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Abstract: Dielectric resonator antennas are widely used in wireless communication systems. A theory of characteristic
modes (CMs) for modal analysis of dielectric resonators is highly demanded. Although a few earlier studies had
proposed CM theory for modelling scattering from dielectric bodies, the physical characteristics of these CMs and their
eigenvalues are not as clear as that of those for conducting bodies. This study revisits the CM theory for dielectric
resonators. Following the Poynting’s theorem and the PMCHWT (Poggio, Miller, Chang, Harrington, Wu, and Tsai)
equation, two generalised eigenvalue equations are formulated. The resultant eigenvalues possess clear physical
meanings that are the same as those of perfectly electrically conducting problems. In addition, other possible CM
formulations based on the PMCHWT equation are also discussed. Mathematical proofs are given in the Appendix to
show how to formulate CM theory to physically describe the fundamental resonant modes of dielectric resonators.
Numerical results are given to show the proposed CM formulations are effective in solving resonant frequencies and
modal fields for dielectric resonators.

1 Introduction

Characteristic mode (CM) theory was initially proposed by Garbacz
in 1965 [1] and was refined to an explicit formulation using the
method of moments (MoM) [2]. It provides an elegant and useful
approach to predict the resonant behaviour of perfectly electrically
conducting (PEC) bodies [3–5]. Recently, it finds wide
applications in a variety of antenna designs, including platform
mounted antenna systems [6–10], multiple-input multiple-output
handset antennas [11–13], circularly polarised microstrip antennas
[14], reactively loaded antennas [15, 16], and ultra-wideband
planar monopole antennas [17–19].

Early attempts to extend the CM theory to dielectric bodies were
reported in [20, 21]. In [20], the CM theory was developed from the
volume integral equation (VIE) for dielectric bodies. Harrington
et al. commented on the VIE-based CM theory that the imaginary
part of kJ∗

n, ZVJnl was not the imaginary part of the complex
power (Section II and IV of [20]), where J is the eigencurrent and
ZV is the operator in the VIE. As kJ∗

n, ZVJnl = 1+ jln, where ln
is the eigenvalue, it further illustrated that the eigenvalues solved
from the VIE-based CM formulation did not represent the amount
of energy stored in a scattering or radiation problem.

In [21], Chang and Harrington developed a CM formulation for
dielectric bodies using surface integral equation (SIE). Scattering
cross-sections of infinite circular and square cylinders were
computed using the SIE-based CM formulation. However, the
physical meanings of the eigenvalues in their SIE-based CM
formulation were not interpreted. Therefore, Chang and Harrington
concluded their work as follows [21]: ‘Many questions are still left
unanswered in the interpretation and application of characteristic
modes to material objects. It is hoped that this work will be of
some value to future researchers in their effort to gain a complete
understanding of the theory of characteristic modes.’ Hence, how
to compute CMs of dielectric resonators with clear physical
meanings becomes an open problem.

For arbitrarily shaped dielectric resonators, their modal analysis
was conventionally conducted by seeking the roots of the
determinant of the MoM impedance matrix in a complex

frequency plane [22, 23]. However, as reported in [24], the
numerical implementation of this method suffers from serious
numerical issues and heavy computation burdens. First, a
significant variation of the determinant appears only in a very
narrow region around the resonant frequency. A very good initial
guess of the root is required to ensure the convergence of the root
searching procedure. However, a good initial guess of the root is
generally unavailable. Second, root seeking must be conducted in
a complex frequency plane. The root seeking along the imaginary
frequency axis introduces heavy computational burden. Third, the
modal currents are solved from a homogeneous matrix equation.
As the right-hand side vector in the homogeneous matrix equation
is a zero vector, neither of the Gaussian elimination nor more
advanced solvers based on the singular value decomposition
(SVD) work well for such homogeneous matrix equation. This
problem becomes more serious when the number of unknowns
increases. These issues prohibit the application of the determinant
root seeking method in the dielectric resonator antenna designs.
For these reasons, the determinant of the impedance matrix is
abandoned in [24] since it is difficult to find its roots. Instead, Liu
proposed to search the minimum of the reciprocal of the condition
number of the impedance matrix in the complex frequency plane
[24]. However, the modal field was still solved through SVD.

