
of the service scope of POs. Second, in a typical auction
mechanism, auction properties like truthfulness, budget balance
and so on should be guaranteed. Therefore, how to design an
efficient combinatorial double auction to meet these economic
properties is another challenge. Third, during the auction scheme,
SUs pay for the bidding channels to meet their requirements and
POs sell the PUs’ channels for profits. How to stimulate and
attract spectrum buyers to participate in spectrum auction and
enhance total utility in the auction should be carefully considered.
To solve the above challenges, we propose two lightweight
combinatorial double auction schemes for spectrum allocation.

The major contributions of this paper can be summarised as
follows:

† We first analyse the situation where there are multiple different
types spectrum bands owned by one PO in the ubiquitous
network, then we formulate the spectrum combinatorial double
auction problem into a binary integer programming problem. To
reduce the computational complexity, we design a polynomial time
algorithm, the G(General)-Greedy algorithm to solve the total
utility maximisation problem.
† By relaxing the original problem formulation equations, through
experiment, we examine the upper bound of total utility of the
spectrum combinatorial double auction mechanism.
† Motivated by the group-buying discount in electronic commerce
[18], where sellers offer products and services at significantly
reduced price on condition that the quantity of buyers reaches to a
certain number, we propose a group discount spectrum allocation
scheme, the E(Enhanced)-Greedy algorithm to further optimise
total utility. This scheme can attract SUs to participate in spectrum
auction, which is more practical.
† The proposed two greedy algorithms are efficient because of their
polynomial time complexity running time. We prove that the
proposed auction algorithms are truthful, budget balanced and has
individual rationality.
† We design various experiments to examine the relationships
between total utility and the number of PUs and SUs. Both
allocation satisfaction ratio and allocation efficiency have been
carefully studied. Simulation results show, both G-Greedy and
E-Greedy algorithms can yield higher utilities and are effective.
This work can be seen as a methodological innovation in spectrum
auction.

The rest of the article is structured as follows. Section 2 introduces
related works on auction schemes. Section 3 describes the system
model and we formally define the auction problem. Algorithms for
the auction scheme are illustrated in Section 4. We evaluate the
proposed algorithms in Section 5 and Section 6 concludes this paper.

2 Related works

Spectrum auction as an efficient spectrum allocation method has
been studied in various literatures. Generally, there are four main
categories of spectrum auctions: single, double, combinatorial and
combinatorial double auctions. Compared with single auction [19–
23], double auction is more suitable due to its fairness and
efficiency [24]. In a double auction, both buyers and sellers submit
their bids to a central auctioneer who will determine winners,
charge for them and pay for sellers. For combinatorial auction [25,
11], SUs can buy a combination of spectrums from POs. The work
in [25] was the first to examine heterogeneous demands of time–
frequency resources from the perspective of buyers but neglects
the heterogeneous spectrum offerings from PUs.

Lin et al. [26] introduced a flexible spectrum auction scheme to
maximise social utility. In [27], time slots were divided and traded
to meet both long-term and short-term SUs’ demands. However,
both of them were confined to the situation where there is only
one spectrum seller (or PO) in the system. In the real situation,
there are always many providers and it is hard for SUs to
determine which provider to bid. For double auctions, most papers
failed to regard spectrum bands as non-identical resources. The
work in [28] was the first to consider spectrum reusability, while
[22] also took SUs’ spectrum reusability into consideration and
each SU could bid for multiple bands. Li et al. [29] proposed a
double auction scheme where SUs could bid for different number
of channels and diverse time slots from the same PU. In [30], a
multi-unit double auction scheme was developed to meet SUs’
partial demands. The authors assumed that each PU possessed
multi-unit spectrum sub-bands provided that all the sub-bands
were identical. In reality, each PO may have multiple types of
spectrums and this makes it hard to design efficient spectrum
allocation mechanisms based on auction theory. In [25], the
spectrum was reused in a time–frequency division manner and the
problem was modelled as a combinatorial auction. However, the
proposed method cannot tackle heterogeneous spectrums.
Although [31] was the first to study multiple spectrum owners and
[32] examined the tradeoff between auction efficiency and
robustness with multiple SUs and multiple PUs, none of them
aimed at multiple types spectrum bands. The work in [7] was the
first to tackle combinatorial double auction using game theory.
The computational complexity on solving differential equations
makes it difficult to be really deployed. Different from [7], we
focus on designing lightweight heuristic algorithms for spectrum
combinatorial double auction with each PO possesses multiple
types of spectrums. Meanwhile, we try to design an efficient
mechanism to attract SUs buying the vacant spectrums from POs.

