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Abstract: In this study, the authors address the problem of resolving angular position of multiple targets in the same range
and separated by less than an antenna beamwidth using frequency scanning array (FSA) antennas. First, the frequency
scanning antenna signal model is derived and then the necessary compensation methods to overcome antenna pattern
variations with frequency during the scan in FSAs are presented. Two direction-of-arrival (DOA) estimation algorithms,
the minimum variance beamforming and the maximum-likelihood estimation are applied on the signal model.
Simulation results show that both methods can separate targets with angular separations smaller than a beamwidth by
selecting correct parameters. The performance of the two DOA estimation methods with respect to different system
parameters are investigated based on the signal model through Monte Carlo simulations and compared with the
Cramér–Rao lower bound. In addition, an FSA antenna is presented in this work and simulations of the DOA estimation
algorithms are performed using the measured antenna pattern of this antenna. The performance and limitations of
target DOA estimation methods for the measured antenna patterns are also discussed.

1 Introduction

Low-cost electronically scanning radars for commercial applications
are receiving considerable attention. Frequency scanning arrays
(FSAs) are a solution to achieve low-cost and agile electronically
scanning radars, without the need for phase shifters on the array
elements. Unlike conventional FSAs that require frequency
variation over a wide bandwidth [1], new FSAs using dispersive
feed networks based on metamaterial guiding structures, can scan
a wide angular range using a small bandwidth [2]. Therefore,
using FSAs become practical in term of frequency bandwidth
allocation. However, when the length of the array is limited, the
width of its main beam can be wider than needed for a typical
radar application, which results in poor angular resolution. Thus
the appropriate signal processing for improving the angular
resolution is necessary.

Examples of FSA utilisation in high resolution radars are
presented in [3, 4]. This paper is considering a system that is used
to estimate the angular position of targets using standard direction
of arrival (DOA) algorithms. A pulsed step frequency mode of
operation is assumed. Although angular resolution in an FSA
antenna is obtained along with range resolution in [5, 6],
improving angular resolution beyond beamwidth limitations in
FSA has not been studied. Consequently, considering the low cost
of FSAs compared to phased arrays, it is relevant to develop
methods to improve the angular resolution of systems based on
such antennas.

Unlike phased array antennas, in FSAs, all the radiating elements
are fed with a waveguide having a frequency dispersive
characteristic. So, the array elements can be assumed connected to
each other and there is only one input/output port for all the
antenna elements. Therefore the FSA can be modelled like a
mechanically or electronically scanning antenna, with the
difference that each part of the field of view (FOV) is illuminated
by a different frequency related to the angle of transmission. This
differs from multiport antennas such as phased arrays in which
elements can be weighted to shape the beam.

There are several superresolution algorithms that are able to detect
signals separated by less than an antenna beamwidth. These
algorithms are making use of multi-channel array antennas. DOA
estimation methods based on maximum-likelihood (ML) [7] and

superresolution subspace methods like MUSIC [8] and ESPRIT
[9] are some of the most well-known algorithms. However, there
has been little work on improving angular resolution of a single
channel antenna, so that it can resolve signals from directions
separated by less than one beamwidth [11–15, 17–21]. In this
work, we use two angular resolution improvement methods,
minimum variance beamforming (MVB) [10] and ML estimation,
which were previously applied to mechanically scanning antennas
[11, 12] and adapt them for FSA antennas.

The paper is organised as follows. Section 2 briefly reviews the
literature on single channel antenna superresolution and DOA
estimation domain. In Section 3, a signal model that applies to
FSA antennas is presented. In Section 4, the necessary
compensation methods used to overcome gain and antenna pattern
variations with frequency during the scan in FSA are presented. In
Section 5, the MVB and ML estimation methods are briefly
described. In Section 6, representative simulation results are given
and the performance of selected methods with respect to different
system parameters is evaluated. In Section 7, an FSA antenna is
presented and the performance of the ML and MVB methods are
evaluated for this FSA. Conclusions and remarks are provided in
Section 8.