Recently, we have briefly reported an idea to solve CMs of
dielectric bodies using SIE in a short conference paper [25]. To
fully elaborate on how to develop CM formulations from the
PMCHWT (Poggio, Miller, Chang, Harrington, Wu, and Tsai)
formulations [26, 27], this paper addresses the key issues in the
development of the CM formulation and the physical
interpretations for the CMs of dielectric resonators. We focus on
the following aspects in this study:

(i) Following the Poynting’s theorem, we formulate two
generalised eigenvalue equations by properly arranging the
operators in the PMCHWT formulation. Physical meanings of the
resultant eigenvalues are interpreted through rigorous mathematical
derivations. As will be seen later, the eigenvalues in the newly
developed CM formulations have the similar physical meanings as
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those in the CM theory for PEC bodies. The eigenvalues indicate the
amount of stored energy in a scattering or radiation problem.
Numerical results are given to show the proposed CM
formulations are effective and accurate in solving CMs of
dielectric resonators.
(ii) There are another two possible generalised eigenvalue equations
that can be derived from the PMCHWT formulation. Mathematical
proofs and physical explanations are given in the Appendix to
show why they cannot produce proper CMs with clear physical
meanings.

In addition, as compared with the determinant root seeking
method, the proposed CM formulations provide an efficient
approach to compute resonant frequency of each radiating mode
accurately. Specifically, the CM analysis avoids the frequency
sweeping along the imaginary frequency axis. It also avoids
solving homogeneous matrix equation. These features greatly
enhance the computational efficiency of the CM analysis.

2 CM theory development

Let us consider a scattering problem with incident plane wave
(Einc, H inc) illuminating a three-dimensional homogeneous
dielectric body with volume V2 and constitutive parameters (ɛ2,
μ2). We assume the dielectric body is immersed in an unbounded
homogeneous background medium with constitutive parameters
(ɛ1, μ1). We denote the region of the homogeneous background as
V1. In addition, we denote the boundary surface of V2 as S, and
define n̂ as the unit normal vector pointing from region V2 to V1.

By invoking Love’s equivalence principle [28], the scattering
problem can be formulated in terms of an equivalent surface
electric current J = n̂×H and an equivalent surface magnetic
current M = E × n̂ defined on the surface of the dielectric body S.
Here, E and H are the total electric field and total magnetic field
on S. The equivalent surface currents satisfy the PMCHWT
formulations [26, 27]

h1L1(J )+ h2L2(J )−K1(M)−K2(M)
[ ]

tan = Einc
tan (1)

K1(J )+K2(J )+
1

h1
L1(M)+ 1

h2
L2(M)

[ ]
tan

= H inc
tan (2)

where hi =
������
mi/1i

√
is the intrinsic impedance in region Vi. The

operators Li and Ki are defined as

Li(X ) = jki

∫
S

I + ∇∇
k2i

( )
G(r, r′; ki) · X (r′) dr′ (3)

Ki(X ) = P.V.

∫
S
X (r′)×∇G(r, r′; ki) dr′ (4)

where ki is the wavenumber in region Vi, G(r, r
′; ki) is the Green’s

function in an unbounded homogeneous medium with the
wavenumber ki, and I is the identity operator. In (4), P.V. denotes
the Cauchy principal value of the integration. Define the following
new operators

ZEJ = h1L1 + h2L2

( )
tan (5)

ZEM = (−K1 −K2)tan (6)

ZHJ = (K1 +K2)tan (7)

ZHM = ( 1h1L1 + 1
h2
L2)tan (8)

