
RAPID PROTOTYPING

Field programmable gate array based parallel matrix
multiplier for 3D affine transformations

F. Bensaali and A. Amira

Abstract: 3D graphics performance is increasing faster than any other computing application.
Almost all PC systems now include 3D graphics accelerators for games, computer aided design
or visualisation applications. This article investigates the suitability of field programmable gate
array devices as an accelerator for implementing 3D affine transformations. Proposed solution
based on processing large matrix multiplication have been implemented, for large 3D models,
on the RC1000 Celoxica board based development platform using Handel-C. Outstanding
results have been obtained for the acceleration of 3D transformations using fixed and floating-
point arithmetic.

1 Introduction

Computer graphics algorithms are generally computation-
ally expensive. This fact is the reason why people struggle
to accelerate such algorithms using any reasonable means.
The traditional sources of speedup are faster processors,
parallelism or dedicated hardware. Recent advances in
digital circuit technology, especially rapid development of
field programmable gate arrays (FPGAs), offer alternative
way for acceleration. Attempts to implement such algor-
ithms on FPGA were the subject of several researchers.
Various techniques for improving cost effectiveness of
graphics applications have been described by styles and
LUK. Methods for exploiting custom data formats and data-
path widths, and for optimising graphics operations such as
texture mapping and hidden-surface removal have been
studied. Customised architectures have been implemented
on the Xilinx 4000 and Virtex FPGAs in styles and Luk
[1] using Handel-C, a C-like language supporting paralle-
lism and flexible data size [2]. The work presented in
Holten-Lund [3] is concerned with the implementation of
a 3D graphic accelerator for an FPGA based system.
Results obtained show that an FPGA based embedded
system is capable of most tasks in a single chip solution,
without requiring additional CPU or graphics chips.
A new method of hardware texture mapping in which
texture images are synthesised using FPGAs was presented
in Ye and Lewis [4]. Conclusion from this work was that
using FPGAs, procedural textures can be synthesised at
high speed, with a small hardware cost. Matrix algorithms
are very important in many types of image processing appli-
cations including 3D graphics, particularly matrix

multiplication that is used in 3D affine transformations
[5–7]. It is the aim of the work presented in this article to
use FPGAs as an accelerator to develop and implement
two matrix multipliers for 3D affine transformations using
Handel-C and to evaluate the performance of the Xilinx’s
CoreGen [8] and Celoxica fixed-point and floating point
libraries [9] for the implementation.

The target hardware for this work is Celoxica RC1000
FPGA development board fitted with a Xilinx
XCV2000E-6 Virtex-E FPGA [10, 11].

2 3D affine transformations: a review

In computer graphics the most popular method for repre-
senting an object is the polygon mesh model. In a simplest
case, a polygon mesh is a structure that consists of polygons
represented by a list of (x, y, z) coordinates that are called
polygon vertices. Thus the information we store to describe
an object is finally a list of points or vertices [12] (Fig. 1).

3D affine transformations are the transformations that
involve rotation, scaling, shear and translation. A matrix
can represent an affine transformation and a set of affine
transformations can be combined into a single overall
affine transformation. Technically, it can be said that an
affine transformation is made up of any combination of
linear transformations (rotation, scaling and shear) followed
by translation (technically, translation is not a linear trans-
formation) [12]. A set of vertices or 3D points belonging
to an object can be transformed into another set of points
by a linear transformation. Matrix notation is used in
computer graphics to describe such transformations. Using
matrix notation, a vertex V is transformed to V� (� denotes
the transformed vertex) under translation, scaling and
rotation, which are the most commonly used transform-
ations in computer graphics, as

V � ¼ Dþ V ; V � ¼ S � V ; V � ¼ R� V ð1Þ

where D is a translation vector, S and R are the scaling and
rotation matrices [12, 13].

