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Abstract: In this study, the authors propose simple methods to evaluate the achievable rates and outage probability of a
cognitive radio (CR) link that takes into account the imperfectness of spectrum sensing. In the considered system, the CR
transmitter and receiver correlatively sense and dynamically exploit the spectrum pool via dynamic frequency hopping.
Under imperfect spectrum sensing, false-alarm and miss-detection occur which cause impulsive interference emerged
from collisions due to the simultaneous spectrum access of primary and cognitive users. That makes it very
challenging to evaluate the achievable rates. By first examining the static link where the channel is assumed to be
constant over time, they show that the achievable rate using a Gaussian input can be calculated accurately through a
simple series representation. In the second part of this study, they extend the calculation of the achievable rate to
wireless fading environments. To take into account the effect of fading, they introduce a piece-wise linear curve fitting-
based method to approximate the instantaneous achievable rate curve as a combination of linear segments. It is then
demonstrated that the ergodic achievable rate in fast fading and the outage probability in slow fading can be
calculated to achieve any given accuracy level.

1 Introduction

This work was partially supported by the National Science
Foundation, USA, under Grant No. 1509006. A part of this work
was presented at the IEEE Int. Conf. on Commun. and Electronics
(ICCE), Da Nang. August 2014 [1]. Cognitive radio (CR) has
been considered as a revolutionary wireless communication
paradigm [2] to improve the spectral efficiency. In CR, unlicenced
users, or secondary users (SUs), are allowed to access the
frequency bands (F-bands) when primary users (PUs) are absent
[2]. By intelligently sensing and adapting to the environment, SUs
can identify the temporal communications opportunities (spectrum
holes) and utilise them without causing harmful interference to
PUs’ communication links. One of the prospective CR models is
dynamic frequency hopping (DFH) [3, 4] in which the working
F-bands of PUs users are divided into small sub-channels to form
a spectrum pool. An SU can exploit this spectrum pool by
performing spectrum sensing and dynamically hopping over these
sub-channels to establish SU communication links when temporal
white spaces are available. In fact, this set of sub-channels is
dynamically changed depending on PU activities over the channel.
Once PU wants its own resources, all SUs must leave, releasing
the corresponding vacant sub-channels to the PU [3]. Since SUs
dynamically hop over sub-channels, their links are less affected by
PU activities [5].

While spectrum sensing can be performed effectively using
various advanced sensing schemes (please see [6, 7] and
references therein), this operation is not perfect in practice, which
results in false-alarm and miss-detection events. When we have
false-alarm, the SU fails to utilise the interference-free channel. On
the other hand, when the miss-detection happens, an SU fails to
detect an active PU and collisions occur. As a result, impulsive
interference is generated due to the simultaneous spectrum access

of both PU and SU and affects the CR link. While considering the
imperfectness of spectrum sensing at the CR transmitter (TX), the
analysis in [8, 9] studied the achievable rate under the assumption
of perfect knowledge of the state of the PU interference at the CR
receiver (RX). Therefore, the achievable rate can only be
considered as an upper-bound on the capacity of a CR link. Some
recent efforts have studied cooperative sensing techniques [10, 11]
and intelligent power control [12, 13] to enhance the CR
performance. However, these works do not completely take into
account the miss-detection and false-alarm events. The
sensing-energy efficiency and sensing-throughput trade-off of CR
networks have also been investigated in [9, 14] but with the same
drawbacks. Recently, the error performance of CR systems has
been analysed under imperfect spectrum sensing in [15] but the
results apply to only uncoded CR systems. In a practical scenario
under miss-detection and false-alarm events, due to the presence
of interference generated from the PU, the channel is no longer
Gaussian and calculating the achievable rate is very difficult.
Herath et al. in [16] attempted to study the achievable rate of such
a CR link using DFH in a frequency pool for opportunistic
spectrum sharing. Under the assumption that both the CR TX and
RX can access the same sensing information, the achievable rates
are calculated based on raw approximations. As a consequence,
the accuracy level cannot be controlled. In addition, the work in
[16] assumed a static CR channel where the channel gains are
assumed to be constant. This assumption therefore does not fit
very well to a dynamic fading wireless environment. The raw
calculations in [16] cannot be extended to such circumstance,
since one needs to consider the effects of fading in addition to
impulsive interference from PUs.