The PMCHWT formulations can be written in a more compact form

ZEJ J +ZEMM = Einc
tan (9)

ZHJ J +ZHMM = H inc
tan (10)

The following four points have to be kept in mind throughout the
developments in this study:

(i) Only one impressed field (Einc, H inc) is presented in the
scattering problem. This impressed field is the actual source that
supplies power to the scattering problem. There is no other actual
source that contributes power to the scattering problem.
(ii) The equivalent surface electric current J and equivalent surface
magnetic current M are the equivalent surface currents to give the
exactly same fields in regions V1 and V2. These two equivalent
surface currents do not supply power to the scattering problem.
(iii) In the CM theory of dielectric bodies, we intend to solve the
characteristic equivalent surface currents on the equivalent surface
S, which can clearly describe the fundamental (resonant) modes of
the dielectric resonators at their resonant frequencies. These
characteristic currents are a complete and orthogonal current set
that can be used to expand any equivalent surface currents caused
by arbitrary actual impressed sources.
(iv) The characteristic currents and characteristic fields in CM
theory exist in a source-free problem. No actual impressed source
is considered in the solving of CMs for dielectric bodies.

Define Jn and Mn as the characteristic equivalent surface currents
on the surface S of a dielectric body, where the subscript n denotes
they are the characteristic equivalent surface currents of the nth order
CM. They produce characteristic magnetic fields H (i)

n and
characteristic electric fields E(i)

n in region Vi (i = 1, 2). As CMs
exist without any actual impressed sources [1, 2, 21], the
characteristic currents satisfy the following equations on S as
shown in Fig. 1

ZEJ Jn +ZEMMn = − E(1)
n − E(2)

n

( )
tan (11)

ZHJ Jn +ZHMMn = − H (1)
n −H (2)

n

( )
tan (12)

It should be noted that the characteristic equivalent surface
currents Jn and Mn only satisfy the generalised eigenvalue

Fig. 1 Configuration of the infinite radiation sphere and the outward unit
normal vectors defined for regions V1 and V2
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equation resulted from (9) and (10) under source-free condition.
Under the source-free condition, the CM analysis for PEC
structures [2] and dielectric structures as discussed in this paper
does not consider any excitation at all. This is quite different from
the zero excitation condition in [22–24], where the modal fields
were solved from a homogeneous equation with a zero right-hand
side vector. Owing to the source-free condition, the characteristic
fields may not necessarily satisfy the boundary conditions. This
difference makes the CMs differ with the natural modes (resulted
from zero excitation condition) as defined in [22–24].

To ensure the characteristic currents have clear physical meanings
and keep the intrinsic relationships between the equivalent currents,
(11) and (12) need proper constrains. As shown in Fig. 1, two sets of
surface currents are defined from the differences of the fields across
the equivalent surface S

J S
n = n̂× H (1)

n −H (2)
n

( )
(13)

MS
n = E(1)

n − E(2)
n

( )× n̂ (14)

Let JS
n = 0 on surface S, it ensures the magnetic fields are continuous

across the interface between regions V1 and V2. From (12), we have

Mn = −(ZHM)−1ZHJ Jn (15)

Substituting (15) into (11), we have

ZEJ Jn +ZEMMn = ZEJ − ZEM(ZHM)
−1ZHJ

( )
Jn = ZEJn

(16)

where ZE = ZEJ − ZEM(ZHM)−1ZHJ . Owing to the symmetry of
the operators ZEJ , ZEM, ZHJ , and ZHM, and also because of
ZEM = −ZHJ , one can get

(ZE)T = ZE (17)

where the superscript ‘T’ denotes the transpose of the operator in the
bracket. Therefore, ZE is a symmetric operator. It can be expressed
in terms of Hermitian parts as ZE = RE + jXE, where

RE = 1
2 ZE + (ZE)

∗( )
(18)

XE = 1
2j ZE − (ZE)