A uniform representation of all transformations in matrix
notation is necessary for implementing these transform-
ations in hardware. As it is not possible to describe the

The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20045076

doi:10.1049/ip-vis:20045076

Paper first received 30th June 2004 and in revised form 25th September 2005

F. Bensaali is with the School of Electronic, Communication and Electrical
Engineering, University of Hertfordshire, College Lane, Hatfield, Herts
AL10 9AB, UK

A. Amira is with Electronics and Computer Engineering, School of Engineering
and Design, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

E-mail: f.bensaali@herts.ac.uk

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006 739

translation in matrix notation in Cartesian coordinates, the
homogeneous coordinates have to be used. But it is very
easy to transform Cartesian into homogeneous coordinates
and vice versa. In a homogeneous system a vertex V(x, y,
z) is presented as V(X, Y, Z, w) for any scale factor w ¼ 1.
The 3D Cartesian coordinate representation is then

x ¼
X

w
; y ¼

Y

w
; z ¼

Z

w
ð2Þ

In computer graphics w is always taken to be one and the
matrix representation of a point is (x y z 1)T. Translation can
now be treated as a matrix multiplication operation, like the
other two transformations, and becomes

x�

y�

z�

1

0
BB@

1
CCA ¼

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

0
BB@

1
CCA�

x

y

z

1

0
BB@

1
CCA ¼ T �

x

y

z

1

0
BB@

1
CCA ð3Þ

Therefore in homogeneous coordinates it is possible to
describe any transformation in a matrix notation

x�

y�

z�

1

0
BB@

1
CCA ¼

A D G J

B E H K

C F I L

0 0 0 1

0
BB@

1
CCA�

x

y

z

1

0
BB@

1
CCA ð4Þ

This universal matrix for transformations can be divided
into four function blocks

scaling and rotation translation

part of the homogeneous representation 1

 !

ð5Þ

The matrix representations for the two others most com-
monly used transformations are as follows.

2.1 Scaling

V � ¼ S � V ð6Þ

S ¼

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

0
BBB@

1
CCCA ð7Þ

Here Sx, Sy, and Sz are the scaling factors. For a uniform
scaling: Sx ¼ Sy ¼ Sz.

2.2 Rotation

To rotate an object in a 3D space, an axis of rotation needs
to be specified. This can have any spatial orientation in a 3D
space, but it is easier to consider rotations that are parallel to
one of the coordinate axes. The transformation matrices for
rotation about the X, Y and Z-axes, respectively are

Rx ¼

1 0 0 0

0 cos u sin u 0

0 �sin u cos u 0

0 0 0 1

0
BBB@

1
CCCA

Ry ¼

cos u 0 �sin u 0

0 1 0 0

sin u 0 cos u 0

0 0 0 1

0
BBB@

1
CCCA ð8Þ

Rz ¼

cos u sin u 0 0

�sin u cos u 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

Fig. 1 Data structure for object representation

Fig. 2 3D transformation examples

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006740

It is worth noting that a sequence of transformations can
be represented by one matrix T ¼ T1 � T2 � . . . � TN

Fig. 2 shows different examples of a cube containing
eight vertices when applying different transformations.

3 Modeling 3D affine transformations using
large matrix multiplication

Consider an object represented with N vertices. The new
position (NP) of the object when applying a transformation
can be calculated as follows

NP ¼ T � OP ð9Þ

where T is the matrix transform, OP a (4, N) matrix con-
tains the old vertices position, NP a (4, N) matrix contains
the new vertices position.

x�0 x�1 � � � x�N�1

y�0 y�1 � � � y�N�1

z�0 z�1 � � � z�N�1

1 1 � � � 1

0
BBB@

1
CCCA

¼

A D G J

B E H K

C F I L

0 0 0 1

0
BBB@

1
CCCA

x0 x1 � � � xN�1

y0 y1 � � � yN�1

z0 z1 � � � zN�1

1 1 � � � 1

0
BBB@

1
CCCA ð10Þ

Fig. 3 shows two 3D objects, a foot skeleton (N ¼ 2154)
and a face (N ¼ 5597).

4 FPGA implementation

4.1 Implementation approach

Handel-C is a high-level language that is at the heart of a
hardware compilation system known as Celoxica develop-
ment kit (DK) [9], which is designed to compile programs
written in a C-like high-level language into synchronous
hardware. One of the advantages of using hardware is the
ability to exploit parallelism directly. Because standard C
is a sequential language, Handel-C has additional constructs
to support the parallelisation of code and to allow fine
control over what hardware is generated.

DK produces a Netlist file, which is used during the place
and route stage to generate the image or bitstream file [9]
(Fig. 4).

The RC1000 co-processor board used is a standard PCI
bus card equipped with a large FPGA chip. It has 8 MB
of SRAM directly connected to the FPGA in four 32-bit
wide memory banks. All are accessible by the FPGA and
any device on the PCI bus. Different methods of data trans-
fer from the host PC or the environment to the FPGA are
available as follows:

† Bulk transfers of data between FPGA and PCI bus is
performed through the memory banks 0–3.
† Streams of bytes are most conveniently communicated
through the unidirectional 8-bit control and status-ports
(Fig. 4).