Motivated by the above observation, in this paper, we propose a
simple method to accurately evaluate the achievable rate of a
realistic CR link using DFH in a frequency pool for opportunistic
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spectrum sharing that takes into account the imperfectness of
spectrum sensing. While this work can be considered as an
extension of our prior work in [16], the contributions of this
submission are much more comprehensive where novel methods
are proposed to calculate the achievable rates and the outage
probabilities over both static and fading channels to achieve any
accuracy level. Extensive Monte Carlo simulations are therefore no
longer needed. Our detailed contributions can be summarised as
follows:

† In the first part of this paper, we consider the static channel model
where the channel gain remains constant as similar to [16]. However,
instead of using raw approximations, we show that the information
rate achieved by a Gaussian input can be calculated using a simple
series representation. This provides an effective and accurate way
to calculate the achievable rate.
† More importantly, we extend the calculation of the ergodic
achievable rate in fast Rayleigh fading and the outage probability
in slow Rayleigh fading environments in the second part of this
paper. Given that the instantaneous achievable rate can be
expressed in closed-form, we propose a piece-wise linear curve
fitting (PLCF)-based method to approximate the instantaneous
achievable rates curve as a combination of linear segments. It is
then demonstrated that the ergodic achievable rate in fast fading
and the outage probability in slow fading of the considered CR
systems in the presence of sensing imperfection can be calculated
effectively to achieve any given accuracy level.

The remainder of this paper is organised as follows. In Section 2,
the considered DFH CR link is introduced. Section 3 presents a
simple way to calculate the achievable rate over the static channel
to achieve any predetermined accuracy level. In Section 4, the
calculation of the ergodic achievable rate in fast fading
environment is provided. The calculation of the outage probability
in slow fading is also presented in this section. Numerical results
are then provided in Section 5 to confirm the analysis. Finally,
Section 6 concludes this paper.

2 CR under DFH: system model

2.1 Channel model

In this paper, we consider the CR system employing DFH as in [3,
15]. In this DFH system, the PU utilises an F-band in a
time-slotted transmission structure and it is assumed that the PU
occupies a time-slot with probability p. As shown in Fig. 1, a
frequency spectrum pool is formed by using several frequency
subchannels over PU F-bands [3, 4]. The SU then dynamically
hops over these sub-channels and establishes its transmission when
the channel is free of PU signal. We assume that the hopping
sequence is known to both SU TX and RX [16, 17], and the SU is
synchronised with the PU time-slot structure [18]. At the
beginning of each time-slot, a decision regarding the presence or
absence of PU signals is made available at both the SU TX and
RX. This can be achieved when the RX knows the sensing
information from the TX via a reliable feedforward link. In a more
practical scenario, a fusion sensing architecture can be employed
to collect all sensing information and a final sensing decision is
made at an access point and sent to the SU terminals [19].

Since the spectrum sensing is not perfect in practice, it is
important to take into account the imperfectness of the spectrum
sensing, which is characterised by the probabilities of
miss-detection and false-alarm with the probabilities Pm and Pf,
respectively [20]. Under the miss-detection event, SU fails to
detect an active PU. In this event, the SU link is affected by an
impulsive interference generated from the PU transmission. On the
other hand, false-alarm occurs in the event that no PU is active but
SU postulates one. Furthermore, in the events of false-alarm with
probability Pf and correct detection with probability (1− Pm), the
SU channel outputs are respectively noise and noise plus
interference only (i.e. without SU transmission). Depending on the
sensing techniques applied, for example, energy detection [6], we
can calculate these two parameters straightforwardly [21]. It is
clear that Pm and Pf depend on the noise level, and the strength of
interfering signal from PU.

To establish the channel model of interest in further detail, let be
be a Bernoulli random variable that represents the cases of SU
perceiving either a busy time-slot, that is, P(be = 0), or free
time-slot, that is, P(be = 1). It can be seen that the event be = 0
indicates the case of false-alarm or correct detection. Therefore,
P(be = 0) = p(1− Pm)+ (1− p)Pf . Under this event, SU TX
keeps silent and channel erasure can be declared by SU RX. On
the other hand, under the event be = 1, the channel is considered to
be free from SU perspective and SU TX will transmit a complex
signal x. Taking into account the miss-detection event of the
presence of a PU, the channel output y can then be expressed as

y|be=1 = g · x+ bmI + n. (1)

In (1), bm is Bernoulli random variables with state space {0, 1}
where ‘bm = 1’ indicates the miss-detection of the presence of a
PU and we have P(bm = 1) = pPmW p1. For convenience, we
denote peW P(be = 1) throughout this paper. Note that the input
is subject to the average power constraint E(be|x|

2)≤ 2Px.
Moreover in (1), g is the channel gain, n� CN 0, 2s2

n

( )
represents

the thermal noise, and I is the PU interference seen by SU RX,
I� CN 0, 2s2

I

( )
. We also define nTW bmI + n as a total noise,

which is no longer Gaussian distributed.
In this paper, we consider two different cases of the channel gain

g. Specifically, for a static channel as in [16], we have g = 1. On the
other hand, in a wireless fading environment, we consider Rayleigh
fading in which the magnitude of g follows Rayleigh distribution, or
equivalently, α = |g|2 is exponentially distributed. It is also assumed
that g is available at the CR RX but not the TX.