Another research topic related to this work is group-buying
scheme, which is an emerging electronic commerce model [33].
However, there are few works applying group-buying discount to
specific research fields such as spectrum auction. In 2013, Lin
et al. [34] first introduced group buying into the spectrum market.
He [34] proposed a three-stage auction framework for spectrum
group buying to conquer the difficulty that one single SU could
not afford a whole channel whereas a group of SUs could buy.
This cannot be directly used in the setting of this paper where
each one of SUs should obtain the demanded resource
independently. Therefore, different from existing work, we utilise
the group-buying discount scheme to offer spectrum resources at a
cheaper price to encourage SUs to participate in the auction.

3 System model and problem formulation

3.1 System model

We consider a CRN system in a ubiquitous network where there are
multiple spectrum sellers with heterogeneous spectrums and
multiple CR users with differentiating spectrum demands shown in
Fig. 1. We assume that each PU is operated by a PO and each PO
possesses multiple types of spectrums from different wireless
networks in a ubiquitous network setting. Without loss of
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generality, we assume there are K types of spectrum bands owned at
each PO which are distinguished by their spectrum bandwidth. For
example, 6 MHz for TV band and 200 KHz for GSM band [11].
To buy and sell the spectrums, POs and SUs should submit their
bids to a central auctioneer. The auctioneer is in charge of
collecting bids, computing and allocating spectrums, charging for
SUs and paying for POs.

In the system, there are m POs (sellers) and n SUs (buyers). The
set of buyers’ bids is denoted by B and B = {B1, B2, …, Bn}. The
ith element Bi in the set B denotes the bid set of the ith SU, where
i∈ {1, 2, …, n}. For each Bi, i∈ {1, 2, …, n}, is denoted by a
three-tuple Bi = {di , ti, vi} where di = (d1i , d

2
i , . . . , d

K
i ). The

element dki in di means the number of the kth type spectrum bands
demanded by the ith SU for all k∈ {1, 2, …, K}. ti denotes the
time span that the ith SU wants to reserve. vi is the truthful value
evaluated by the ith SU. Just as [35, 25], we assume that all the
SUs in the system are single minded which means each SU can
only submit one channel bundle.

Let S denote the POs’ bids and S = {S1, S2, …, Sm}. The m
elements in set S are from m different POs. The bid of the jth PU
is denoted by Sj for j∈ {1, 2, …, m}. Sj = (oj , qj , uj) where
oj = (o1j , o

2
j , · · · , oKj ) and qj = (q1j , q

2
j , · · · , qKj ). okj is the kth type

spectrum owned by the jth PO. qkj is the kth type spectrum’s unit
price per time slot at the jth PO. In this way, the price of the
heterogeneous spectrum bundle can be calculated. For example,
there are three kinds of spectrum bands, they are 3G, WiFi and 2G
with unit price vector {$0.3, $0.4, $0.5}. Each element in the set
from left to right denotes the unit price of 3G spectrum, WiFi
spectrum and 2G spectrum accordingly and forms a spectrum
bundle. Therefore, the total price of one bundle containing one 3G
channel, two WiFi channels and three 2G channels is $2.6 and is
calculated as 1 × $ 0.3 + 2 × $ 0.4 + 3 × $ 0.5.

3.2 Problem formulation

LetM denote the set of POs in the network system and |M| =m. Let N
denote the set of SUs where |N| = n. After executing the auction
algorithm at the auctioneer, an allocation matrix can be formed.
The allocation matrix is an N ×M matrix and is denoted by Xn×m.