The RC1000 board is supported with a macro-library that
simplifies the process of initialising and talking to the hard-
ware. This library comprises a set of driver functions with
the following functionality:

† Initialisation and selection of a board
† Handling of FPGA configuration files
† Data transfer between PC and the RC1000 board
† Function to help with error checking and debugging

These library functions can be included in a C or Cþþ
program that runs on the host PC and performs data transfer
via the PCI bus [9].

Handel-C code
(FPGA Hardware)

FPGA configuration

Celocixa DK3
IDE

T
Xilinx Layout

ools

External Cores
(Schematic core,

VHDL core, CoreGen
core...)

EDIF

p
FPGA

lace&route

System-level model

C code
(host processor)

Host processor
program

C Compiler
(MS Visual C++)Simulation

HW/SW
partitioning

Host Processor
platform

FPGA Board
Real-time

prototyping

Prototyping Platform

Bank0

Bank1

Bank2

Bank3PCI

XCV2000E

DMA

Control

Status8 Bit

a b

Fig. 4 Hardware–software tools used for the implementation

a Handel-C design flow
b Schematic view of the FPGA/banks part in the RC1000 board

a b

Fig. 3 Examples of 3D objects

a Foot skeleton contains 2154 vertices
b Face contains 5597 vertices

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006 741

4.2 Proposed parallel matrix multipliers for 3D
affine transformations

The vertices’ coordinates require real-number represen-
tation. Therefore floating-point or fixed-point represen-
tations can be used. Celoxica provides two libraries
(pipelined floating-point and fixed-point), which allow
different widths to be specified, allowing designers to use
the minimum numbers of bits to represent data and conse-
quently generate smaller hardware.

In this section two parallel matrix multipliers are
described. The first proposed structure is based on fixed-
point representation, whereas the second one is based on
the floating-point representation.

The two multipliers have been implemented, using
Handel-C and compiled using DK version 2 (DK2), on
the RC1000 board. In order to perform this multiplication
the four external memories have been exploited for data
storage to allow the multiplication to be performed by the
FPGA.

4.2.1 Proposed parallel fixed-point matrix multi-
plier: Fig. 5 shows the proposed parallel fixed-point
matrix multiplier, which can be used to perform the
matrix multiplication described in Section 3.

The proposed architecture consists of p identical PEs,
which should be a multiple of four. Each PE comprises a
fixed-point multiply accumulator (MAC) and a register for
final result storage. The MAC has been implemented
using two approaches:

1. MAC based Celoxica fixed-point library: This is a device
independent hardware library that allows the width of the
fractional and integer part of the number to be defined
and provides macros to execute arithmetic operations [9].
2. MAC based Xilinx’s CoreGen: Xilinx’s CoreGen utility
contains many designs that can often save time for a pro-
grammer and it is possible to integrate Xilinx CoreGen
blocks with a program in Handel-C using the interface
declaration [8]. Two components have been used, a parallel
signed integer multiplier and a parallel signed integer adder,
which are suitable for the Xilinx XCV2000E-6 Virtex-E
FPGA (Fig. 6).

In both cases, the vertices’ coordinates are represented
with 22 bits (14 bits for fractional part, 7 bits for integer
part, one sign bit). The input transform matrix T is parti-
tioned into four rowwise blocks, which gives one row per
block. Each block is stored in one of the four available
banks. The matrix OP is partitioned into four columnwise

Fig. 5 Proposed parallel fixed-point matrix multiplier for 3D affine transformations

<< 14

Logical Shift Left
Multiplier Signed Integer

Adder
22 bits

22 bits
44 bits 30 bits 32 bits

32 bits

Signed Integer

Fig. 6 Fixed-point MAC

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006742

blocks, likewise in matrix T, each block is stored in one of
the banks. Because of the problem of accessing different
elements stored in the same SRAM simultaneously, four
buffers (TBuf1, TBuf2, TBuf3, TBuf4) for storing the
four rows of T have been used to avoid a memory conflict.
Data are transferred from the banks to the buffers. Columns
of the matrix OP are transferred from SRAMs to the PEs in
parallel. Each PE computes one element of the output
matrix NP at once. The four storage processors (SPs),
which have access to the PEs registers, are used to transfer
the final results to the banks and operate as an interface
between the p PEs and the four memory banks. Each
group of four PEs is working as a matrix-vector multiplier.
Therefore four PEs are used to compute the NP of a vertex.
The entire computation of the matrix NP can be carried out
in [2 � (4 � N)/pþ BIþ N/NB] clock cycles (the number
of clock cycles has been computed from the Handel-C
code), where 2 is the number of clock cycles needed by

