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Abstract: Tri-polarised antennas are exploited to synthesise the optimal polarised beampattern in this study. First, the
characteristics of a single tri-polarised antenna are studied with an infinite current sheet model. Using the cross-
product algorithm, the authors find that three co-located orthogonal current sheets are equivalent to a pair of
orthogonal current sheets in a particular orientation. It implies that the tri-polarised antenna is just virtually equivalent
to a rotatable dual-polarised antenna. Then by formulating the problem in a convex form, they adopt the convex
optimisation algorithm to synthesise optimal polarised beampattern of the tri-polarised array. The simulation results
show that due to the increased orientation degree of freedom, the sidelobe and cross-polarisation level of tri-polarised
array are significantly lower than the dual-polarised array.

1 Introduction

The polarised beampattern synthesis has received much attention
over recent years. Several works [1–7] dealing with the joint
synthesis of power pattern and polarisation have been declared in
the literature. In [1], an iterative least-square method is presented
to synthesise a main beam with optimised circular polarisation for
conformal arrays. The ideal shape of the power pattern and the
polarisation are defined as the desired radiation pattern in a
least-square optimisation. An adaptive array approach is also
applied in [2] to synthesise a beam with optimised polarisation
employing dual-polarised patch antennas as radiators.

The aforementioned methods cannot ensure that the optimum is
achieved, since the optimisation problems they solve are not
transformed into convex programs. The exploitation of convexity
in array synthesis problems has been introduced in [3]. Such a
convex formulation has been proposed in [4] to optimally
synthesise pencil beams. The approach guarantees the achievement
of the global optimum using local optimisation techniques and
can, moreover, deal with any convex constraint on the unknowns,
such as near-field constraints.

The optimal synthesis of beampattern having any state of
polarisation via convex optimisation has been addressed in [5]
using an array of vector antennas. The vector array synthesis
problem is cleverly transformed into a scalar one using an
orthogonal transformation, which then makes the problem
efficiently solvable. Later on, a method to synthesise the spatial
power pattern while optimising polarisation over an angular region
is proposed in [6]. Moreover, in [7], a finite-impulse response filter
is set at each element to directly optimise the synthesised
polarisation and wideband power patterns. Both the optimisations
of the sum and difference patterns are formulated as convex
programming problems to obtain efficient solutions.

In this paper, we employ the tri-polarised antennas as the array
elements to synthesise the desired polarised beampattern. The
tri-polarised antenna used in this paper is illustrated in Fig. 1b.
Compared with the traditional dual-polarised antenna (Fig. 1a), the
tri-polarised antenna add a new element orthogonal to the
dual-polarised antenna plane, and the three radiators are aligned
with the coordinates x, y, and z, respectively. In wireless
communications, the tri-polarised antenna increases the capacity
and the robustness [8–12] of the multiple-input–multiple-output

systems and there are several designs of the tri-polarised antennas
that have been proposed in [13, 14]. In the current paper, we find
a new property of tri-polarised antenna: tri-polarised antenna is
virtually equivalent to a rotatable dual-polarised antenna, which
will explain that why the tri-polarised antenna performs better
than the dual-polarised antenna. Then, we propose a convex
optimisation algorithm to synthesise optimal polarised
beampattern. Our results show that the maximum sidelobe level
and cross-polarisation level of tri-polarised array are much lower
than that of the dual-polarised array.

The rest of this paper is organised as follows. In Section 2, current
distribution and the radiation characterstics of tri-polarised antenna
are analysed. In Section 3, we introduce the geometric of the array
and formalise the polarised waveform synthesis as the convex
optimisation problem. Numerical examples are presented in
Section 4 to illustrate the potentialities of the proposed array and
method. The conclusions are drawn in Section 5.

2 Characteristics analysis of tri-polarised antenna

In this part, we consider the tri-polarised antenna composed of three
infinite current sheet radiators (e.g. Herztian dipoles) which govern
the behaviour of different practical array. We assume that the three
radiators are perfectly matched to their feeding transmission lines
over frequency and scanning angle, and do not couple to each other.