2 Brief overview of recent works on DOA
estimation with single channel antennas

Most of the work in the single channel antenna superresolution and
DOA estimation domains is based on the fact that antenna scanning
induces amplitude modulation on signal backscatters and therefore,
by utilising prior knowledge of the antenna pattern, the angular
position of targets can be extracted [13, 14]. For example, Ly
et al. [15] developed a MUSIC-based technique called
scan-MUSIC (SMUSIC) to resolve target positions within a beam.
In this method, the signal amplitude vector is formed using the
response of the antenna as it scans the FOV. This differs from
multi sensor array antennas in which multiple sensor outputs is
used to form the signal amplitude vector. However,
subspace-based methods do not work in the presence of correlated
signals. To resolve correlated signals, in [15] the signal vector is
divided into subvectors and a forward subvector averaging is
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performed as a form of spatial smoothing [16]. The author [17]
proposed a technique based on interpolation of multiple shifted
signal vectors from beamspace data to virtual multi sensor array
antennas. Spatial smoothing is then applied to the interpolated
vectors. This method has performance limitations due to
nonuniform signal-to-noise ratio (SNR) profile across the
interpolated vectors.

As an alternative to MUSIC-based methods, beamforming
approaches can be applied to the signal amplitude vectors.
Alvarez-Lopez et al. [5] studied the special case of a conventional
beamformer in FSA antennas. Capon’s MVB is also used in [17] to
resolve DOA of signals in scanning antennas. Extension of the
MVB method for step scanning radars is proposed in [11]. Unlike
MUSIC-based methods, beamforming methods do not need prior
knowledge on the number of targets. In [12], DOAs of multiple
radar targets present in the main beam of a rotating antenna are
estimated using the same concept as in [15] to form signal
amplitude vector and by applying the ML technique. Both cases of
conditional and unconditional ML are studied in [12]. A simplified
version of the same method is presented in [18] as the
pseudo-monopulse algorithm for target direction estimation and
compared with the monopulse technique. An asymptotic ML
estimator is also used in [19, 20] for detecting targets and estimating
their complex amplitude and DOA in mechanically rotating antennas.

In [21], DOAs of multiple uncorrelated sources in single channel
scanning antennas are estimated by measuring the power of the
radiation pattern received during scanning. Then the vector of
power measurements is transformed into a vector of spectral
observations. Finally, DOA estimation is performed by spectral
analysis methods.

In this paper, the effectiveness and performance of two of the
above methods, MVB with spatial smoothing and ML estimation,
when applied to FSA antennas are evaluated and compared. Using
an FSA antenna, there is no need for mechanical rotation of the
antenna which could be an advantage if targets move rapidly. FSA
also enables agile operation not limited by constraints of
mechanical systems. The selected methods are applicable to
coherent signals and therefore they are able to estimate DOA of
multiple targets.

3 Problem formulation

In FSA antennas, the main beam direction varies by changing the
carrier frequency of the transceiver. This is achieved by using a
series feed structure, in which the phase shift between adjacent
element ports varies as a function of frequency. Using the simple
delay line concept, the direction of the beam θm can be expressed as

sin um
( ) = l

d

s

lg
− a

( )
(1)

where s is the length of the feed line between element ports, l is the

free-space wavelength, lg is the wavelength in the feed line, d is the
distance between radiating elements in the aperture plane, and a is an
integer (see Fig. 1) [3]. The main beam direction θm is taken with
respect to the normal of the antenna aperture. When the frequency
varies, l and lg change at different rates, which causes a variation
of θm.

The FOV of the antenna corresponds to the angular sector scanned
by the main beam direction when the frequency is swept over the
complete frequency bandwidth of the antenna. Consider K targets
present in the FOV at the same known range of Rl = ctl /2, where tl
is the time for receiving an echo from targets at the range Rl and c
is the speed of light. When the antenna main beam of an FSA
radar is steered in the direction θm, the received baseband signal
can be written as

xr tl , um
( ) = ∑K

k=1

sk fm
( )

gm(gk )e
−j2p fmtl + n tl , um

( )
, (2)

where fm is the carrier frequency when the FSA beam is pointed at
the angle θm, sk( fm) is the complex signal scattered from the kth
target with the angular position gk, gm(gk) is the two-way antenna
pattern at the angle gk when the antenna is pointed at the angle θm
(see Fig. 2), and n(tl, θm) is the complex white Gaussian noise
coming from the scene and introduced by the receiver
components. It has been assumed that the Doppler shift of the
echo can be neglected.