Each element in matrix X is denoted as xij and is defined as

xij = 1, if user i is associated to PO j
0, otherwise

{
(1)

We assume SUs are all single minded and it is hard for a SU to get
spectrum resources from different POs [36]. Therefore, each SU can
acquire at most one bid, which means one single SU can only get the
demanded spectrum bands from the same PO. Hence

∑m
j=1

xij ≤ 1, ∀1 ≤ i ≤ n (2)

Since spectrum bands are limited at each PO, the sum of the
requested spectrum bands should not exceed the spectrum
bandwidth limit of the PO. Thus

∑n
i=1

xijd
k
i ≤ okj , ∀1 ≤ j ≤ m, 1 ≤ k ≤ K (3)

Let ci denote the auctioneer’s final charging price for the ith SU.
Then, the utility of buyer SU i is

ui =
∑M
j=1

xij(vi − ci) (4)

where vi =
∑

k d
k
i (1+ gi)ti. In [11], the valuation of SU j is defined

as vj = djlog (1 + γj), where dj is the bandwidth demand, γj is the
signal-to-noise ratio at SU j. This definition is based on the
channel capacity expression which is common in spectrum auction
literatures. Like [33], the valuation of the virtual machine contains
a time length factor, in this paper we consider each SU may
occupy the channel for some time, thus the time length should be
considered as part of the valuation function. The longer the SU
occupies the spectrum bands, the higher valuation it is. In this
paper, for SU i, the valuation of the kth spectrum is denoted as
dki (1+ gi)ti, then the total valuation for SU i is

∑
k d

k
i (1+ gi)ti.

Let pj denote the final payment to the jth PO by the auctioneer.
Similarly, the utility of seller PO j is

uj = pj − vj

= pj −
∑N
i=1

xij
∑K
k=1

(dki q
k
j ti)

(5)

Therefore, given the bids vector of SUs B and the bids vector of POs
S, the target is to design efficient auction algorithms to determine the
spectrum allocation matrix X. In this way, the charge vector C and
payment vector P can also be determined. It should be noted that
there are three main optimisation objects of combinatorial double
auction. The first is to maximise the utility of sellers, the second is
to maximise the utility of the auctioneer and the third is to
maximise the total utility of both buyers and sellers. Thus, in this
paper we concentrate on the third optimisation target. Hence, the
optimisation target of this scheme can be formally described as

P1:

max (
∑N
i=1

ui +
∑M
j=1

uj) (6)

s.t. (C1):
∑m
j=1

xij ≤ 1, ∀1 ≤ i ≤ n (7)

Fig. 1 System model for combinatorial spectrum double auction
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(C2):
∑n
i=1

xijd
k
i ≤ okj , ∀1 ≤ j ≤ m, 1 ≤ k ≤ K (8)

(C3):xij [ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m (9)

where (6) is the solution target. Constraint C1 denotes that each SU
can only be served by one PO at one time. C2 is the total capacity
constraint at each PO. C3 is the binary constraint. According to
[37, 25], the combinatorial auction is NP-hard, thus the problem
defined by (6)–(9) is also NP-hard.

3.3 Economic properties

The goal of this paper is to design an efficient combinatorial double
auction scheme to best achieve the following economic properties:
individual rationality, budget balance and truthfulness.

(i) Individual rationality: An auction is individually rational if no
winner’s utility is negative.
(ii) Budget balance: For a particular auction, budget balance
requires that the auctioneer’s revenue is not negative. This
property is utilised to motivate the auctioneer to participate in the
auction scheme.
(iii) Truthfulness: An auction is truthful if given other players’
strategy profile and the fixed auction scheme, a player cannot
improve its utility by submitting any bid that is not the same with
its true bid.

On the basis of (6)–(9), in the next section, we will derive the
upper bound of P1 and propose a polynomial-time approximation
algorithm. Then, we design two greedy combinatorial double
auction schemes and compare the performance of the above
algorithms.

4 Spectrum allocation mechanism

4.1 Upper bound

In this subsection, we derive the upper bound of P1 based on the
method proposed in [11]. It should be noted that the complexity of
P1 comes from the fact that for a demanded spectrum resource,
the number of different types of spectrums requested from the PO
is different. Therefore, to ease of solution, we try to relax
constraint C2 by allowing SUs to bid fractional number of
channels as

∑n
i=1

∑K
k=1

dki xij ≤
∑K
k=1

okj , ∀1 ≤ j ≤ m (10)

Define (π1, π2, …, πm) as positive multipliers. Then, the relaxed
problem of P1 can be written as

P2:

max s = (
∑N
i=1

ui +
∑M
j=1

uj) (11)

s.t. (C1′):
∑m
j=1

pj

∑n
i=1

∑K
k=1

dki xij ≤
∑m
j=1

pj

∑K
k=1

okj , ∀1 ≤ j ≤ m

(12)