2.1 Analysis of three co-located orthogonal current
sheets

Let ar be a unit vector representing a spatial direction in R3. We can
write ar in the form

ar = sin u cosf, sin u sinf, cos u[ ]T (1)

where 0≤ θ≤ π is the elevation angle, 0≤f < 2π is the azimuth
angle, and θ, f have been shown in Fig. 1. For each ar, we further
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define

af(u, f) =
1

sin u

∂ar
∂f

= [− sinf, cosf, 0]T

au(u, f) =
∂ar
∂u

= [ cos u cosf, cos u sinf, − sin u]T
(2)

We observe that aθ(θ, f), af(θ, f), ar forms a right-hand coordinate
system.

Assuming that the ith element of the tri-polarised antenna is
excited with wi = |wi|exp(jci), the current sheets can be expressed as

J i = wiai, i = x, y, z (3)

where the time harmonic factor exp(jωt) is omitted.
Then, the three orthogonal current sheets satisfy the following

theorem generally:

Theorem: Every non-zero vector [Jx, Jy, Jz]
T has the unique

representation

J x

J y

J z

⎡
⎣

⎤
⎦ = J r b0, a0

( )
, (4)

or

J x

J y

J z

⎡
⎣

⎤
⎦ = Jf u0, f0

( )+ Ju u0, f0

( )
(5)

where

J r b0, a0

( ) = w0

sinb0 cosa0ax
sinb0 sina0ay

cosb0az

⎡
⎣

⎤
⎦,

Jf(θ0, f0) = wfaf(θ0, f0), Jθ(θ0, f0) = wθaθ(θ0, f0), wf, wθ, w0∈C
(for proof see the Appendix).

The above theorem shows that the currents in the tri-polarised
antenna with arbitrary excitations are equivalent to a single current
or a pair of orthogonal currents collocated with the tri-polarised
antenna, as represented in Fig. 2. If we treat (4) as the amplitude
of one current in a pair of orthogonal currents in (5) is zero, then
we obtain the following conclusion: three co-located orthogonal
current sheets are equivalent to a pair of orthogonal current sheets
in a particular orientation.

This discovery simplifies characteristic analysis of the
tri-polarised antenna. We will compare the performance of the
dual-polarised antenna with the tri-polarised antenna in the next
section.

Fig. 1 Schematic view of

a Dual-polarised antenna
b Tri-polarised antenna composed of two or three superimposed orthogonal infinite current sheet radiators

Fig. 2 Equivalent current (s) of the tri-polarised antenna

a Three orthogonal currents are equivalent to a single current collocated with the tri-polarised antenna
b Three orthogonal currents are equivalent to a pair of orthogonal currents collocated with the tri-polarised antenna
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2.2 Polarisation performance comparison of dual- and
tri-polarised antennas

According to the above foundation, when we want tri-polarised
antenna scans at the direction (θ0, f0), we can control the
orientation of the virtual dual-polarised antenna right pointing at
the scanning direction (dual-polarised antenna with optimal
orientation). We can control the weights of tri-polarised antenna to
virtually obtain an optimal oriented dual-polarised antenna. If the
desired polarisation is left circular, then the weights of tri-polarised
antenna wtri can be expressed as

wtri =
��
2

√

2

− sinf0

cosf0

0

⎡
⎣

⎤
⎦ + j

��
2

√

2

cos u0 cosf0

cos u0 sinf0

− sin u0

⎡
⎣

⎤
⎦ (6)

Fig. 3 shows the polarisation properties of the tri-polarised antenna
and the dual-polarised antenna (located in the x–y plane as shown
in Fig. 1a) when synthesising circular polarisation at (θ0, f0) =
(50°, 45°). Weights of dual-polarised antenna to synthesise the
desired polarisation are the same with Boryssenko’s [15].

As showen in Figs. 3a and b, the axial ratio of the tri-polarised
antenna is much higher than the dual-polarised antenna in the
region near the scanning direction. It implies that the axial ratio
degradation of the tri-polarised antenna is much slower (versus
space angle) than the dual-polarised antenna, and the polarisation
purity of tri-polarised antenna is much better than dual-polarised
antenna at larger scanning angles. The reason for the better
performance of the tri-polarised antenna is that the tri-polarised
antenna is virtually equivalent to a dual-polarised antenna with
optimal orientation, whereas the dual-polarised antenna located in
the x–y plane works in its larger scanning angle.