2.2 Achievable rates and outage probability

For the above model, as shown in [16], the use of a Gaussian input x
is asymptotically optimal. As such, for a static channel with g = 1, the
information rate achieved by the Gaussian input can be calculated as

Cs = I (x; y, be) = I (x; be)+ I (x; y|be)
= P(be = 1)I (x; y|be = 1)

= pe[h(y)− h(nT)] (2)

where I (·) is the mutual information between the corresponding
variables and h(y) and h(nT) are entropy values of y and nT,
respectively. It should be noted that the above achievable rate
corresponds to the case of be = 1. It is because the SU RX declares
channel erasures on the noise and noise plus interference outputs
when we have the realisation be = 0.

In the case of fading channels and under the assumption of
ergodicity for fading gains, g can be assumed to change
independently from symbol to symbol. Therefore, the ergodic
achievable rate can be obtained by averaging over the fading gain
g as follows

Cf = pe[Eg[h(y|g)]− h(nT)]. (3)Fig. 1 Frequency spectrum pool in PU F-bands
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In (3), h(y|g) is the differential entropy of the output for a given g. On
the other hand, for a slow fading channel where g is assumed to
remain constant, one has the outage probability, which is defined
as the probability that the achievable rate for a given realisation g
is smaller than a desired rate r. The outage probability can be
expressed as

Pout(r) = Pr {[h(y|g)− h(nT)] ≤ r} (4)

In general, due to the presence of the interference from the PU, there
does not exist an effective method to calculate Cs, Cf, and Pout(r).
Even for the static channel, the calculation of Cs in [16] was relied
on some rough approximations and the accuracy might be an
issue. It is because the calculation in [16] relied on specific levels
of signal-to-noise ratio (SNR). In the subsequent sections, we shall
introduce new methods to evaluate Cs, Cf, and Pout(r) in an
effective manner to achieve any level of accuracy.

3 Achievable rates of CR static channel

In this section, the focus is on the calculation of Cs for the static
channel. Instead of relying on approximate calculations [16], we
will show that Cs can be expressed in closed-form using a simple
series representation and we can achieve any level of accuracy.

Let us start with the differential entropy of the total noise h(nT).
Using the same analysis as in [16], we have

h(nT) = −E log fnT (nR, nI)
( )[ ]

= log
2p s2

n + s2
I

( )
p1

( )
+ log (e)

s2
n + p1s

2
I

s2
n + s2

I

( )
− Y(nR, nI).

(5)

where nR and nI, respectively, denote real and imaginary components
of nT, and

Y(nR, nI)=
∫1
0

∫1
0
log 1+ d exp − n2R + n2I

2s2
n

( )[ ]
fnT (nR, nI) dnR dnI

(6)

In (6), we denote d = (1− p1) s
2
n + s2

I

( )
/ p1s

2
n and

1/s2 = (1/s2
n)− (1/(s2

n + s2
I )). Furthermore, fnT ( · , · ) is the

joint probability density function (PDF) of nR and nI and is given as

fnT (nR, nI) =
(1− p1)

2ps2
n

e−(n2R+n2I )/2s
2
n

+ p1
2p s2

n + s2
I

( ) e−(n2R+n2I )/2 s2n+s2I

( )
. (7)

Using the polar coordinator nR = r cos (f) and nI = r sin (f), (6) can
be further expressed as

Y(nR, nI) =
log (e)

2

(1− p1)

s2
n

I1 +
p1

s2
n + s2

I

I2

[ ]
(8)

where

Ii =
∫1
0
ln 1+ de−wx( )

e−bix dx,

with i = {1, 2}, x = r2, j = 1/2σ2, b1 = 1/2s2
n, and

b2 = 1/2 s2
n + s2

I

( )
. Now, let y =jx− ln δ and

m = b1/w = s2/s2
n. The parameter I1 can then be expressed as

I1 =
e−m ln d

w

∫1
− ln d

ln (1+ e−y)e−my dy. (9)

Using integration by parts with u = ln(1 + e−y) and dv = e−μy dy, we
obtain du =− (e−y/(1 + e−y))dy and v =− e−μy/μ. Applying this
transformation to (9), we have

I1 =
e−m ln d

w

∫1
− ln d

u dv

= ln (1+ d)

b1
− d−m

b1

∫1
− ln d

e−(m+1)y

(1+ e−y)
dy. (10)

Now, let z = e−y/(1 + e−y). I1 in (10) can be then calculated as

I1 =
ln (1+ d)

b1
− d−m

b1

∫d/(1+d)

0
zm(1− z)−(1+m) dz

=(a) ln (1+ d)

b1
− d−m

b1
xa
∫1
0
ua−1(1− ux)−a du

=(b) ln (1+ d)

b1
− d−m

b1
xa
∫1
0

1− t

1− xt

( )a−1

1− x(1− t)

1− xt

[ ]−a (1− x)

(1− xt)2
dt

= ln (1+ d)

b1
− d−m

b1
xa
∫1
0

1− t

1− xt

( )a−1 1− x

1− xt

( )−a (1− x)