(C2′):
∑n
i=1

xijd
k
i ≤ okj , ∀1 ≤ j ≤ m, 1 ≤ k ≤ K (13)

(C3′):xij [ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m (14)

Therefore, the optimal value of πj would maximise the target in P2.
According to [11], the optimal choice of πj for all j∈m is πj = ω,
where ω can be any positive constant. To further simplify the
solution target, we assume the bidding price of the buyer equals
its true valuation. Let x′i =

∑m
j=1 xij, which denotes whether the ith

buyer wins the auction or not. Therefore, the problem defined in
P2 can be rewritten as

P3:

max s =
∑n
i=1

x′i
∑K
k=1

dki q
k
j ti (15)

s.t.
∑n
i=1

∑K
k=1

dki x
′
i ≤

∑K
k=1

okj , ∀1 ≤ j ≤ m (16)

x′i [ {0, 1}, ∀1 ≤ i ≤ n (17)

According to the relaxed problem P3, by adopting integer
programming algorithm or branch and bound algorithm, the
solution to P3 can be derived. However, due to the computational
complexity during the problem solving procedure, in the following
subsections, we first present an approximation algorithm to derive
the upper bound, then we present two greedy spectrum
combinational double auction mechanisms used to solve the
original problem.

4.2 Approximation algorithm to derive the upper bound

In this subsection, we present an approximation algorithm to derive
the upper bound of the solution target. After receiving all the bids
from SUs, the auctioneer will sort the bids of buyers in a
decreasing order while sorting the total number of spectrums of
each PO in an increasing order. Different from [38, 39], in this
paper we define the ‘size’ of the bid bundle Bi as
si =

∑K
k=1 wkd

k
i ti. wk is the weight [39] of the kth type spectrum.

Then, the bid density for SU i is defined as bdi = vi/
��
si

√
.

Therefore, we have

v1���
s1

√ ≥ · · · ≥ vi��
si

√ ≥ · · · vn���
sn

√ (18)

∑K
k=1

ok1 ≤
∑K
k=1

ok2 ≤ · · · ≤
∑K
k=1

okj ≤ · · · ≤
∑K
k=1

okm (19)

Next, we will derive a feasible solution using the algorithm proposed
below. Denote σ as the total bidding price of all the winning bidders,
let rj be the number of channels remained at PO j, and ɛi be the flag
variable on the assignment status between SU i and PO j and ɛi is
defined as

1i = 0, SU i is not attached to any PO
j, SU i is attached to PO j

{
(20)

Then, we design an approximation algorithm, that is, the
approximation algorithm to derive the auction upper bound
(ADUB) algorithm. ADUB first initialise the allocation flag
variable and then traverses each of the POs and execute the
ALlocation and payment calculation (ALC) or SUs. The outer ‘for’
circulation of ADUB has a complexity of O(m) and the inter ‘for’
circulation’s complexity is O(n). Therefore, the total complexity of
the ADUB algorithm is O(mn).

4.3 G-Greedy allocation algorithm

G-Greedy allocation algorithm is based on the bid density [39, 38].
In the first phase, bids of POs are sorted in ascending order according
to the bid density while bids of SUs are sorted in descending order.
This is used to give priority of SUs’ bids from the highest to the
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lowest and to prioritise bids of POs from the cheapest to the most
expensive level.

Then, the bid density for SU i is defined as bdi = vi/
��
si

√
. For SU i,

the larger the bid density bdi is, the higher chances are there to win a
bid.

Similarly, the ‘size’ of the jth PO is defined as sj =
∑K

k=1 wko
k
j

and the price of all the spectrum bundles at PO j is
pj =

∑K
k=1 q

k
j o

k
j . Therefore, the bid density bdj for PO j is

bdj = pj/
��sj√ .

The next procedure is to allocate the heterogeneous spectrum
resources owned at each PO. Then, for each SU i in the priority
sequence which is sorted according to the bid density, if PO j can
fulfil the demands of SU i, then the allocation will start. If the
price of all the spectrum bands for SU i at PO j is higher than the
ith SU’s valuation, then the searching and matching procedure will

continue. After each successful allocation, the amount of spectrum
bands at the PO will decrease. The allocation algorithm is
described in Algorithm 3 (see Fig. 2).