If the antenna pattern is approximated with a virtual linear array
antenna pattern as

h um, gk
( ) = Hm

sin Ne c/2
( )

sin c/2
( ) , c = bd[sin gk

( )− sin um
( )

],

(3)

where Hm is the maximum gain, Ne is the number of elements in the
array antenna, and β is the wave number, the two-way antenna
pattern at the angle gk when the antenna is pointed at the angle θm
can be approximated as

gm gk
( ) = h2 um, gk

( )
. (4)

It is assumed that the phase response of the antenna pattern can be
removed by appropriate a priori calibration of the FSA. In the
vector notation of the signal model, the complex echo signal
vector and the steering vector for a target at angle gk, when the
antenna is steered to the angles θm with m = 1, …, M are defined as

sk = sk f1
( )

, sk f2
( )

, . . . , sk fM
( )[ ]T

, (5)

a gk
( ) = a u1, gk

( )
, a u2, gk

( )
, . . . , a uM , gk

( )[ ]T
, (6)

where (.)T denotes the transpose operation, M is the total number of

Fig. 1 Schematic representation of a frequency scanning antenna and the process of selecting N frequencies for which the main beam is in the Δfov angular range

IET Radar Sonar Navig., 2016, Vol. 10, Iss. 3, pp. 624–631
625& The Institution of Engineering and Technology 2016



the frequencies, and steering vector elements are

a um , gk
( ) = gm(gk )e

−j2p fmtl . (7)

With K targets at directions g = [g1, g2, …, gK], the antenna
response matrix and targets echo matrix are

A g
( ) = a g1

( )
, a g2

( )
, . . . , a gK

( )[ ]
, (8)

S = s1, s2, . . . , sK
[ ]

. (9)

Equation (2) can be rewritten in the vector form as

xr = A g
( )⊙ S

( )
IK×1 + n (10)

where ⊙ is the Hadamard product IK×1 is a column vector of ones,
and x and n are

n = n tl , u1
( )

, n tl , u2
( )

, . . . , n tl , uM
( )[ ]T

(11)

xr = xr tl , u1
( )

, xr tl , u2
( )

, . . . , xr tl , uM
( )[ ]T

. (12)

Note that the received signal xr(tl, θm) comprises the responses of all
the visible targets when the FSA is operated at frequency fm. It has
been assumed that the targets cross sections do not change when
the transmitted frequency changes, which may be a valid
assumption when the used bandwidth is narrow. Then we have

sk = sk f1
( ) = sk f2

( ) = · · · = sk fM
( )

, (13)

and

s = s1, s2, . . . , sK
[ ]T

. (14)

Thus the data model can be simplified to

xr = A g
( )

s+ n. (15)

The objective is to estimate the vector of target angular positions g
while the targets complex echo vector, s is unknown.

4 Calibration and interpolation

When using FSAs, some preprocessing steps are required before
applying subspace-based target DOA estimation methods in which
spatial smoothing is required. Spatial smoothing works when
steering vectors can be divided into shift invariant overlapping
subvectors [16]. It can be easily shown that shift invariant
subvectors can be formed from the steering vector only if:

(i) the steering vector only includes the main beam of the antenna
pattern,

(ii) the gain of the antenna pattern in different steering angles are
balanced, and
(iii) the angular separation between steering angles (|θm− θm+1|) are
uniform.

In order to achieve the above properties the following
compensation methods are considered.

First, the FOV is divided into several sectors called Δfov and DOA
estimation methods are performed for each Δfov separately to find
targets that are present in that sector. Using small Δfov reduces the
computational complexity. In addition, for each Δfov, only N of
the frequencies (N<M) for which the main beam belongs to that
Δfov, are used in (5)–(14) (Fig. 1). As mentioned before, using
our signal model, the subspace-based target DOA estimation
methods work well only if, for each Δfov, only the beams having
their main beam in that sector are considered in the
superresolution computations.