(1− xt)2
dt

= ln (1+ d)

b1
− d−m

b1
xa(1− x)−(a−1)

∫1
0

(1− t)a−1

1− xt
dt

= ln (1+ d)

b1
− x

b1

∫1
0

(1− t)a−1

1− xt
dt

(11)

where x = δ/(1 + δ), a = μ + 1, and u = z/x in (a). Furthermore, in (b),
we set t = (1− u)/(1− xu), which yields u = (1− t)/(1− xt) and du =
− ((1− x)/(1− zt)2)dt. Using the geometric series representation of
the term 1/(1− xt) in (11), we then obtain

I1 =
ln (1+ d)

b1
− x

b1

∫1
0
(1− t)a−1

∑1
n=0

(xt)n dt

=(c) ln (1+ d)

b1
− 1

b1

∑1
n=0

xn+1
∫1
0
va−1(1− v)n dv

=(d) ln (1+ d)

b1
− 1

b1

∑1
n=0

xn+1
∫1
0

∑n
k=0

(−1)k
n

k

( )
va+k−1 dv

= ln (1+ d)

b1
− 1

b1

∑1
n=0

∑n
k=0

n

k

( )
(−1)kxn+1

k + m+ 1
. (12)

Note that in (c), we change the parameter v = 1− t and in (d ), we

apply the binomial series representation (1+ x)a = ∑1
k=0

a
k

( )
xk .

As we show in the Appendix, the truncation of the first N terms
from n = 0 to n = (N− 1) will introduce an error that is
upper-bounded by

error ,
1

b1

∑1
n=N

xn+1

m+ 1
= 1

b1(m+ 1)

xN+1

1− x

( )
. (13)

Since x∈ (0, 1), it can be seen that the error decreases as N increases
and it converges to zero when N→∞. Therefore, the calculation of
I1 can be done with any accuracy level. In particular, for a given error
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level e, one can use the first NnT
1 = ln (eb1(m+ 1)(1− x))

ln x
− 1

⌈ ⌉
terms to achieve an error that is smaller than e.

Using a similar procedure, we can obtain I2 in (5) by replacing β1
and μ in I1 by β2 and l = b2/w = s2/(s2

n + s2
I ), respectively. For I2,

to achieve an error that is smaller than e, we can use the first

NnT
2 = ln (eb2(l+ 1)(1− x))

ln x
− 1

⌈ ⌉
terms in the series

representation.
Combining with I1 calculated earlier, we obtain the closed-form

expression of the entropy of nT, which is given in (14)

h(nT) = log
2ps2

n s2
n + s2

I

( )
s2
n + (1− p1)s

2
I

( )
+ log (e)

s2
n + p1s

2
I

s2
n + s2

I

( )

+ log (e)
(1− p1)s

2
ns

2
I

s2
ns

2
I + s2

n s2
n + s2

I

( )
( )∑1

n=0

∑n
k=0

n

k

( )

(−1)k (1− p1) s
2
n + s2

I

( )
/((1− p1)s

2
I + s2

n)
( )n+1

k + 1+ s2
n + s2

I

( )
/s2

I

( )
+ log (e)

p1s
2
I

s2
n + s2

I

( )∑1
n=0

∑n
k=0

n

k

( )

(−1)k (1− p1) s
2
n + s2

I

( )
/((1− p1)s

2
I + s2

n)
( )n+1

k + 1+ (s2
n/s

2
I )

(14)

It is not hard to verify that by using the first NnT
= max (NnT

1 , NnT
2 )

in the two series in (14), the maximum error in the approximation of
h(nT) is

enT = e
log (e)

2

(1− p1) s
2
n + s2

I

( )+ p1s
2
n

s2
n s2

n + s2
I

( )
[ ]

. (15)

Now, turning our attention to the differential entropy of the
output, it is easy to show that the moment generating function
of the output is

fy(v1, v2) = e−(1/2)b v2
1+v2

2

( )
1− p1 + p1e

−(1/2)s2I v2
1+v2

2

( )( )
,

(16)

where b = (Px/ pe)+ s2
n. Then, taking the inverse Fourier

transform of (16) yields the PDF of yGI as

fy(yR, yI) =
(1− p1)

2pb
e−(y2R+y2I )/2s

2
n

+ p1
2p b+ s2

I

( ) e−(y2R+y2I )/2 b+s2I

( )
, (17)

where yR and yI are the real and imaginary components of the joint
PDF of yGI. Therefore, the differential entropy of yGI can be
represented as

h(y) = −E[ log ( fy(yR, yI))]

= log
2p b+ s2

I

( )
p1

( )
+ log (e)

b+ p1s
2
I

b+ s2
I

( )
− Y(yR, yI).