4.4 E-Greedy algorithm

In this subsection, we propose the E-Greedy algorithm. Group
discount or group bargaining has been employed in electronic
commerce [18] and used by Lin et al. [34] for compositional
buying, not for group discount. To the best of the authors’
knowledge, our recent paper [33] was the first to address group
discount in cloud computing. Different from [33], in this section,
we extend [33] to address the spectrum sharing and allocation
problem in a ubiquitous wireless network.

Fig. 2 G-Greedy allocation algorithm
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First of all, we define the group discount function as D:ℕ→ [0, 1).
The argument in the function represents the PO’s group size G,
which belongs to {0, 1, 2, …}. The dependent variable D is
discount rate that is in the range [0,1). Without loss of generality,
we assume there are |Gj| SUs that attach to PO j and Dj denotes
the discount rate at PO j when there are |Gj| SUs. For example,
when unit price of one type spectrum bands is $3.0, the group
discount rate is 0.3 when there are 30 SUs that are assigned to the
PO. Therefore, the new unit price is $ 3.0 × (1− 0.3) = $ 2.1.
Suppose there are |Gj| SUs that attach to PO j, then the group
discount rate is calculated as Dj(|Gj|) = Dj(

∑N
i=1 xij). By applying

group discount scheme, (5) should be modified as [33]

uj = pj − vj

= pj −
∑N
i=1

xij
∑K
k=1

(dki q
k
j ti)Dj(

∑N
i=1

xij)
(21)

Suppose the lth level discount at PO j is denoted as Dl
j . We redefine

the baseline bid density for PO j as bd0j and bd
0
j = pj/

��sj√ . Then, the
lth bid density of the PO j is bdlj = (1− Dl

j)bd
0
j . We also define the

jth PO’s discount level threshold as jlj . That is, when there are j
l
j SUs

attach to PO j, then the level discount is Dl
j . For example, suppose

l [ {0, 1, 2}, Dl
j [ {0, 0.1, 0.2}. Let

bd0j = 0.02, j0j = 0, j1j = 10 and j2j = 20. Then, bdj = {0.02,
0.018, 0.016}.

The first phase is just as similar as the corresponding phase in the
G-Greedy algorithm. In the second phase, E-Greedy traverses the
lists of bid densities and assigns the spectrum demands to POs
iteratively. Without loss of generality, we assume that the first
leveraged bid density in the sorted leveraged bid densities is bdlj
which means the lth level bid density for PO j. Then, the

algorithm will traverse the sorted list of SUs, each of whose
demanded spectrum resource could be fulfilled at the jth PO and
the true valuation of the SU is no less than the charged price of
PO j with discount Dl

j . If the accumulated number of satisfied SUs
reached to the discount level threshold jlj at PO j, then all SUs will
be assigned to the PO and the remained leveraged bid densities at
PO j will be abolished. Otherwise, no SUs will be matched to the
PO in the current round. Then, E-Greedy searches for the next
level bid density and continues execution of the procedure. The
detail algorithm is shown in Algorithm 4 (see Fig. 3).

After allocating spectrum bands for SUs, the next step is to design
charge and payment scheme. A frequently used payment scheme is
the Vickery [40] style, which charges the winner the highest price of
all the non-winning bids. Therefore, based on Vickery scheme, the
payment is calculated by multiplying the ‘size’ value of SU i with
the highest bid density of the non-winning bids [39]. To guarantee
individual rationality, the final charge chooses the maximum value
between the Vickery style price and the charge price of the PO
that is attached by SU i. Then, the payment for a PO is the total
charges of SUs that are attached to it. The algorithm is presented
in Algorithm 5 (see Fig. 4).

4.5 Algorithm analysis and auction properties

4.5.1 Time complexity analysis

Theorem 1: The time complexity for G-Greedy is O(NlogN). The
time complexity for E-Greedy is O(N2).

Proof: For G-Greedy algorithm, the complexity for sorting the bids
is O(NlogN) +O(MlogM ). The second phase of G-Greedy is O
(NMK). The overall complexity is (NlogN ) when N≫M and

Fig. 3 E-Greedy allocation algorithm
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N≫K . Since there would be at most N discount levels for each PO,
there are NM bid densities in the worst case. The loop for spectrum
allocation will traverse the N SUs for each leveraged bid density,
thus it takes O(MN2) time. The overall time complexity of
E-Greedy is O(N2) when N≫M . □

4.5.2 Economic properties analysis

Theorem 2: The auction participants in the proposed schemes are
individually rational.