3 Tri-polarised antenna array beampattern
synthesis

In this section, we formulate the problem of the optimal beampattern
synthesis with full polarisation control. We first introduce the
configurations of the tri-polarised array used in this paper, and
then formulate the beampattern synthesis problem using tools from
convex optimisation.

3.1 Antenna array

We consider an antenna array composed of N elements placed at
known locations. The problem is described as a one-dimensional

pattern synthesis over the angle θ in a fixed azimuth plane f = f0.
The electric field in the far field region is given by

E(u) =
∑N
n=1

∑
i=x,y,z

wni EniH(u)aH + EniV(u)aV
[ ]

exp jkarn · ar
( )

W EH(u)aH + EV(u)aV

(7)

where

EH(u) =
∑N
n=1

∑
i=x,y,z

wniEniH(u) exp jkarn · ar
( )

EV(u) =
∑N
n=1

∑
i=x,y,z

wniEniV(u) exp jkarn · ar
( ) (8)

EH(θ) and EV(θ) are the H and V components of the synthesised
field, the polarisation basis is chosen as aH = af(θ, f0), aV = aθ(θ,
f0), wni, EniH(θ) and EniV(θ) are the weights, H and V polarisation
response of the ith (i = x, y, z) component of nth element,
respectively, k is the free-space propagation constant, arn
represents the location of the nth array element.

We further introduce w to be the concatenation of all wni

w = w1x, w1y, w1z, . . . , wNx, wNy, wNz

[ ]T
(9)

For the extension to a conformal array, we should convert the
response of each element from its local coordinate system to the
global coordinate system, the details can be seen in [16]. In
Section 4, we will give an example of the conformal array.

3.2 Optimal polarised pattern synthesis

The problem of polarised pattern synthesis is to design the antenna
weights w to achieve a desired pattern. Specifically, our goal is to
synthesise a beampattern with the following properties:

(i) a main beam in the direction θ0 with sidelobes below a given
upper bound tSL over an angular region ΩSL and
(ii) a low cross-polarisation level, optimised over an angular regionΩP.

The regions ΩSL and ΩP can overlap.

Fig. 3 Axial ratio (in dB) for

a Tri-polarised antenna
b Dual-polarised antenna when synthesising circular polarisation at (θ0, f0) = (50°, 45°), in the upper half-space z > 0, symbol ‘+’ indicates the scanning direction
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The magnitude of the vector electric field is equal to

E(u)
∥∥ ∥∥

2 =
������������������������
EH(u)

∥∥ ∥∥2 + EV(u)
∥∥ ∥∥2√

(10)

The sidelobes bound will be imposed on (10) over ΩSL to handle the
spatial power constraint.

Let us now focus on the polarisation constraint. Given a
polarisation, characterised by (γ0, δ0), γ0 and δ0 are the relative
amplitude and phase difference between H and V components
[17], can be synthesised over a range of directions in [6]. In the
current paper, we notice that if we choose co-polarisation and
cross-polarisation unit components aCo and aCr as the polarisation
basis, then we will obtain

E(u) = ECo(u)aCo + ECr(u)aCr (11)

where ECo and ECr are co- and cross-polarisation components of the
electric field, and

aCo
aCr

[ ]
= cosg0 sin g0e

jd0

sin g0 − cos g0e
jd0

[ ]
aH
aV

[ ]
(12)

From (12), we obtain

aH
aV

[ ]
= cosg0 sin g0

sin g0e
−jd0 − cosg0e

−jd0

[ ]
aCo
aCr

[ ]
(13)

Combining (7), (11) and (13), we obtain

ECo(u)
ECr(u)

[ ]
= cosg0 sin g0e

−jd0

sin g0 − cosg0e
−jd0

[ ]
EH(u)
EV(u)

[ ]
(14)

Hence to optimise the polarisation we can impose

ECr(u)
∥∥ ∥∥

2 ≤ tCr, u [ VP (15)

where tCr is the limitation of the maximum cross-polarisation level,
which allows to tune the degree of accuracy with which the desired
polarisation is achieved.