Furthermore, in a practical FSA the maximum gain of the antenna
pattern always varies with frequency. This variation must be
compensated using suitable calibration prior to processing. To
compensate existing gain imbalance, one of the N frequencies in
the set of fixed frequencies fn (n = 1,…, N ) is selected as a
reference ( fr), and the ratio between the amplitude of antenna
pattern for the corresponding reference pointing angle (θr) with
respect to other steering angles are chosen as compensation
weights c(θn) = gr(θr)/gn(θn). The compensation matrix is then
formed as follows:

c = diag c1, c2, . . . , cN
[ ]

, (16)

and the calibrated antenna response matrix Ac(g) is

Ac g
( ) = cA g

( )
. (17)

Therefore, (15) can be modified to

cxr = Ac g
( )

s+ cn. (18)

This process involves antenna pattern measurement and it has to be
done once offline.

Moreover, according to (1), by changing the frequency in uniform
steps, the antenna steering angle will change non-linearly. In other
words, the steps between steering angles [θ1, θ2, …, θN] are not
equal. We can thus write

un = u1 +
∑n−1

i=1

Dui (19)

where Δθi is the angular step between beam steering angles. While in
some FSAs this non-linearity can be small and negligible, the
performance of spatial smoothing degrades when uniform
frequency steps are assumed in the model. Therefore, an
interpolated version of Ac(g ) can be used in (18) in which the
relation between steering angle and frequency is linear.

Fig. 2 Two-way antenna gain pattern
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Interpolation is performed using a method similar to the algorithm
presented in [22] by computing an interpolation matrix.

First, for each sector (Δfov) a set of interpolation angles is defined

G=[�g1, . . . , �gD] (20)

where D is the number of hypothetical DOAs of targets that are only
used for interpolation.

Then, an interpolation matrix is computed by mapping Ac G( ) =
ac �g1
( )

, ac �g2
( )

, . . . , ac �gD
( )[ ]

to a virtual matrix A G( ) = �a �g1
( )

,
[

�a �g2
( )

, . . . , �a �gD
( )]. This is done so that in each virtual steering

vector �a �gd
( ) = �a �u1, �gd

( )
, �a �u2, �gd

( )
, . . . , �a �uN , �gd

( )[ ]T
the steps

between virtual steering angles [�u1, �u2, . . . , �uN ] will be equal:

un = u1 + (n− 1)Du, Du = u1 − uN
∣∣ ∣∣

N
(21)

with n = 1, …, N. It is assumed that the virtual matrix �A G( ) can be
obtained by linear interpolation of the real matrix Ac(Γ), so that

�A G( ) = BAc G( ) (22)

In which the interpolation matrix B is the least square solution of
(22) that should be found only once offline.

Thus, the signal model in (15) can be modified to

�xr = Bcxr = BcA g
( )

s+ Bcn, (23)

where �xr is the corrected received data vector. Note that noise is no
longer white in (23) and noise-whitening is also required.

5 DOA estimation methods

Brief descriptions of the target DOA estimation methods exploited in
this paper are presented in this section for completeness.

5.1 Minimum variance beamforming

Using adaptive beamforming, a weight vector (w) is applied to the
corrected received data vector �xr in a way that in the beamformer
output the desired signals are emphasised and noise is suppressed

y = wH�xr. (24)

MVB is an adaptive beamforming approach which determines the
optimum weight vector by minimising the power of signal plus
noise at the output of an adaptive beamformer E wH�xr

∣∣ ∣∣2[ ]
. The

minimisation is subject to the constraint that the response of the
beamformer to the desired signal with parameter g is fixed [10].
The optimisation problem can be stated as

min
w

wH �̂R w subject to wH�a g
( ) = 1, (25)

where �a g
( ) = Ba g

( )
and the sampled data covariance matrix �̂R is

�̂R = 1

L

∑L
l=1

�xr�x
H
r , (26)

L is the number of snapshots or complete scans over the FOV. The
solution to the optimisation problem in (25) is

ŵ g
( ) = �̂R

−1
�a g
( )

�aH g
( )

�̂R
−1
�a g
( ) (27)

and the estimate of output power at direction g is

Py g
( ) = 1

�aH g
( )

�̂R
−1
�a g
( ) (28)