Proof: In G-Greedy, for the true valuation of SU i, we assume
vi =

∑
k d

k
i (1+ gi)ti . ci, where γi is the signal noise ratio at SU

i, then SUs in G-Greedy are individually rational. We will
illustrate through simulation that this additional constraint does not
prohibit the effectiveness of the proposed scheme. That is, in a
special condition, G-Greedy may not be individually rational for
the auction, but by carefully choosing the parameters, G-Greedy
may guarantee individual rationality. This will not affect the
resource allocation procedure which is the main target, but may
result in a lower total utility [38]. For E-Greedy, individual
rationality is strongly guaranteed. The charge scheme for winner
SUs is the maximum value of the Vickery price and the ask price
of the assigned PO. To prove the individual rationality for a SU,
we have to prove that both of the Vickery price and the ask price
are no more than the true valuation of the user. For the Vickery
price of SU i, it is vl/

��
sl

√
and (vl/

��
sl

√
) ≤ (vi/

��
si

√
). Otherwise, SU

l will be allocated before SU i. Therefore,��
si

√
vl/

��
sl

√
,

��
si

√
vi/

��
si

√ = vi. The payment of a PO is the
accumulation of the charge for SUs, which is no less than the ask

price of the PO. Therefore, the POs’ individual rationality is
guaranteed. □

Theorem 3: The auctioneer in the auction is budget balanced.

Proof: The payment to each PO is the accumulation of charges for
SUs that are attached to it. Hence, the total payment of POs will
be equal to total charges for all winning SUs. Therefore, budget
balance is also guaranteed. □

Theorem 4: The greedy spectrum allocation mechanisms are truthful.

Proof: If a SU who attempted to achieve a higher utility through
misrepresenting the true valuation [38], then there could be two
cases.

(i) Case 1: bid<true valuation. Then, it might be rejected by the
auction scheme since the bid was too low to get a positive utility.
Suppose there could be one of the winners due to the changes in
the bid density sequence, because the SUs’ bid densities were
arranged in descending order while the POs’ bid densities were
arranged in ascending order. Then, the SU might win the higher
bid PO to obtain a lower utility.
(ii) Case 2: bid>true valuation. Then, it might need more spectrum
resources than it was actually demanded. Hence, some of spectrum
bands were wasted. The SU could only acquire a higher utility by
trading with an extremely low bid PO. However, no SUs would
like to sacrifice its demands to do so. □

5 Performance evaluation

The presented evaluation metrics are: (i) total utility, (ii) satisfaction
ratio, which is the ratio between the number of winning SUs to the
number of all SUs and (iii) allocation efficiency, which is the ratio
between the number of allocated channels to the total number of
channels provided at POs. For comparison purpose, we also
implement the random allocation method, which assigns each type
of spectrum bands randomly to SUs.

5.1 Methodology

We evaluate the proposed G-Greedy and E-Greedy algorithms with
random bids and time behaviours.

Although we cannot compare the proposed greedy algorithms
with existing works because there are no prior literatures that have
achieved the same economic properties in an combinatorial
spectrum double auction setting with each PO possesses
heterogeneous spectrums, we evaluate the proposed algorithms
with the random allocation method. Meanwhile, we examine the
auction upper bound based on Algorithms 1 and 2 (see Figs. 5 and
6) in the next simulation subsection. To better compare the
proposed algorithms, we implement a multi-round scheme and
within each round, the spectrum double auction algorithm for
homogeneous scenario (where each PO possesses homogeneous

Fig. 4 Charge and payment for E-Greedy

Fig. 6 Allocation and payment calculation algorithm ALCFig. 5 Approximation algorithm to derive the auction upper bound
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spectrum bands) is executed. We adopt the typical algorithm, the
McAfee double auction [16] for each round. At the end of each
round, one type spectrum bands will be allocated from POs to
SUs. Since there are K types spectrum bands, there are K rounds
for the multi-round McAfee double auction. Then, we compare the
bidder satisfaction ratio with the proposed methods in this paper.
That is because the algorithms proposed in this paper are not time
slot based. Therefore, although the modified homogeneous
algorithm is a multi-round scheme, we choose the bidder
satisfaction ratio as the performance evaluation metric.