∗( )
(19)

where the asterisk denotes the complex conjugate.
As there is no actual impressed source inside region V1, the net

complex power is zero. Following the Poynting’s theorem in
source-free region [29], we have

P(1) =
∫
S+S1

E(1)
n × (H (1)

n )
∗
dS + jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dV

= 0

(20)

where S∞ denotes the infinite radiation sphere as shown in Fig. 1.
The first term on the right side gives the complex power entering
the region V1 from its environment; the second term on the right
side represents the complex power stored in the region V1. Taking
the definition of the outward normal unit vector for surfaces S and
S∞, (20) can be further written as

P(1) = −
∫
S
E(1)
n × (H (1)

n )
∗ · n̂ dS +

∫
S1

E(1)
n × (H (1)

n )
∗ · n̂ dS

+ jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dV

= 0 (21)

Therefore

∫
S
E(1)
n × (H (1)

n )
∗ · n̂ dS =

∫
S1

E(1)
n × (H (1)

n )
∗ · n̂ dS

+ jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dV

(22)

Similarly, there is also no actual impressed source inside region V2.
Following the Poynting’s theorem in source-free region V2 [29], we
have

P(2) =
∫
S
E(2)
n × (H (2)

n )
∗ · n̂ dS + jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2 − 12 E(2)
n

∣∣ ∣∣2( )
dV

= 0

(23)

Therefore, we have

−
∫
S

E(2)
n × (H (2)

n )
∗ · n̂ dS = jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2 − 12 E(2)
n

∣∣ ∣∣2( )
dV

(24)

Adding (22)–(24) yields
∫
S
E(1)
n × (H (1)

n )
∗ · n̂ dS −

∫
S
E(2)
n × (H (2)

n )
∗ · n̂ dS

=
∫
S1

E(1)
n × (H (1)

n )
∗ · n̂ dS + jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dV

+ jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2 − 12 E(2)
n

∣∣ ∣∣2( )
dV

(25)

Using (16), JS
n = 0 and the vector identity

(a× b) · c = (b× c) · a = (c× a) · b, we have
∫
S
E(1)
n × (H (1)

n )
∗ · n̂ dS −

∫
S
E(2)
n × (H (2)

n )
∗ · n̂ dS

=
∫
S
E(1)
n · ((H (1)

n )
∗ × n̂) dS −

∫
S
E(2)
n · ((H (2)

n )
∗ × n̂) dS

=
∫
S
(E(1)

n − E(2)
n ) · ((H (1)

n )
∗ × n̂) dS

= −
∫
S
(E(1)

n − E(2)
n )tan · (Jn)

∗ dS

= k(Jn)
∗, ZEJnl

(26)

where the inner product is defined for the Hilbert space on the
equivalent surface S. Applying (25) and ZE = RE + jXEto (26),
we have

Ptotal = k(Jn)
∗,ZEJnl= kJ∗

n, (RE+ jXE)Jnl

= kJ∗
n,REJnl+ jkJ∗

n,XEJnl

=
∫
S1

E(1)
n × (H (1)

n )
∗ · n̂dS+ jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2−11 E(1)
n

∣∣ ∣∣2( )
dV

+ jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2−12 E(2)
n

∣∣ ∣∣2( )
dV

(27)

where
�
S1

E(1)
n × (H (1)

n )
∗ · n̂ dS represents the radiation power on the
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infinite radiation sphere S∞. The last two terms in (27) are imaginary
power. They represent the energies stored in regions V1 and V2,
respectively. Evidently, kJ∗

n, REJnl and kJ∗
n, XEJnl give the

radiation and stored energy, respectively. kJ∗
n, REJnl cannot be

negative as radiated power must be greater than zero or equal to
zero. Therefore, RE is a semi-positive definite operator.