If the target response is coherent, �̂R will be rank deficient and the
algorithm will fail to resolve targets. To decorrelate target
responses and to obtain a full rank covariance matrix, spatial
smoothing [16] can be used. In spatial smoothing, the sampled
data vector is divided into overlapping subvectors of �x{i}r for 1 < i
< p, where p is the number of subvectors each containing Q
samples of �xr, so that p = N−Q + 1. The data covariance matrix
can be then estimated by

R̂f =
1

p

∑p
i=1

�̂R
{i}

(29)

Spatial smoothing works when the number of subvectors is equal to
or larger than the number of targets (p≥K) and the size of each
subvector Q is at least K+ 1 [16]. Therefore, we have

N ≥ 2K. (30)

The optimal subvector size is computed in [23] as

Qopt = 0.6(N + 1). (31)

5.2 ML estimation

The use of ML to estimate multiple target directions in scanning
antennas is presented in [12]. The same method can be used for
the case of an FSA antenna as the FSA signal model is similar to
the one found in [12]. The only difference is that in the FSA
signal model, the antenna response matrix A(g ) contains an extra
phase term. Note that the interpolation step is not needed for the
ML estimation method and the signal model in (18) or (15) is
used for this method. Considering that each element of the noise
vector n has a white complex Gaussian probability distribution
function with zero mean and variance of σ2, n is modelled
as white complex Gaussian noise with zero mean and covariance
matrix of σ2I

n � CN (0, s2I), (32)

Therefore, the probability density function of the data vector xr
conditioned to the unknowns (g, s) is

p(xr|g, s) =
1

ps2
( )N exp − (xr − A g

( )
s)

H
(xr − A g

( )
s)

s2

( )
(33)

The ML estimation of g and s can be found by maximising the
conditional probability density function of xr with respect to g
and s. If s is modelled as a deterministic unknown vector and g as
a deterministic constant vector then the conditional ML will be

ĝ, ŝ = argmax
g,s

p(xr|g, s)
{ }

(34)

The above maximisation gives the estimate of ĝ and ŝ as:

ŝ = AHA
( )−1

AHxr (35)

ĝ = argmax
g

xHr A AHA
( )−1

AHxr (36)

It is assumed that no prior knowledge is available for DOAs of g =
[g1, g2, …, gK]. The ML method can detect targets in both cases of
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correlated and non-correlated signals. It also has good performance
in the presence of noise and in the cases where only as few as one
scan of the FOV is available. However, for K targets, the ML
method requires a K-dimensional search over FOV to find the
DOAs. Therefore, when the considered number of targets
increases, the ML estimation becomes more computationally
intensive. In addition, ML estimation requires prior knowledge of
the number of targets. This number has to be estimated in a
preprocessing step if no prior information is available.

6 Simulation results

To verify the performance of the proposed methods with respect to
different system parameters, a two-way antenna pattern which is
approximated using the array factor of a linear array with uniform
amplitude weighting as presented in (3) is used.

For this simulation, the carrier frequency is considered to be
changing between 8 and 8.5 GHz in N = 21 steps according to (1).
This corresponds to the operation of an FSA described in [24],
which scans between −9.7° and 7.7° in non-uniform steps in
frequency. The −3 dB beamwidth of these patterns is 13°.

In addition, the Δfov is selected to be the range of [−6,…, 6]°, and
simulations are done to detect targets in this region. As an arbitrary
but representative example, a benchmark with two targets is
considered. Targets are assumed to be at the same range and at
−3° and 3° with respect to boresight. The number of beams in the
selected Δfov N and the subvector size Q are selected equal to
N = 21 and Qopt = 13 according to (31). The targets amplitude
vector s in (14) is assumed to consist of two coherent random
complex numbers (s2 = 0.9s1) and n is a white Gaussian noise
vector. The SNR is defined as the total power of the received
signals over the noise power.

Fig. 3 shows the result of applying the MVB method (28) in two
different SNR conditions of SNR = 20 and 5 dB. It can be seen that
at SNR = 20 dB, the targets are detected at g1 =−3° and g2 = 3°
(Fig. 3a). However, when SNR = 5 dB the MVB method cannot
detect two targets in the Δfov (Fig. 3b). The ML method also
detects the targets DOA at g1 =−3° and g2 = 3° when SNR = 20
dB and g1 =−2° and g2 = 4° when SNR = 5 dB. Note that the
interpolation step described in Section 4 is applied with the MVB
method. Also note that both methods are implemented with one
degree resolution.