We implement G-Greedy and E-Greedy using Matlab 7.1 to test
their performances. The default parameters used during the
simulation are listed in Table 1. At most 900 bidders arrive during
the simulation. Their demands for each type spectrum bands are
taken from the range [0, 5] within an average of ten time slots. We
run our program 250 times and take the average value under each
condition. The total utility, satisfaction ratio as well as allocation
efficiency are studied and compared under various situations.

5.2 Simulation setting

By default we assume there are three different types of spectrums, for
example, WiFi, GSM and 3G. We set their weights to a uniformly
distributed variable wk = rand() × 10. To generate SU’s bid, we
assume that the demanded number of each type spectrum is not >6
and the required time slots are <100. For ease of illustration, we
set the maximum value per bandwidth at $1.1 and the upper
bound of the valuation is calculated by multiplying $1.1 with the
number of requested spectrum bands as well as the number of time
slots. To generate PO’s bid, we assume that each PO possesses no
more than 1000 spectrum bands for each type spectrum among all
the K types spectrum bands. The unit price is randomly generated
in [0.1wk ± 0.05], in which 0.1wk denotes the basic unit price of
the kth type spectrum. For example, a PO’s unit price of the GSM
band is generated within the range 0.2 ± 0.05. For the group
discount rule, the group discount level is generated within [0, 2]
that means there are at most two discount levels in the group
discount system and 0 means there is no group discount. For
simplicity, the first discount level is set when there are a quarter
SUs that attach to a single PO and the discount rate is 20%. The
second discount level is set when there are one third SUs in the
group and the discount rate is 40%. To reflect the randomness
character of the discount levels at different POs, we introduce a
random variable which is denoted as δ and δ = ± 0.05. Therefore,
the final discount of each PO is the basic discount plus the random
variable δ.

5.3 Simulation and results

First, we examine the relationship between the number of POs and
the total utility achieved with different algorithms shown in Fig. 7.
In this simulation, we set the ratio between the number of POs m
and the number of spectrum types K as a constant, that is, m/K =
5. Here, the total utility is divided by 1000 to show clearly in the

figure. It shows that the upper bound is achieved by relaxation and
for all the algorithms, the total utility grows with the growing
number of POs. That is because when there are more POs in the
system, more requirements can be satisfied. Compared with total
utility, both G-Greedy and E-Greedy outperform the random
method. The G-Greedy algorithm is about 52.46% times larger
than the random method in average while the E-Greedy algorithm
has a higher increase compared with the random method on
auction utility, which averaged to 63.05%. What is more,
E-Greedy is averagely 21.73% times higher than G-Greedy on
total utility.

To examine the satisfaction ratio with the growing number of SUs,
we fixed the number of POs as m = 5 and the type of spectrums K is
fixed at K = 3. The results show that bidder satisfaction ratio
decreases as the number of SUs increases. That is because the
number of auctioned channels is limited. The results are shown in
Fig. 8. What else can be seen from Fig. 8 is that both G-Greedy
and E-Greedy have a higher bidder satisfaction ratio than the
random method. For example, when there are 100 SUs, the
satisfaction ratio of G-Greedy and E-Greedy is 0.577 and 0.653
accordingly while for the random method, the ratio is about 0.491.
On average, G-Greedy has a 13.6% times higher bidder
satisfaction ratio than the random method while E-Greedy has a
24.9% times better bidder satisfaction ratio. What is more, the
McAfee-based algorithm is close to the random method. That is
because in different rounds, SUs may be assigned to different POs.

Fig. 8 Bidder satisfaction ratio vs. number of SUs

Fig. 7 Performance of the proposed algorithms on total utility with the
growing number of POs

Table 1 Default parameters

SU’s bid

demanded spectrum of each type dk
i [ [0, 5]

requested time slot ti∈ [1, 10]
true valuation vi [ [0,

∑
k (1+ gi )d

k
i ti ], gi = 0.1

PO’s bid

number of spectrum offerings ok
j [ [0, 1000]

unit price qk
j = 0.1wk + 0.05

PO’s group discount rule

levels of discount lj∈ [0, 2]
group size {N/4, N/3 }
discount Dl

j = 20%l + d, l [ {1, 2}
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The feasible solution is the intersection of each round’s allocation
result.