(18)

where

Y(yR, yI) =
∫1
0

∫1
0
log 1+ d exp − y2R + y2I

2b

( )[ ]
fy(yR, yI) dyR dyI

(19)

Observe that the differential entropy h(y) in (18) has the same
form with the differential entropy of the total noise in (5). By
replacing s2

n in (5) by β, we obtain the differential entropy h(y)
in a simple series representation as follows

h(y)=−E[ log ( fy(yR, yI))]

= log
2p b+s2

I

( )
p1

( )
+ log(e)

b+ p1s
2
I

b+s2
I

( )

+ log(e)
(1− p1)bs

2
I

bs2
I +b b+s2

I

( )( )
×
∑1
n=0

∑1
k=0

n

k

( )
(−1)k (1− p1) b+s2

I

( )
/((1− p1)s

2
I +b)

( )n+1

k+ 1+ b+s2
I

( )
/s2

I

( )
+ log(e)

(p1)s
2
I

b+s2
I

( )×∑1
n=0

∑1
k=0

n

k

( )

(−1)k (1− p1) b+s2
I

( )
/((1− p1)s

2
I +b)

( )n+1

k+ 1+ (b/s2
I )

. (20)

As similar to the analysis for h(nT), it can be verified that by using
the first Ny = max (Ny

1 , N
y
2 ) in the two series in (20), the maximum

error in the approximation of h(y) is

ey = e
log (e)

2

(1− p1) b+ s2
I

( )+ p1b

b b+ s2
I

( )
[ ]

. (21)

Here, Ny
1 and Ny

2 can be calculated as similar to NnT
1 and NnT

2 by
replacing s2

n by β in calculating β1, β2, μ, l, and x.
Finally, substituting h(y) and h(nT) into (2) yields the achievable

rate Cs in closed-form. The truncation of the first
N = max (Ny, NnT

) terms in the four series representations result
in a maximum error of max (ey, enT ).

4 Achievable rates and outage probability of
CR Rayleigh fading channel

In this section, we consider the CR SU link in a wireless fading
environment. We first focus on the calculation of the ergodic
achievable rate in fast fading before extending to the computation
of the outage probability in slow fading.

4.1 Calculation of Cf

Observe from (3) that the key point in obtaining Cf is to calculate the
differential entropy h(y) averaged over g. It is because the differential
entropy h(nT) can be effectively calculated as in the previous section.
For a given g, we can treat the channel as a static channel. As such,
the instantaneous differential entropy of the output h(y|g) of the
considered CR link can be expressed in closed-form by replacing
s2
n in (14) by k(g)W |g|2(Px/ pe)+ s2

n

( )
. Since h(y|g) is a function

of α = |g|2, with a slight abuse of notation, hereafter, let us denote
h(y|g) as h(y|α) and k(g) as k(α), respectively. Note that α follows
the exponential distribution, that is, p(α) = e−α. We then have

h(y) =
∫1
0
h(y|a)e−a da. (22)

Given that h(y|α) can be easily calculated for a given α using the
simple series representation derived earlier, we can adopt the
PLCF method in [22] to evaluate the integral in (22). The main
idea of PLCF is to approximately represent a curve using linear
segments in which we can control the gap between the curve and
the segments with any given accuracy level. However, the PLCF
method can only be applied to a curve consisting of finite values.
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Since h(y|α) is not finite when α goes to∞, the PLCF method cannot
be used directly. Our idea is to approximate h(y|α) by a simple
function of α when α is beyond a certain threshold αth that
depends on the accuracy level, and to approximate h(y|α) using
PLCF when α < αth. To this end, we consider the use of an
upper-bound on the achievable rate derived in [16] under the
assumption of a Gaussian output. In particular, if the output is
Gaussian distributed, for a given α, the differential entropy of the
output can be expressed as

hGO(a) = log 2pe k(a)+ p1s
2
I

( )( )
. (23)

While hGO(α) is an upper-bound on h(a)W h(y|a), it is observed via
numerical results in [16] that h(α) approaches hGO(α) when α goes to
∞. To further evaluate the difference between hGO(α) and h(α), we
first express h(α) as follows

h(a) = log
2pk(a) k(a)+ s2

I

( )
k(a)+ (1− p1)s

2
I

[ ]
+ log (e)

k(a)+ p1s
2
I

k(a)+ s2
I

− Y′(yR, yI) (24)

where Y′(yR, yI) is obtained by replacing s2
n in (6) by k(α). Since

0 , exp −(y2R + y2I )/2k(a)
( ) ≤ 1 for −∞ < yR, yI <∞, Y′(yR, yI)

can be upper-bounded by

Y′(yR, yI) ≤ log 1+ (1− p1) k(a)+ s2
I

( )
p1k(a)

( )
. (25)

Then, from (24), we obtain the lower bound on h(α)

h(a) . log
2pk(a) k(a)+ s2

I

( )
k(a)+ (1− p1)s

2
I

[ ]
+ log (e)

k(a)+ p1s
2
I

k(a)+ s2
I

. (26)