To evaluate the performance of the two methods with respect to
different parameters, the root mean square error (RMSE) of the
targets DOA estimation is calculated. Given the above setup the
RMSE is defined as

RMSE =
����������������������
E

∑K
k=1

(gk − ĝk )
2

[ ]√√√√ , (37)

where E(.) is the expected value estimated using 100 Monte Carlo
trials and K = 2 is the number of targets. The Cramér–Rao Lower
Bound (CRLB) [25] which serves as an optimality criterion for
DOA estimation is also computed and presented for evaluation of
the results. CRLB estimation of real parameters based on a
complex data vector with complex Gaussian probability density
function is computed according to equations given in [12, 25] with
minor modifications and reported in Appendix 1.

Fig. 4 shows the RMSE of DOA estimation obtained with the two
methods as a function of the SNR. In that simulation, two targets

Fig. 3 Results of applying the MVB method along with spatial smoothing and ML method

a SNR = 20 dB
b SNR = 5 dB

Fig. 4 RMSE of target DOA estimation methods versus SNR for N = 21,
g1 =−3 and g2 = 3
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were also assumed to be at −3° and 3° and the number of beams was
also set to N = 21. The estimation results in Fig. 4 show that in low
SNR situations (SNR < 10 dB), the DOA estimation performance is
low. For SNR values lower than 10 dB, the ML method can detect
two targets with a total error of 4° to 6° and the MVB method
cannot detect two targets in the Δfov. For the MVB method, when
two targets cannot be separated from each other in more than 5%
of the trials, the RMSE values are not plotted in Figs. 4, 5 and 8,
as RMSE calculation becomes ambiguous. Also note that both
methods are implemented with one degree resolution. Accuracy
corresponding to this resolution is achieved when the SNR is
above 15 dB for the ML method and above 20 dB for the MVB
method.

Fig. 5 shows the RMSE obtained with the two methods as a function
of N, the number of beams in the Δfov form the received signal vector.
For this simulation, the SNR is fixed at 20 dB and other parameters
including the Δfov and the frequency range are kept unchanged.
This means that by increasing N, the beams will be closer to each
other. It can be seen that for the ML method, increasing N decreases
the RMSE. The MVB method also has better performance when
the number of beams is large (more than 21). However, this
method cannot detect two targets in the Δfov when N < 21.

Next, the impact of angular separation of the two targets on the
RMSE is studied (Fig. 6). It can be seen that using the ML
method, the RMSE decreases when the angular separation between
the two targets increases, which means that ML can detect two
targets more accurately when they have larger angular distance
from each other. However, when using the MVB method, the
RMSE increases if the angular separation between two targets is
larger than 8°. This is due to the fact that for this simulated
antenna patterns and with the current settings, the angular
separation between two targets larger than 8° requires sampling
from sidelobes of some of the antenna patterns, which decreases
the performance of the MVB method.

7 Measured FSA antenna pattern examples

In this section, the performance of the two considered DOA
estimation methods is studied by taking into account the antenna
patterns of a real FSA antenna. The antenna was designed to work
in the X-band and the measured antenna patterns are used in the
simulations.

Fig. 6 RMSE of target DOA estimation methods versus angular separation
between two targets SNR = 20 dB, and N = 21

Fig. 5 RMSE of target DOA estimation methods versus N, SNR = 20 dB,
g1 =−3 and g2 = 3

Fig. 7 Measured FSA two-way antenna gain pattern in the range 8–8.8 GHz with frequency steps of 20 MHz

a Non-calibrated
b Calibrated beams for N = 31
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Fig. 7a shows the two-way radiation pattern of an 8-element FSA,
which is built based on a composite right/left-handed (CRLH)
waveguide with air-filled double-ridge waveguide [24]. The
antenna scans the angles between −5° and 35° by changing the
frequency from 8 to 8.8 GHz in 40 steps. The half-power
beamwidth of the antenna varies between 15° and 21° for the
different steering angles. This FSA antenna can scan the FOV
continuously with controllable frequency steps.