In the third experiment, we still observe the relationship between
the bidder satisfaction ratio and the increasing number of SUs, but
with changing number of maximum bidding channels from 200
channels to 1000 channels. We show the influence on the number
of maximum bidding channels per PO in Fig. 9 taking the
E-Greedy algorithm. When the number of traded channels per PO
gets larger, the satisfaction ratio of SUs becomes larger
accordingly. That means, more SUs can fulfil their tasks.

The fourth experiment observes the relationship between the total
utility and the increasing number of SUs. We compare the
differences between the proposed algorithms and the random
allocation method with changing values m and K. The results are
shown in Fig. 10. The dotted lines are the results when m = 5 and
K = 3 while the dashed lines represent m = 9 and K = 4. Under the
two scenarios, as the number of SUs increases from 100 to 900,
total utility grows for all algorithms. However, the random
allocation method has a poor utility comparing with the proposed
algorithms. For example, when m = 5, K = 3 and the number of
SUs n = 500, the total utility for G-Greedy is 1.34 and for
E-Greedy is 2.63, whereas the utility is about 1.04 for the random
method. Therefore, total utility of G-Greedy is about 22.3% higher
than the random method and E-Greedy has about 60.45% utility

gain than the random method. What else can be seen is that the
total utility of random method prone to converge to a constant
with the growing number of SUs. When it comes to the proposed
methods, our algorithms keep a growing trend under the above
scenarios. With the growing of PO number m from m = 5 to m = 9
and the maximum spectrum type number K from K = 3 to K = 4,
the total utility grows accordingly. As there are more channels
offered by the POs, more SUs’ requirement can be guaranteed. On
average, when m = 5, K = 3, the performance gain of G-Greedy to
the random allocation method is 25.44% with a performance gain
of E-Greedy to the random method 61.03%. When m = 9, K = 4,
the performance gain of G-Greedy to the random allocation
method is 30.99% with a performance gain of E-Greedy to the
random method 58.23%.

The fifth experiment observes the allocation efficiency with the
number of POs. In this experiment, we set the number of SUs at n
= 500 and let K = 3. The results that correspond to this study are
depicted in Fig. 11. With the growing number of POs, the
allocation efficiency drops quickly when the number of POs is
<15 and almost reaches to a constant when the number of POs
reaches 35. That is because when K is fixed, then the spectrum
demands of SUs will stay. For each algorithm, the increase of PO
numbers will result in lower allocation efficiency due to the stable
allocation result and the higher number of offered spectrums. It is
obvious that, both G-Greedy and E-Greedy have higher allocation

Fig. 9 Bidder satisfaction ratio vs. number of SUs with changing channels
Fig. 11 Allocation efficiency vs. number of POs

Fig. 12 Allocation efficiency vs. number of SUsFig. 10 Total utility vs. number of SUs with changing m and K
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efficiency than the random allocation method. For example, when
there are 20 POs, under the given setting, the allocation efficiency
for E-Greedy and G-Greedy is 16.13 and 11.9%, respectively.
Both of them are higher than the 8.4% allocation efficiency of the
random allocation method.

Finally, we examine the allocation efficiency with the number of
SUs. The results are shown in Fig. 12. This figure illustrates that the
allocation efficiency grows with the increasing number of SUs and
among the three different methods, both G-Greedy algorithm and
E-Greedy algorithm outperform the random allocation method.

From the aforementioned discussions, we can now draw the
conclusion that G-Greedy and E-Greedy are efficient to allocate
spectrum resources under the setting discussed in this paper and
E-Greedy is better than G-Greedy.

6 Conclusion

In this work, a new lightweight spectrum combinatorial double
auction scheme is proposed for CR networks with multiple
heterogeneous spectrum bands owned by POs and demanded by
multiple SUs. Different from existing works, our scheme can fit
for a ubiquitous setting where there are different kinds of spectrum
bands owned at the same PO. We construct a combinatorial double
auction mechanism to allocate the spectrums and design a greedy
algorithm named G-Greedy to solve the allocation problem. Then,
we further enhance the performance of G-Greedy by employing
group discount scheme E-Greedy. By adopting a Vickrey-like
mechanism, we analyse the economic properties of the proposed
schemes and show that the schemes are economically robust.
Numerical results indicate that the proposed algorithms are better
than the random method and the group discount scheme outperforms
the random allocation scheme and the McAfee-based scheme.
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