Using this result, the difference between hGO(α) and h(α), Δh =
hGO(α)− h(α), can be upper-bounded as follows

Dh , log 1+ p1(1− p1)s
4
I

k(a) k(a)+ s2
I

( )
( )

+ log (e)
(1− p1)s

2
I

k(a)+ s2
I

, log (e)
(1− p1) k(a)+ p1s

2
I

( )
k(a)+ s2

I

[ ]
· s2

I

k(a)
(27a)

≤ log (e) 1− p1
( )

s2
I

k(a)
, (27b)

where (27a) is achieved by using the inequality ln(1 + x) < x with x >
0 and (27b) follows the fact that (k(a)+ p1s

2
I )/(k(a)+ s2

I ) ≤ 1 for
α≥ 0 and 0≤ p1≤ 1.

Observe that the upper-bound on Δh in (27b) is a decreasing
function of α. For a given error tolerance e, it can be easily
verified that if we choose αth such that log (e)(1− p1)s

2
I /

k(ath) = e, or equivalently, ath = pe ( log (e)(1− p1)s
2
I /ePx)−

(
(s2

n/Px)), the difference Δh is smaller than e for α≥ αth.
Since αth is a fixed value, h(α) is finite for α < αth. In this case, we

can apply the PLCF method to approximate h(α) using linear
segments in which the approximation error is always
upper-bounded by the chosen error tolerance e. Specifically, the
approximation of h(α) can be expressed in the form of linear
segments as follows

h(a) ≃ ama+ bm, for am−1 , a ≤ am, (28)

where m = 1, . . . , M , α0 = 0, and αM = αth. Note that am and bm,
respectively, are the slope and intercept of the mth segment (αm−1,
αm] of the PLCF.

Given the above approximations with controllable error levels, we
can now proceed to evaluate the average achievable rate Cf. By using
PLCF in the range (0, αth] and using h(α) = hGO(α) in the range [αth,
∞), we obtain the following approximation on the entropy h(y)

h(y) ≃
∑M
m=1

∫am
am−1

(ama+ bm)e
−a da

+
∫1
aM

log 2pe k(a)+ p1s
2
I

( )( )
e−a da W A+ B. (29)

where A is the summation of the first M integrals and B is the last
integral in (29). To evaluate A in (29), we represent the integrals
using series representations as follows

A =
∑M
m=1

∫am

am−1

(ama+ bm)e
−a da

=
∑M
m=1

ame
−a(1+ a)

∣∣a=am−1

a=am
+

∑M
m=1

bme
−a

∣∣a=am−1

a=am
(30)

where we have used the following integral

∫b
a
xne−x dx = −e−xn!

∑n
i=0

xi

i!

∣∣∣∣∣
x=b

x=a

(31)

for n = 0 and n = 1.
Next, we can write the last integral B in (29) as follows

B =
∫1
aM

log 2pe k(a)+ p1s
2
I

( )( )
e−a da

=
∫1
aM

log 2pe s2
n + p1s

2
I

( )( )
e−a da+

∫1
l

log (a′ + 1)ne−na′ da′

= log 2pe s2
n + p1s

2
I

( )( )
e−aM

+ log (l+ 1)e−nl + log (e)enE1(n(l+ 1)), (32)

where l = aMPx/ pe s2
n + p1s

2
I

( )
, n = pe (s2

n + p1s
2
I )/Px

( )
, a′ =

a Px/ pe s2
n + p1s

2
I

( )( )
, and E1( · ) is the exponential integral

E1(z) =
�1
1 e−tz/t dt. In (32), the last equality is obtained using the

integral [23, eq. (4.337.1)].
By substituting A and B from (30) and (32) into (22), we obtain the

closed-form approximation of the differential entropy h(y) as

h(y)≃
∑M
m=1

(am+bm) e
−am−1 −e−am

( )+∑M
m=1

am am−1e
−am−1 −ame

−am
( )

+ log 2pe k(aM )+ p1s
2
I

( )( )
e−aM

+ log(e)epe (s2n+p1s
2
I )/Px

( )
E1 aM + pe

s2
n+ p1s

2
I

Px

( )
. (33)

It can be verified that the calculation in (33) results in an average
error �e that will not exceed e. Finally, by substituting the
differential entropies h(nT) and h(y) from (14) and (33) into (3),
we obtain the achievable rate Cf.