Then the synthesis problem can be written as

min
w

tCr

s.t.

ECo u0
( ) = 1

ECr(u)
∣∣ ∣∣2 ≤ tCr, u [ VP

ECo(u)
∣∣ ∣∣2 + ECr(u)

∣∣ ∣∣2 ≤ tSL, u [ VSL

(16)

It is easy to see that the above problem is a second-order cone
programming (SOCP) problem. There are well-developed
numerical methods to solve a general SOCP problem [18–21],
such as the interior point method. In the next section, we adopt an
optimisation toolbox, SeDuMi [22], to solve the SOCP formulated
above.

4 Numerical results

In this section, numerical results are presented. Let us remind that
any state of polarisation can be synthesised in (16) and (18); in the
examples below, we take circular polarisation as an example to
validate and illustrate the potentialities of the tri-polarised array
and the proposed approach. Linear and conformal arrays are
considered in the simulation.

4.1 Linear arrays

In this case, a linear array composed of 20 tri-polarised antennas
spaced by l/2 is considered. A schematic view of the linear array
is shown in Fig. 4. To compare with the tri-polarised antenna
array, we also consider an array of 20 dual-polarised antennas with
the same array structure, and the dual-polarised antenna is
composed with two superimposed orthogonal radiators along
x- and y-axis, respectively.

We first study the sidelobe levels of the array and do not consider
the polarisation purity, then we obtain the following optimised

Fig. 4 Schematic view of the linear array composed of 20 tri-polarised
antennas spaced by l/2. For the dual-polarised array, the dual-polarised
antenna is composed with two superimposed orthogonal radiators along
the x- and y-axis

Fig. 5 Optimised power pattern of dual- and tri-polarised array

a Considering the sidelobe level only
b Considering the sidelobe level and cross-polarisation level simultaneously
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problem:

min
w

tSL

s.t.

ECo u0
( ) = 1

ECo(u)
∣∣ ∣∣2 + ECr(u)

∣∣ ∣∣2 ≤ tSL, u [ VSL

(17)

In Fig. 5a, we synthesise a circular polarisation in the direction θ0 = 45°
with the optimised sidelobes overΩSL = [0°, 37°] ∪ [53°, 90°]. When
we choose tri-polarised antenna as the array element, the sidelobe
level is 1.1 dB lower than dual-polarised array in the current
scanning angle. In other scanning angles, we obtain a similar
sidelobe difference, because the sidelobe level is mainly
determined by the array factor in the linear array. However, when
we constrain sidelobe level below −20 dB, and optimise the
cross-polarisation level, we find that the cross-polarisation
synthesised by the tri-polarised array is 45.3 dB lower than by the
dual-polarised array over ΩP = [0°, 90°] (Fig. 5b), which
establishes the good quality of the synthesised circular polarisation.

When the weights of the tri-polarised antenna are obtained, the
optimised orientation and weights of the equivalent dual-polarised
antenna are obtained according to Section 2. Fig. 6 shows normal
to the equivalent dual-polarised antenna plane. After optimisation,
normal to the rotated dual-polarised antenna has changed
significantly compared with the dual-polarised antenna. We
observe that exploiting tri-polarised antenna improves the
polarisation purity of the array significantly.

4.2 Conformal array

Fig. 3 shows the structure of the conformal array used in simulation.
The dots represent possible element locations. Circular array is the
building block of the array. Each concentric circle represents the
intersection of a z = constant plane with the cone. Repetitive
circular sub-arrays with linearly ascending diameters form a
conical array. Elements around each sub-array are parallel to the
xy-plane of the global coordinate system oxyz. d is the distance
between two adjacent sub-arrays along the cone element. In this
paper, we set d = l/2, where l is the wavelength. The half cone
angle α is 20° and the radius of the cone’s base is 1.53l. M
circular sub-arrays with each having Ni (i = 1, 2,…, M ) elements at
the circle perimeter form a conical array. The arc length between
two adjacent elements di (i = 1, 2,…, M ) in each circular sub-array
is set equal, and satisfies di∈ [0.50l, 0.54l]. Ni can be determined
by the constraint of di, and satisfies Ni = 4 + 2i, i = 1, 2,…, M. In
the simulation, we set M = 7.