To achieve high radiation efficiency in a radiation system, we
intend to improve the radiation power and reduce the stored
energy within the radiation system. Mathematically, we can
achieve high radiation efficiency by minimising the following
function:

f (Jn) =
Pstore

Pradiation
= kJ∗

n, XEJnl
kJ∗

n, REJnl
(28)

A variational expression in terms of Jn immediately gives the
following generalised eigenvalue equation

XEJn = lnREJn (29)

As both RE and XE are symmetric operators, all the eigenvalues ln
and characteristic currents Jn must be real. Therefore

kJ∗
n, (RE + jXE)Jnl = kJn, (RE + jXE)Jnl

= (1+ jln)kJn, REJnl (30)

In general, the eigenvalues range from −∞ to +∞. As kJ∗
n, REJnl

represents the radiation power of the system, (30) shows that the
magnitude of eigenvalue |ln| is the ratio between the stored energy
and the radiation power. By comparing (27) and (30), we also find
that CMs with ln > 0 are inductive modes, and those with ln < 0
are capacitive modes. Particularly, CMs with ln = 0 are externally
resonant modes, which is indicating that there is no net energy
stored in a radiation or scattering problem. As compared with the
CM theory for PEC bodies [2], physical meanings of the
eigenvalues solved from (29) are the same as that for PEC problems.

Each characteristic current Jn can be normalised such that it
radiates unit power

kJn, REJnl = 1 (31)

After normalisation, the orthogonality relationship among
characteristic currents Jn is given by

kJm, ZEJnl = (1+ jln)dmn (32)

where δmn is the Kronecker delta function (0 if m≠ n, and 1 if m = n).
Consider the normalised characteristic currents Jn, from (27) and

(30), we can obtain

∫
S1

E(1)
m × (H (1)

n )
∗ · n̂ dS+ jv

∫
V1

m1 H (1)
m

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dt

+ jv

∫
V2

m2 H (2)
m

∣∣ ∣∣2 − 12 E(2)
n

∣∣ ∣∣2( )
dt

= (1+ jln)dmn
(33)

where the quantities with subscript ‘m’ denotes they are associated
with the mth CM. As the characteristic fields are outward
travelling waves on the infinite radiation sphere S∞, they satisfy

E(1)
n = h1H

(1)
n × n̂ (34)

Substituting (34) into (33) and adding (33) to its conjugate with m

and n interchanged, we have

1
h1

∫
S1

E(1)
m · (E(1)

n )
∗ · n̂ dS = dmn (35)

It shows that the resultant characteristic fields are orthogonal with
each other on S∞.

3 Alternative CM formulation

The generalised eigenvalue equation in (29) is defined in terms of the
equivalent surface electric current. The development of a dual form
of (29) is addressed in this section. Let MS

n = 0 on surface S, it
ensures the electric fields are continuous across the interface of
regions V1 and V2. From (11), we have

Jn = −(ZEJ )−1ZEMMn (36)

Substituting (36) into (12), we have

ZHJ Jn +ZHMMn = ZHM −ZHJ (ZEJ )
−1ZEM

( )
Mn

= ZMMn (37)

where ZM = ZHM − ZHJ (ZEJ )−1ZEM .
As ZEJ , ZEM, ZHJ , and ZHM are symmetric, and

ZEM = −ZHJ , it is easy to find that ZM is a symmetric operator.
It can be expressed in terms of Hermitian parts as
ZM = RM + jXM, where

RM = 1
2 ZM + (ZM)

∗( )
(38)

XM = 1
2j ZM − (ZM)

∗( )
(39)

Using the (37), MS
n = 0 and the vector identity

(a× b) · c = (b× c) · a = (c× a) · b, we obtain

∫
S
E(1)
n × (H (1)

n )
∗ · n̂ dS −

∫
S
E(2)
n × (H (2)

n )
∗ · n̂ dS

=
∫
S

(n̂× E(1)
n ) · (H (1)

n )
∗
dS −

∫
S

(n̂× E(2)
n ) · (H (2)

n )
∗
dS

= −
∫
S
(H (1)

n −H (2)
n )