4.2 Calculation of outage probability

Now, for the outage probability in (4), it can be expressed as follows

Pout(r) = Pr {h(y|g)− h(nT) ≤ r} = Pr {g ≤ gmin} W Fg(gmin)

(34)

where gmin is the minimum required value of the received SNR in
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order to achieve the target rate r, gW aG is the received SNR, and
Fg( · ) is the cumulative distribution function of g. Since g follows
the exponential distribution, we then have

Pout(r) = Pr {h(y|g)− h(nT) ≤ r} = 1− exp −gmin

G

[ ]
(35)

For a desired rate r, the outage probability Pout(r) can be calculated
by finding the minimum SNR gmin to achieve the rate r. To this end,
we can apply the PLCF-based method to approximate gmin for a
pre-determined error level. In particular, for a given r, it is easy to
calculate (r + peh(nT))/pe. That gives us a specific value of h(y|g).
Now, using the PLCF technique, we can find the slope and
intercepts am and bm of the linear segment that h(y|g) belongs,
which is given as amg + bm. As a result, gmin can be approximated as

gmin �
1

am

r

pe
− bm + h(nT)

[ ]
(36)

where the value of m is such that rm−1 < r≤ rm. For completeness, we
have provided the slope and intercept values am and bm, respectively,
in Table 1 with the accuracy e = 0.01. The outage probability can
then be effectively calculated as

Pout(r) = 1− exp − r

pe
− bm + h(nT)

( )
1

amG

[ ]
. (37)

Given the above expression for the outage probability, one can also
obtain an alternative performance measure referred to as ɛ− outage
capacity [24]. This value can be understood as the maximum data
rate that can be achieved such that the outage probability is less
than ɛ. By solving Pout(r) = ɛ, it is straightforward see that this ɛ−
outage capacity can be expressed in closed-form as

Cout(1) = pe −amG log (1− 1)+ bm − h(nT)
[ ]

. (38)

5 Numerical results

This section provides numerical results to verify the theoretical
derivations and calculations in the previous sections. In all the
results for the achievable rate, it is drawn versus the average SNR,
G = Px/s

2
n. The value of interference-to-noise ratio j = s2

I /s
2
n is

set at 20 dB, unless otherwise stated. For all of the figures, the
values of Pm = Pf = 0.1 are selected. These values are specified as
the maximum tolerable limit of sensing imperfectness in the CR

standard IEEE 802.22 [20]. It is also worth mentioning that in
practice, Pm and Pf depend on a given sensing technique and the
proposed method can be applied to any Pm and Pf. When using
the proposed series presentations to calculate the total noise
entropy, the output entropy, and the rate, we follow the selection
criteria discussed in Section 3. A to select the number of terms N
in the series representation to achieve high accuracy. Such
selection is SNR dependent and N can run from a few hundreds to
a few thousands in the SNR’s range of interest. Since (15) and
(21) are the upper bounds on the approximation errors, we observe
that the use of the first N = 1000 terms in any series representation
is sufficient. This value is therefore adopted in all calculations.

5.1 Achievable rates of CR static channel

We first demonstrate the accuracy of the calculation of the achievable
rate over the static channel. Fig. 2 plots the achievable rate Cs

calculated from (2) using the series representation of h(nT) in (14)
and the series representation of h(y) in (20) for three different
probabilities of the presence of PU, p = 0.1, p = 0.2, and p = 0.5.
For comparison, the achievable rates obtained by Monte Carlo
simulations are also provided. For the Monte Carlo simulations, at
a given Px, s2

I , and s2
n, 107 samples of the total noise plus

interference nT = bmI + n are generated, together with the same
number of samples of the input x. Note that I, n, and x are all
complex Gaussian, while bm is generated according to a Bernoulli
distribution with P(bm = 1) = pPmW p1. Then 107 samples of the
output y are created using y = x + n. From the complex samples of
the total noise plus interference nT, the differential entropy h(nT) is
calculated by averaging over 107 values of − log ( fnT (nR, nI)). The
differential entropy h(y) for given be = 1 can be calculated in a
similar manner using − log ( fy(yR, yI)). The achievable rate can
then be obtained as h(y)− h(nT). It can be observed from Fig. 2
that the proposed calculation matches perfectly with Monte Carlo
simulations. As a result, it can be used effectively to predict the
achievable rate without the need of lengthy Monte Carlo simulations.

5.2 Ergodic achievable rates in Rayleigh fading

Extending the results to the Rayleigh fading channel, we first
evaluate the ergodic achievable rates in fast fading. In Figs. 3 and
4, we compare the approximation of the proposed PLCF-based
method with Monte Carlo simulation results for two accuracy
levels, e = 0.1 and 0.01, respectively. In all cases, the achievable
rate curves are obtained for three different values of p, p = 0.1,
p = 0.2, and p = 0.5. Note that with Monte Carlo simulations, we

Fig. 2 Achievable rate Cs of the CR link obtained from the derived
calculation and Monte Carlo simulations over the static channel for
different values of p

Table 1 Coefficients for the PLCF as a function of SNR with error
tolerance e = 0.01

M rm+1 Slope (am) Intercept (bm)