The local coordinate system x′y′z′ is defined as follows: at each
element location, the z′-axis is along with the normal to the

Fig. 6 Normal to the equivalent dual-polarised antenna for tri-polarised
antenna and the antenna plane of the dual-polarised antenna seen from
the x-axis

Fig. 7 Geometry of the conformal array and the element arrangement of
subarray. The tri-polarised antenna is placed along with the local
coordinate x′-, y′-, z′-axis, respectively, while the dual-polarised antenna is
placed along the x′-, y′-axis

Fig. 8 Power pattern synthesised by tri-polarised array

a Co-polarised component
b Cross-polarised component with the main beam pointing at (θ0, f0) = (0°, 0°), the maximum sidelobe level (cross-polarisation level) is –32.65 dB
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surface of the cone, the y′-axis is along with the cone element (from
the base to the apex), and the x′-axis is along the tangent of the
sub-array circle, x′-, y′-, z′-axis form a right-hand coordinate
system, see Fig. 7.

We can optimise the sidelobe level and the polarisation purity
simultaneously, for example, t = tCr = tSL, and we obtain

min
w

t

s.t.

ECo u0, f0

( ) = 1

ECr(u, f)
∣∣ ∣∣2 ≤ t, (u, f) [ VP

ECo(u, f)
∣∣ ∣∣2 + ECr(u, f)

∣∣ ∣∣2 ≤ t, (u, f) [ VSL

(18)

The optimisation algorithm returns the sidelobes level or
cross-polarisation level whichever is great.

The pattern synthesised by tri-polarised array and dual-polarised
array are illustrated in Figs. 8 and 9. After optimisation, the
maximum sidelobe level and cross-polarised level of the
tri-polarised antenna are 6.42 dB lower than the correspondences
of dual-polarised antenna. The comparison between Figs. 8 and 9
implies that when we use the tri-polarised antenna, the
performance of the array is improved.

Fig. 10a shows the normal to the equivalent dual-polarised
antenna plane. After optimisation, normal to the equivalent
dual-polarised antenna has changed significantly compared with
the dual-polarised antenna Fig. 10b.

In [5] the authors point out that because the tri-polarised antenna
virtually increases the array size, the power gain of the main beam
(over the sidelobes) is improved compared with the dual-polarised
antenna. Our work further points out that the main reason for the
performance improvement is that the tri-polarised antenna
increases the orientation degree of freedom of dual-polarised
antenna.

5 Conclusion

Tri-polarised antennas are used to the polarised beampattern
synthesis in this paper. From an infinite current sheet model, we
find that three co-located orthogonal current sheets are equivalent
to a pair of orthogonal current sheets in a particular orientation. It
means that it is unnecessary to rotate the dual-polarised antenna
practically, the rotation can be achieved virtually by controlling
the excitation of the tri-polarised antenna. Then we propose a
convex optimisation algorithm to synthesise the optimal polarised
beampattern. The simulation results show that the performance
(sidelobe level and cross-polarisation level) of the array is
significantly improved by using the tri-polarised antenna elements.

Fig. 9 Power pattern synthesised by dual-polarised array

a Co-polarised component
b Cross-polarised component with the main beam pointing at (θ0, f0) = (0°, 0°), the maximum sidelobe level (cross-polarisation level) is –26.23 dB

Fig. 10 Normal to the equivalent dual-polarised antenna for tri-polarised antenna and the antenna plane of the dual-polarised antenna seen from the x-axis
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We have obtained general conclusions of tri-polarised antenna and
testified the proposed method through the theoretical analysis from
the infinite current sheet model in this paper. To design an array of
the tri-polarised antennas and measure the radiation patterns from
a fabricated prototype is part of our future work.
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8 Appendix Proof of theorem

For non-zero [Jx, Jy, Jz]
T, we will prove the theorem in two situations

below.