the MAC for one accumulation, N the number of object ver-
tices, p the number of PEs used, BI ¼ 4 the number of clock
cycles needed for buffers initialisation, NB ¼ 4 the number
of memory banks available and N/NB the number of clock
cycles needed for final result storage.

It is worth noting that the number of vertices N is always
rounded to a multiple of four. Therefore the last partition of

Fig. 7 Proposed parallel floating-point matrix multiplier for 3D affine transformations

Mult_In_2

Mult_In_1 Mult_Out /

Add_In_1

Add_In_2

Add_Out

Latency = 10Latency = 7

Fig. 8 Floating-point MAC

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006 743

the matrix OP should be padded with, at most, three
columns of zeros (e.g. for N ¼ 2154 two columns of zeros
should be supplemented to the matrix OP, in this case
each partition has a size of 539 � 4). As the number of
clock cycles needed in order to perform a transformation
is controlled by the slowest processor element, adding
columns of zeros will not affect it.

4.2.2 Proposed parallel floating-point matrix
multiplier

Because of the large dynamic range and very high
precision offered by floating-point arithmetic, a parallel
floating-point matrix multiplier has been implemented as
shown in Fig. 7.

Each PE comprises a pipelined floating-point MAC
(Fig. 8) and a register for final result storage. The MAC
has been implemented using the pipelined floating-point
library from Celoxica. The vertices’ coordinates are
represented using the IEEE standard floating-point format
for single-precision real numbers (32 bits: one sign bit,
eight bits of the exponent and 23 bits for the fraction)
[14]. The adders and multipliers used are pipelined and
have a latency of ten and seven, respectively. The
two input matrices are partitioned using the same parti-
tioning strategy used for the previous fixed-point
architecture. In addition, because of the adder latency,
each block of the matrix OP is partitioned into columnwise
sub-blocks. Each sub-block contains ten columns and

the last one is padded with columns of zeros if the size is
not ten.

Fig. 9 illustrates the timing diagram when performing a
multiplication of one row of the transform matrix T with
one sub-block of the matrix OP as shown in (11)

NPi0 NPi1 � � � NPi9

� �

¼ ti0 ti1 ti2 ti3

� � OP00 OP01 � � � OP09

OP10 OP11 � � � OP19

OP20 OP12 � � � OP29

OP30 OP13 � � � OP39

0
BBB@

1
CCCA ð11Þ

The number of clock cycles required for the entire com-
putation of the matrix NP is

C ¼
N

p� AL

� �
� ððALþML� 1Þ þ ð4� 10ÞÞ ð12Þ

where p is the number of PEs, AL the adder latency
(AL ¼ 10), ML the multiplier latency (ML ¼ 7) and
(4 � 10) the size of the OP sub-matrices.

4.3 Proposed environment for 3D affine
transformations on FPGA

Fig. 10 shows a general view of the entire proposed system.
The environment consists of a host application (GUI), a

3D object database, the open graphics library (OpenGL)

Fig. 9 Timing diagram when performing a multiplication of one row of the transform matrix T with one sub-block of the matrix OP

Fig. 10 Proposed system for 3D affine transformations on FPGA

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006744

[15] and the single FPGA-chip coprocessor based on the
RC1000 development board.

† 3D object database contains the 3D model files
(.OBJ, .3DS, .ASE).
† OpenGL is the specification of a powerful set of more
than 350 graphics routines for 2D and 3D graphics proces-
sing. OpenGL includes facilities for

– Defining and rendering 3D primitives such as points,
lines, polygons, spheres and cones
– Viewing 2D projections of 3D scenes
– Manipulating coordinate transformations
– Lighting: light sources and material properties
– Texture mapping

† Coprocessor performs the 3D affine transformations.
† Host application (GUI) implemented using Borland
Cþþ, gives the user the ability to select a 3D model
from the 3D object database and display it on the available
3D viewer. The user can apply different algorithms on the
object, such as texture, lighting and antialiasage, which
involve calls to OpenGL functions. Since Cþþ does not
support fixed-point formats, a floating-point to fixed-point
converter has been implemented. The vertices coordinates
are converted from floating-point to fixed-point before per-
forming the DMA transfer. The inverse operation is applied
to the result in order to reconstruct the transformed 3D
model.

