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Abstract. Log Aesthetic Curves (LAC) are visually pleasing curves which has been developed using monotonic 
curvature profile. Hence, it can be easily implemented in product design environment, e.g, Rhino 3D CAD systems.  
LAC is generally represented in an integral form of its turning angle. Traditionally, Gaussian-Kronrod method has been 
used to render this curve which consumes less than one second for a given interval. Recently, Incomplete Gamma 
Function was proposed to represent LAC analytically which decreases the computation time up to 13 times. However, 
only certain value of shape parameters (denoted as α) which dictates the types of curves generated for LAC, can be used 
to compute LAC. In this paper, the classical Runge-Kutta (RK4) method is proposed to evaluate LAC numerically to 
reduce the LAC computation time for arbitrary, α. The preliminary result looks promising where the evaluation time is 
decreased tremendously. This paper also demonstrates the accuracy control of LAC by reducing the stepsize of RK4. The 
computation time and the accuracy for various α, are also illustrated in the last section of this paper.  
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INTRODUCTION 

Customers are attracted by the aesthetic appearance of the products before distinguishing its detailed functional 
capabilities. Thus, the aesthetic shapes of products dictates to the success of the industrial product [1,2]. In the field 
of Computer Aided Geometric Design (CAGD) and Computer Aided Design (CAD), the constructing of aesthetic 
curves has been actively investigated. This curve can be utilized in the design of highways, railway route and etc. 
[3]. The main characteristic of these curves is they have monotonic curvature profiles [4,5]. The study on curvature 
profile is discussed in detail in [6].  

In 1999, Harada et al. [7] proposed a novel method to analyse the properties of planar curve called Logarithmic 
Distribution Diagram of Curvature (LDDC) where the relationship between the length frequencies of segmented 
curve with regards to its radius of curvature is plotted in a log-log coordinate system. Kanaya et al. [5] presented K-
vector and later renamed it as Logarithmic Curvature Graph (LCG) [9,10]. If the gradient of LCG is constant, then 
the curve is categorized as aesthetic curves [5,7]. Therefore, LCG yields the analytic relationship between the 
interval of radius of curvature and its corresponding length frequency. Moreover, it is also suitable in calculating the 
aesthetic value of planar curve [9].  

Miura [11] described the solution in detail for LCG and he presented the linear LCG as the general formula of 
Log Aesthetic Curve (LAC). There are four types of nature spiral that can be formed by LAC, i.e. logarithmic spiral, 
cornu spiral, circle involute and Nielson’s spiral. The extension of LAC into Log Aesthetic Space Curve (LASC) 
had been discussed in [1,12]. Yoshida and Saito analysed the characteristics of the general formula and developed a 
method to control LAC alternatively. The research on combination of two linear LCG under certain condition had 
been done by Yoshida and Saito [13]. Furthermore, Yoshida et al. proposed LCG and Logarithmic Torsion Graph 
(LTG) for analysing the properties of arbitrary parametric curves [10]. In 2009, Levien and Sequin [14] proofed that 
LAC is the most promising curve for aesthetic design.  

In the same year, Miura et al. [15] employed the variational principle into LAC and utilised it as digital filter. 
Moreover, Gobithaasan et al. [12] extend the analysis of LASC to Generalize LASC (GLASC) by adding two extra 
degree of freedoms into LASC. In 2009, Gobithaasan et al. [9] analysed Generalised Cornu Spiral (GCS), proposed 
by Ali et al. [16], and reported that the gradient of LCG can be presented as a linear function and GCS is indeed a 
generalized aesthetic curve. They further extended LAC to Generalized Log-Aesthetic Curve (GLAC) which has 
extra degree of freedom [2]. In 2012, Ziatdinov et al. [17] presented an analytic solution of LAC in terms of 
Incomplete Gamma Function which reduced the computation time up to 13 times. Recent progresses include shape 
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analysis on GLAC [18], its drawable region which is wider than LAC [19] and the implementation of G2 LAC as 
plug-in for Rhino CAD system [20]. 

This paper proposes a numerical method which is called classical Runge-Kutta method to compute LAC. The 
final section reports measurement of computation time and its truncation error using classical Runge-Kutta method 
are compared with the analytic method, proposed by Ziatdinov et al. [17] for a better way to improve the 
performance of LACs’ computation.  

LOG AESTHETIC CURVE 

In this section, Logarithmic Curvature Graph (LCG) which is the straight line (linear LCG), is used to describe 
about LAC equation. The equation for LCG which has a slope, , is the fundamental equation of LAC [11]: 

 C
d
ds log)log(  (1) 

where s   is the arc length of a curve, 
  is the radius of curvature, and 
 C  is the constant. 
The following is obtained by differentiating and substituting Ce (  is the shape parameter of LAC) into the 
equation where  is in the range ,0 , 

 .
1

d
ds  (2) 

Integrating equation (2) and rewriting  in terms of arc length, s : 
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 varies from 0  to , s  and )(s  has various upper boundary and lower boundary which depending on the 
value. The upper boundary and lower boundary of s  and )(s  with respect to  can be obtained from [2,21]. 
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At the 0)(s , the point defined by equation (5) goes through the origin and its tangent vector is T0,1 . Referring 
to equation (3), the curvature radius equation in terms of arc length, s  is written as follows: 
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Substitute equation (6) into dsd 1
. Integrate the equation with s where 0)(s  when 0s . 