∗ · ((E(1)
n )× n̂) dS

= −
∫
S

(H (1)
n −H (2)

n )∗tan ·Mn dS

= k(ZMMn)∗, Mnl

(40)

Following (25) and (40), we have

k(ZMMn)∗, Mnl =
∫
S1

E(1)
n × (H (1)

n )
∗ · n̂ dS

+ jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2 − 11 E(1)
n

∣∣ ∣∣2( )
dV

+ jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2 − 12 E(2)
n

∣∣ ∣∣2( )
dV

(41)
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Applying ZM = RM + jXM to (41), we have

Ptotal= kM∗
n,ZMMnl

= kM∗
n, (RM+ jXM)Mnl

= kM∗
n,RMMnl+ jkM∗

n,XMMnl

= k(ZMMn)
∗
,Mnl

∗

=
∫
S1

E(1)
n × (H (1)

n )
∗ · n̂dS

[
+ jv

∫
V1

m1 H (1)
n

∣∣ ∣∣2−11 E(1)
n

∣∣ ∣∣2( )
dV

+ jv

∫
V2

m2 H (2)
n

∣∣ ∣∣2−12 E(2)
n

∣∣ ∣∣2( )
dV

]∗
(42)

Similar to the discussions in Section 2, the surface integral�
S1

(E(1)
n )

∗ × (H (1)
n ) · n̂ dS represents the radiation power in free

space. The last two terms in (40) represent the energies stored in
regions V1 and V2, respectively. Again, we can find that
kM∗

n, RMMnl and kM∗
n, XMMnl represent the radiation power

and stored energy, respectively, and evidently, RM is a
semi-positive definite operator.

Similarly, a variational expression in terms of Mn gives the
following generalised eigenvalue equation:

XMMn = lnRMMn (43)

As bothRM andXM are symmetric operators, all the eigenvalues ln
and characteristic currents Mn are real. Therefore

kM∗
n, (RM + jXM)Mnl = kMn, (RM + jXM)Mnl

= (1+ jln)kMn, RMMnl (44)

Evidently, the physical meanings of the eigenvalues are the same as
those in Section 2. In addition, the physical meanings of the
eigenvalues solved from (43) are also similar to that in the CM
theory for PEC bodies [2].

Each characteristic current Mn can be normalised such that it
radiates unit power

kMn, RMMnl = 1 (45)

After normalisation, the orthogonality relationship among

characteristic currents Mn is reduced to

kMm, ZMMnl = (1+ jln)dmn (46)

Similar to the derivations for (35), we can get the orthogonality
relationship of the characteristic fields

1
h1

∫
S1

E(1)
m · (E(1)

n )
∗ · n̂ dS = dmn (47)

Besides, it is worth noting that the eigenvalues and the characteristic
currents solved under the two conditions JS

n = 0 andMS
n = 0 are the

same. The difference is only in the computational procedure. Under
the JS

n = 0 condition, characteristic electric currents are explicitly
solved. Under the MS

n = 0 condition, characteristic magnetic
currents are explicitly solved. Both of the two sets of modes
satisfy orthogonality relationship over the infinite radiation sphere
and the equivalent surfaces. The eigenvalues and modal
significances solved under the two conditions give the same
resonant frequencies of dielectric resonators.

4 Numerical results

Consider an isolated cylindrical dielectric resonator of radius 5.25
mm and height 4.6 mm. The relative dielectric constant is ɛr = 38.
In general, modal significance is more convenient than eigenvalue
to investigate the resonant behaviour over a wide frequency band.
It is defined as [2, 4]

MS = 1

1+ jln

∣∣∣∣
∣∣∣∣ (48)

As can be seen, the modal significance transforms the [−∞, +∞]
value range of eigenvalues into a much smaller range of [0, 1].
Evidently, CMs with larger modal significance are in resonance
and those with small modal significance are non-resonant modes.