5 Results and analysis

The two architectures have been implemented and tested on
the RC1000 board. Table 1 illustrates the performance

obtained for the proposed architectures when using the
three different design approaches for the MAC
implementation.

Recent innovations in FPGA architecture have changed
the design tradeoff space by providing new fixed embedded
cores that can be employed within a complex design. These
include high density multiplier blocks and shift registers.
The floating-point library and the Xilinx’s CoreGen
support the Virtex-II and the Virtex-II pro FPGA chip,
which includes up to 168 (18 bits) multiplier blocks for
the Virtex-II and 556 for the Virtex-II pro. This allows mul-
tiplication to be done inside the FPGA without the use of
large numbers of look up tables (LUTs) and also at a low
power cost [16, 17].

Table 2 illustrates the performance obtained when the 18
bit multipliers employed for the implementation of our
architectures.

From Tables 1 and 2 it can be seen that the use of
the embedded multiplier cores results in significant
improvement in the clock speed compared to similar
implementation based solely on conventional LUT/FF
logic.

The implementation using the MAC based Xilinx’s
CoreGen shows better performances when comparing with
the one based Celoxica’s fixed-point library due to the suit-
ability of the cores used for the FPGA chip selected.

In addition, Virtex-II pro device gives higher maximum
running frequency compare to Virtex-II due to the different
process technology used.

Floating-point representation provides large dynamic
range and very high precision, but has large resource
requirements compare to the fixed-point one. If the range
of real-numbers values that must be represented is small
or can be scaled in order to make it smaller, fixed-point
arithmetic is one way of providing cheap fast non-integer
support. Fixed-point arithmetic is appropriate for our
application because the range of the values is small.

There exist expensive 3D cards, which support the
manipulation of coordinate transformations. Our PC
(Pentium 4 CPU 2.00 GHz) is equipped by an ATI
RADEON FSC 32 MB graphics card, which belongs to
this category of cards. This card delivers immerse, realistic
colour and 3D graphics at a fast frame rate. The RADEON
Charisma Engine, which takes care of the geometry proces-
sing, and the pixel tapestry architecture, which is the render-
ing engine, support full transformation, clipping and
lighting for improvement in 3D details. With full support
for DirectX and OpenGL, it accelerates all today’s top 3D
games.

Table 3 shows the performances obtained in terms of
maximum running frequency and computation time for

Table 1: Area/speed implementation report for the
proposed parallel matrix multipliers – target FPGA
XCV2000E (bg560-6)

MAC used Number

of PEs

Area

(%)

Speed

(MHz)

Celoxica fixed-point library 4 3264 22

8 6720 20

16 14 400 17

Xilinx’s CoreGen 4 1920 35

8 3840 30

16 8064 24

Celoxica pipelined

floating-point library

4 19 010 50

Table 2: Area/speed implementation report for the proposed parallel matrix multipliers – target FPGAs
XC2V8000 (ff1152-5) and XC2VP125 (ff1704-7)

MAC used Number

of PEs

Area (%) 18 � 18 Mults used Speed (MHz)

V-II V-II pro V-II V-II pro V-II V-II pro

Celoxica fixed-point library 4 2795 2780 — — 36 52

8 6057 5997 — — 30 45

16 14443 14360 — — 26 38

Xilinx’s CoreGen 4 931 925 16 16 83 114

8 2795 2624 32 32 78 110

16 5591 5494 56 56 71 102

Celoxica pipelined floating-point

library

4 24693 24493 64 64 108 119

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006 745

the RADEON graphics card and our FPGA implementation
with different number of PEs when performing a rotation on
the foot skeleton object, which contains 2154 vertices. The
same approach can be taken for the other transformations.

The pseudo-code used to retrieve the computation time is
shown in algorithm 1.

It can be seen from Table 3 that the fixed-point matrix
multiplier based CoreGen MAC gives better result in
terms of the computation time when using 16 PEs compared
to the graphic card. The performance of the fixed-point
matrix multiplier dedicated for 3D affine transformations
demonstrates that the FPGA can be used as an effective
acceleration solution.