The Δfov is selected to be the range of [6… 24]°, and simulations
are done to detect targets in this region. As an arbitrary but
representative example, a benchmark with two targets is
considered. Targets are to be at the same range and at 9° and 21°
with respect to boresight. The number of beams in the selected
Δfov N and the subvector size Q are selected equal to N = 31 and
Qopt = 19 according to (31). The targets amplitude vector s in (14)
is assumed to consist of two coherent random complex numbers
and n is a vector of white Gaussian noise.

In this FSA, the beamwidth and the gain of the antenna main beam
is changing for the various steering angles (Fig. 7a). Furthermore, the
antenna steering angle changes non-linearly when the frequency is
changed in uniform steps. Therefore, the compensation methods
discussed in Section 4 is applied before applying the MVB
method. Fig. 7b shows the calibrated antenna patterns.

Fig. 8 shows the RMSE of DOA estimation for the two methods as
a function of the SNR. The estimation results in Fig. 8 show that in

low SNR situations (SNR < 5 dB), the ML method can detect two
targets with total error of 4° to 7° while the MVB method cannot
separate two targets in more than 5% of trials and therefore is not
plotted.

Fig. 9 shows the impact of angular separation of two targets on the
RMSE. The achieved results agree with the results in the previous
section. It can be seen that using the ML method, the RMSE
decreases when the angular separation between two targets
increases, which shows that the ML method can detect two targets
more accurately when they have more angular distance from each
other. However, using the MVB method, the RMSE increases
when the angular separation between two targets is larger than
12°. Again, this is due to the fact that for this FSA and with the
current settings, the angular separation between two targets larger
than 12° requires sampling from sidelobes of antenna patterns,
which decreases the performance of the MVB method.

8 Conclusions

In this work, we addressed the problem of resolving the DOA of
multiple radar targets separated by less than an antenna beamwidth
using FSA antennas. The FSAs are advantageous because
frequency scanning can be done very rapidly and accurately,
therefore it is easier to track moving targets.

The performance of two DOA estimation algorithms, MVB and
ML estimation are studied. These methods were first adapted for
our signal model and their performance were investigated through
Monte Carlo simulations and compared against each other in terms
of RMSE. Simulation results showed that in low SNR situations,
the RMSE of DOA estimation is large and the MVB method
cannot separate two targets. In addition, it was shown that
sampling from sidelobes of the antenna pattern decreases the
performance of the MVB method. In other cases, by selecting
correct parameters, both methods can separate targets with angular
separations smaller than the antenna pattern beamwidth. We have
also presented a calibration scheme which worked efficiently when
it was applied to different antenna pattern shapes at each
frequency and non-uniform scanning angles. In the next step, the
proposed methods will be applied to the experimental data
captured from a radar experiment using real targets.
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10 Appendix

10.1 Appendix 1: CRLB calculation

Considering the complex-value amplitude s being a deterministic
unknown vector and defined as si = Aie

j∅i , then the vector of
unknown parameters will be z = g1, . . . , gK , A1, . . . , AK ,

[
∅1, . . . , ∅K ].

In addition, assuming that n is modelled as white complex
Gaussian noise with zero mean and covariance matrix of σ2I,

then the Fisher information matrix [16] for our signal model in (2)
can be written as

Jij = J[ ]ij =
2

s2
Re

∂mH

∂zi

∂m

∂zj

{ }
, (38)

where m = E{xr} = ∑K
k=1 ska gk

( )
. For the first K elements of ζ that

represent unknown targets DOA, we have

∂m

∂zi
= siqi for 1 ≤ i ≤ K, (39)

where qi is the vector with elements of:

[qi]n = Hn

Nebd cos Neu
( )

sin Neu
( )

cos(gi)

sin2 u( )

− bd cos u( ) sin2 Neu
( )

cos(gi)

sin3 u( ) e−j2p fntl ,

(40)

and

u = bd sin gi
( )− sin u1 +

n

N
(Dfov)

( )[ ]
/2.

The CRLBs are then calculated form diagonal elements of J−1 as
CRLB gi

( ) = [J ]ii
−1. Therefore, for one target (K = 1), the CRLB

(gi) will be

CRLB gi
( ) = 1

2SNR
Re qi

Hqi

{ }
(41)
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