The turning angle of LAC, )(s  is: 
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The point on LAC )(sC  whose arc length, s  is defined on the complex plane as 
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Both equations (5) and (8) can used to render the points on LAC. The differences of these two equations are 
equation (8) is stable when the curve consist of inflection point ( ) and equation (5) is stable when the 

parameter approaches 0. Hence, equation (8) will be utilized when 5.0  and 2101 .Otherwise equation 
(5) will be used. In the next section, classical Runge Kutta (RK4) will be used to solve the numerical integration.  

CLASSICAL RUNGE-KUTTA METHOD 

Runge-Kutta methods can be represented in the form of Butcher tableau. Let an initial value problem be specified as 
follows: 
 00)(),,(' ytyytfy  (9) 
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where 
 

with h  as integration step size from [22]. Table 1 shows the value of coefficients for classical Runge-Kutta method 
in butcher tableau form. 

TABLE 1.  Butcher Tableau of Classical Runge-Kutta method 

k  ka  kb  
kc  

1 2 3 
1 0 0   1/6 
2 1/2 1/2   1/3 
3 1/2 0 1/2  1/3 
4 1 0 0 1 1/3 
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LAC IN DIFFERENTIATION FORM 

Equation (5) and (8) are both the general formulas for LAC. Since both equations are integrated, LAC equations in 
the form of differentiation are required if both equations are applied into classical Runge-Kutta method. Hence LAC 
formulas in the form of first order ODE can be written: 
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with the initial value 00x  and 00y . In this paper, we used equation (12) to compute LAC segment. 

PERFORMANCE METRIC 

The performance metric of each method is compared in terms of computation time ( )(nO ) and truncation error  
( )(hO ). Mathematica Version 8 has been used to generate the result. A simple computer built with Intel Pentium@ 
D CPU 2.80GHz with 4GB RAM was used to carry out this research. The classical Runge-Kutta method was 
programmed using Mathematica Version 8 along with Gaussian-Kronrod method and Incomplete Gamma Function. 
These methods are used to compare against classical RK method to elucidate its performance in computation LAC. 
The step size h  for classical method is fixed to }001.0,01.0,1.0{  and ]1,0[)(s . 

Computation Time 

We have generated LAC segment of each configurations for 5 times and the average value of computation time are 
reported in Appendices A and B. Appendix A shows the computation time of each method in average are 0.0215222 
seconds for classical Runge-Kutta method, 0.198989 seconds for Incomplete Gamma Function and 2.14036 seconds 
for Gaussian-Kronrod. It clearly indicated that classical Runge-Kutta method shorten the computation time for 
rendering LAC segment up to  9.3 times and 99.4 times correspond to Incomplete Gamma Function and Gaussian-
Kronrod respectively. Since we utilize the fixed step size, 001.0h , we may reduce the computation time by 
increasing the value of h  to 01.0  or 1.0  but compromising the accuracy.  

Truncation Error 

Incomplete Gamma Function is an analytic function, which is interpreted by simple and exact series representation 
[17]. Now that Incomplete Gamma Function is the exact solution for some , we have distinguished the truncation 
error for classical RK method and Gaussian-Kronrod by comparing with Incomplete Gamma Function. Appendix B 
displays the truncation error for classical RK method and Gaussian-Kronrod for several values of  and . The 
truncation error for classical RK method is approaching closer to the exact value when the fixed step size reduces.  

CONCLUSION AND FUTURE WORK 

This paper proposes the usage of classical Runge-Kutta method to render LAC instead of Gaussian-Kronrod or 
Incomplete Gamma Function. We have compared the performance metric of classical RK method with Incomplete 
Gamma Function which was introduced in [17] to show its efficiency and effectiveness. Furthermore, we have 
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divided the classical RK method into three different step sizes ( 001.0,01.0,1.0h ) to show the accuracy when the 
step size reduces. The classical RK method renders LAC segment up to 9.3 times faster than Incomplete Gamma 
Function and 99.4 times faster than Gaussian-Kronrod. Moreover, the truncation error of classical RK method is 
substantially small. A noticeable speed can be experienced when one renders a piecewise LAC similar to techniques 
stated in [8,20], using LAC as a fairing method [15] and extending LACs to form aesthetic surfaces.  Our next work-
in-progress includes automated control of stepsize with defined accuracy using adaptive Runge-Kutta methods.   
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APPENDIX A: TIMESTAMP IN SECOND 

Parameter Classical Runge-Kutta 
method (RK4) 

Other methods 

  IGF Gaussian-
Kronrod 

-100 0.00825 0.0218 0.1344 2.1244 

-10 0.0758 0.0184 0.1282 2.1218 

-1 0.417 0.0186 0.1154 2.131 

-0.1 0.758 0.0222 0.109 2.134 

-0.01 0.825 0.0154 0.1092 2.1434 

0 0.833 0.0158 0.0934 2.1094 

0.01 1 0.0252 0.0996 2.3432 

0.1 1 0.0186 0.1842 2.1528 

0.9 1 0.0252 0.9298 2.131 

0.99 1 0.0186 0.3838 2.128 

1.1 1 0.0192 0.1714 2.1216 

5
6

 1 0.022 0.1498 2.128 

4
5

 1 0.019 0.1528 2.0998 

3
4

 1 0.0214 0.1468 2.1188 

2
3

 1 0.0312 0.1248 2.1214 

2 1 0.022 0.1186 2.1026 

10 1 0.025 0.209 2.1468 

100 1 0.0278 0.2216 2.1684 

Average 0.0215222 0.198989 2.14036 

 

APPENDIX B: ERROR ESTIMATE VS. STEPSIZE 

Parameter Classical Runge-Kutta method (RK4) 
Gaussian-Kronrod 

  
Step size 

0.1 0.01 0.001 

2 
1     
10     

100     

 
1     
10     

100     

 
1     
10     

100     
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