1 0.3059428065 1.2382829816 3.2340169676
2 0.6184785530 0.9611303983 3.3171710663
3 0.9185473304 0.7296250082 3.4792410626
4 1.2396824871 0.5648865760 3.6769469716
5 1.5836106365 0.4201288158 3.9520142502
6 1.9391502641 0.3107991046 4.2691021532
7 2.3097001108 0.2265676063 4.6313338551
8 2.6849514800 0.1635014990 5.0286901069
9 3.0620405973 0.1179992878 5.4428016811
10 3.4447083244 0.08494261126 5.8725814981
11 3.8294539164 0.06092874895 6.3168824254
12 4.2168626682 0.04376901783 6.7665123886
13 4.6057323031 0.03140112866 7.2241700994
14 4.9959626147 0.02255873865 7.6849047385
15 5.3876827956 0.01619452593 8.1508117471
16 5.7802877795 0.01162143328 8.6205153803
17 6.1733602041 0.00833635638 9.0932852697
18 6.5670017584 0.00597835135 9.5682350248
19 6.9609352208 0.00428518388 10.045248052
20 7.3548793821 0.00307145685 10.523261602
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generate the same number of samples of the channel gain g. Then 107

samples of the output y are created using y = g · x + nT. A similar
procedure as in the static channel is then performed to obtain the
ergodic achievable rate. It can be seen from Figs. 3 and 4 that
while there is a small gap between the proposed calculation and
the Monte Carlo simulation when e = 0.1, the two results are
almost identical when e = 0.01 at any values of Γ and p. Via
extensive simulation results, we observe that e = 0.01 is sufficient
to provide an accurate estimation of Cf. The proposed calculation
can therefore serve as an attractive solution to calculate the rates.

5.3 Outage probability and capacity

In Fig. 5, the outage probability is plotted versus the achievable rate r
using the calculation in (37) for p = 0.1, 0.2, and 0.5. Here, the error
tolerance is chosen at e = 0.01. In line with the previous results, it can
be observed from Fig. 5 that the derived outage probability fits very
well with the Monte Carlo simulations. In this case, Monte Carlo
simulations are performed by first calculating r + h(nT) for a given
r using 107 samples of the total noise plus interference. The

outage probability can then be estimated by counting the number
of samples h(y|g) that is smaller than r + h(nT) and dividing by 107.

Similar results can also be seen with the alternative measure, the
outage capacity. In particular, shown in Fig. 6 are the outage
capacities against Γ when the systems are in 1, 5, and 10% outage.
It is clear that the proposed calculation is in full agreement with
the Monte Carlo simulations at the error tolerance e = 0.01.

6 Conclusion

In this paper, we proposed a simple and accurate method to calculate
the achievable rates and outage probability of a CR link using DFH
under a realistic condition of imperfect spectrum sensing for both
static and Rayleigh fading channels. Specifically, over a static
channel where the channel gain is assumed to be constant, we
showed that the achievable rate of the considered CR link can be
calculated using a simple series representation. The error
introduced from the truncation of this representation is controllable.
The calculation of the ergodic achievable rate in fast fading and the
outage probability in slow fading was also studied. In particular,

Fig. 4 Achievable rate Cf obtained from Monte Carlo simulations and
the derived calculation over Rayleigh fading with different values of p and
e= 0.01

Fig. 3 Achievable rate Cf obtained from Monte Carlo simulations and
the derived calculation over Rayleigh fading with different values of p and
e= 0.1

Fig. 5 Outage probability for Rayleigh fading channel for different values
of p. The average SNR Γ is set at 15 dB

Fig. 6 Outage capacity with 1, 5, and 10% outage obtained from Monte
Carlo simulations and the derived calculation over slow Rayleigh fading
with p = 0.1 and e= 0.01
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based on the closed-form expression of the differential entropies
calculated for the static channel, we introduced a PLCF-based
method to approximate the instantaneous achievable rate curve. It
was then demonstrated that the average achievable rate can be
calculated effectively to achieve any given accuracy level. The
PLCF-based method was also applied to effectively calculate the
outage probability. Numerical results were finally provided to
demonstrate the accuracy of the proposed methods.

Finally, it is worth mentioning that while we are able to provide
effective numerical methods to calculate the achievable rates and
outage probabilities, the proposed analytical results do not provide an
insight on the behaviour of the considered CR systems. It is therefore
very interesting to asymptotically study the effect of imperfect
spectrum sensing to the performance of the CR systems under
consideration. This interesting problem is currently under investigation.
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8 Appendix 1: truncation of I1

When the first N − 1 terms of the series in I1 are truncated, the error
will be

error = 1

b1

∑1
n=N

∑n
k=0

n
k

( ) −1( )kxn+1

k + m+ 1
(39)

Since (1− v)n < 1, we have

xn+1
∫1
0
vm(1− v)n dv , xn+1

∫1
0
vm dv. (40)

It then follows that

∑n
k=0

n
k

( )
(−1)kxn+1

k + m+ 1
,

xn+1

m+ 1
(41)

Hence, the error will be upper-bounded as

error ,
1

b1

∑1
n=N

xn+1

m+ 1
= 1

b1(m+ 1)

xN+1

1− x

( )
. (42)
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