Case 1: If there exists i, j∈ {x, y, z} satisfy |ci− cj|≠ 0 and π, i≠ j,
then [Jx, Jy, Jz]

T has a unique presentation

J x

J y

J z

⎡
⎣

⎤
⎦ = Jf u0, f0

( )+ Ju u0, f0

( )
(19)

where Jf(θ0, f0) =wfaf(θ0, f0), Jθ(θ0, f0) =wθaθ(θ0, f0), j0∈ [0,
2π), θ0∈ [0, π/2] {wj, wθ}∈C2.

We rewrite (19)

wxax
wyay
wzaz

⎡
⎣

⎤
⎦ = wf

− sinf0ax
cosf0ay

0az

⎡
⎣

⎤
⎦+ wu

cos u0 cosf0ax
cos u0 sinf0ay
− sin u0az

⎡
⎣

⎤
⎦ (20)

The unit vector ai, i = x, y, z, can be omitted in (20), and obtain

wx

wy

wz

⎡
⎣

⎤
⎦ W w = wf

− sinf0
cosf0

0

⎡
⎣

⎤
⎦+ wu

cos u0 cosf0

cos u0 sinf0
− sin u0

⎡
⎣

⎤
⎦ (21)

Using the vector cross-product algorithm [23], we can obtain f0, θ0,
wf, wθ from (21). In fact, for w

Re(w)× Im(w) = Re
wx

wy

wz

⎡
⎣

⎤
⎦× Im

wx

wy

wz

⎡
⎣

⎤
⎦

=
RewyImwz − RewzImwy

RewzImwx − RewxImwz

RewxImwy − RewyImwx

⎡
⎣

⎤
⎦ W

s
t
u

⎡
⎣

⎤
⎦ (22)

where the symbol × represents cross-product operation of the vector.
Meanwhile for the right-hand side of (21), we obtain

Re(w)× Im(w) =
sin u0 cosf0

sin u0 sinf0

cos u0

⎡
⎣

⎤
⎦ Re wu

( )
Im wu

( )
Re wf

( )
Im wf

( )
∣∣∣∣∣∣

∣∣∣∣∣∣ (23)

Combining (23) and (22), and note that θ0∈ [0, π/2], we obtain

u0 = cos−1(|u|)
f0 = angle(sgn(u)s+ jsgn(u)t)

(24)

and we further obtain

− sinf0 cos u0 cosf0
cosf0 cos u0 sinf0

0 − sin u0

⎡
⎣

⎤
⎦

T

w = ww

wu

[ ]
(25)

Then we obtain all the parameters f0, θ0, wf, wθ of (21), and from
the above derivation process, we can find that the parameters are
unique.
Case 2: If i, j∈ {x, y, z}, i≠ j satisfy |ci− cj| = 0 or π, in the same
way with case 1, we omit the unit vector, w can be expressed as

w =
wx

wy

wz

⎡
⎣

⎤
⎦ = w‖ ‖ exp jcz

( )
exp j cx − cz

( )[ ] wx

∣∣ ∣∣
w‖ ‖

exp j cy − cz

( )[ ] wy

∣∣∣ ∣∣∣
w‖ ‖

wz

∣∣ ∣∣
w‖ ‖

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

for |cx− cz| = 0, π and |cy− cz| = 0, π then exp[j(cx− cz)] = ± 1,
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exp[j(cy− cz)] = ± 1, so. We obtain

b0 = cos−1 wz

∣∣ ∣∣
w‖ ‖

g0 = angle exp j cx − cz

( )[ ] wx

∣∣ ∣∣
w‖ ‖ + j exp j cy − cz

( )[ ] |wy|
w‖ ‖

( )

(27)

and we obtain

w = w‖ ‖ exp (jf)
sinb0 cosg0
sinb0 sin g0

cosb0

⎡
⎣

⎤
⎦ (28)

Moreover, β0 and γ0 are unique from the above derivation.
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