Algorithm 1: Pseudo-code used for the computation time
QueryPerformanceFrequency(&Frequency); fretrieve the
frequency of the high-resolution performance counterg

QueryPerformanceCounter(&t1); fget the value of the
performance counter before the performing a 3D affine
transformationg

3D affine transformations fOpenGL functions or FPGA
program callg

QueryPerformanceCounter(&t2); fget the value of
the performance counter after the performing the
transformationg

t.QuadPart ¼ (t2.QuadPart-t1.QuadPart)fCalculate the
time interval between measurementsg

6 Conclusion

The hardware-accelerated architectures for computer
graphics and image processing are one of the promising
approaches in computer graphics. The common rule is
that functions integrated in silicon are much faster than
functions integrated in software. There exist expensive
cards, in which all OpenGL algorithms are completely inte-
grated in silicon and therefore those cards are very fast. As
FPGAs have grown in capacity, improved in performance,
and decreased in cost, they have become a viable solution
for performing computationally intensive tasks, with the
ability to tackle applications for custom chips and

programmable DSP devices. In this article the use of
FPGAs as an accelerator for OpenGL 3D affine transform-
ations using a parallel large matrix multiplication approach
has been presented. Different data types, including fixed and
floating-point arithmetic have been investigated and results
obtained show better performances in comparison with
existing systems.

7 References

1 Styles, H., and Luk, W.: ‘Customising graphics applications:
techniques and programming interface’. Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), Napa, CA,
April 2000

2 Celocixa Ltd. ‘Handel-C language reference manual’, 2003, Manual:
www.celoxica.com

3 Holten-Lund, H.: ‘Embedded 3D graphics core for FPGA-based
system-on-chip application’. The FPGAword Conference,
Stockholm, Sweden, September 2005

4 Ye, A.G., and Lewis, D.M.: ‘Procedural texture mapping on FPGAs’.
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays,
Monterey, CA, February 1999, pp. 112–120

5 Amira, A.: ‘A custom coprocessor for matrix algorithm’. PhD
Dissertation, Queen’s University of Belfast, UK, 2001

6 Bensaali, F., Amira, A., Uzun, I.S., and Ahmedsaid, A.: ‘An FPGA
implementation of 3D affine transformations’. 10th IEEE Int. Conf.
on Electronics, Circuits and Systems (ICECS’03), Sharjah, UAE,
December 2003

7 Bensaali, F., Amira, A., Uzun, I.S., and Ahmedsaid, A.: ‘Efficient
implementation of large parallel matrix product for DOTs’. Int.
Conf. on Computer, Communication and Control Technologies
(CCCT’03), FL, USA, July 2003

8 Application note, Xilinx CoreGen and Handel-C, AN 58 (v1.0), 2001
9 URL: www.celoxica.com

10 ‘RC1000 reconfigurable hardware development platform’ (Celocixa
Ltd., 2001), Datasheet, www.celoxica.com

11 URL: www.xilinx.com
12 Watt, A.: ‘3D computer graphics’ (Addison-Wesley, 2000)
13 Ferguson, R.S.: ‘Practical algorithms for 3D computer graphics’ (A K

Peters, 2001)
14 ‘IEEE Standard for binary floating-point arithmetic’, ANSI/IEEE Std

754-1985, NY, USA, 1985
15 URL: www.opengl.org
16 Datasheet, ‘Virtex-II platform FPGAs: complete data sheet’, DS031

(v3.3), (Xilinx Inc., 2004)
17 Datasheet, ‘Virtex-II pro and Virtex-II pro X platform FPGAs:

complete data sheet’, DS083 (v4.1), (Xilinx Inc., 2004)

Table 3: Computation time comparison of the proposed structures with the RADEON FSC 32 MB
graphics card

MAC used Number of PEs Maximum

frequency (MHz)

Computation time

(ms)

V-II V-II Pro V-II V-II pro

FPGA

Celoxica fixed-point library 4 36 52 134.74 93.28

8 30 45 89.88 59.92

16 26 38 36.33 24.85

Xilinx’s CoreGen 4 83 114 58.43 42.55

8 78 110 34.57 24.51

16 71 102 13.30 9.26

Celoxica pipelined floating-point library 4 108 119 27.92 25.34

RADEON FSC 32 MB graphics card — — — — 14.81

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006746