Fig. 2 shows the modal significance solved from the proposed
generalised eigenvalue equations. The curves with lines are solved
from XEJn = lnREJn, and the curves with scatters are solved
from XMMn = lnRMMn. The resultant modal significances
agree well with each other. The resultant modal fields and modal
radiation patterns from the two generalised eigenvalue equations
also achieve good agreement. The peaks of the modal significance
clearly show the resonant frequencies of the dominant modes over
the frequency band. It can be observed that this cylindrical
resonator resonates in eight frequencies in the frequency band of
4.5–7.8 GHz. This conclusion is the same as that was reported in
[30]. It illustrates that the proposed CM formulations are able to
solve all the resonant modes over a given frequency band.
However, the determinant root seeking method only found five
resonant modes in the same frequency band [23]. Table 1
compares the resonant frequencies with those obtained from the
determinant root seeking method and the measurement [22, 23]. It
is observed that the resonant frequencies are very close to each

Fig. 2 Modal significance of the isolated cylindrical dielectric resonator.
Lines: computed from XEJn = lnREJn; Scatters: computed from
XMMn = lnRMMn

Table 1 Comparison of the cylindrical DRA resonant frequencies
obtained with the CM theory, measurement, and determinant root
seeking method

Resonant
modes

CM Measured results
[22]

Determinant root seeking
method [23]

TE01δ 4.88 4.85 4.83
HEM11δ 6.30 — 6.33
HEM12δ 6.68 6.64 6.63
TM01δ 7.50 7.60 7.52
HEM21δ 7.75 7.81 7.75

Unit: GHz.
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other. The errors of the CM results to the measured results are
<1.3%.

Moreover, a classification of these resonant modes requires the
calculations of the modal fields. Fig. 3 gives the modal fields and
modal radiation patterns of the TE01δ mode, HEM11δ mode,
HEM12δ mode, TM01δ mode, and HEM21δ mode. As compared
with the modal fields in [23], good agreement is observed. These
modal fields provide valuable information on how to selectively
excite each mode for specific radiation purpose.

As the second example, an isolated rectangular dielectric resonator
as shown in Fig. 4 is considered. The dielectric constant is ɛr = 10.0.
Fig. 5 shows the modal significance in the 3.1–5.6 GHz band. Again,

from the peaks of the modal significance, one can observe the first
three resonances at 3.41, 4.82, and 5.13 GHz, respectively. As can
be observed from the modal fields in Fig. 6, the first three
resonances are actually the TEy

111mode, TEy
112 mode, and TEy

113
mode of the rectangular dielectric resonator. Besides, Fig. 5 also
shows the modal significances for three higher-order modes. It can
easily infer that these higher-order modes will resonant at much
higher frequencies and will have their peaks at much higher
frequencies. Table 2 compares the CM resonant frequencies with
the measurement results and HFSS simulation results reported in
[31]. It shows that the CM results agree well with the measured
and simulated results given in [31]. The errors to the measurement
results are <1.0%.

Fig. 6 presents the modal fields and modal radiation patterns of the
isolated rectangular dielectric resonator antenna (DRA). As can be

Fig. 3 Modal fields and modal radiation patterns of the cylindrical DRA

Fig. 4 Configurations of the isolated rectangular dielectric resonator.
a = 20.8 mm, b = 10.5 mm, d = 18.5 mm, ɛr = 10.0 Fig. 5 Modal significance of the isolated rectangular dielectric resonator
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observed, the modal fields of the three CMs agree well with the
modal fields in Fig. 3 of [31]. The modal fields provide valuable
guidelines on how to excite the radiating modes effectively. As the
maximum magnetic field intensity of the TEy

111 mode and TEy
113 is

at the surface with ground plane, a slot-coupling element

(equivalent to a magnetic current) was introduced on the ground
plane to provide efficient excitations for the two modes. However,
the maximum magnetic field of the TEy

112 mode does not appear at
the surface with ground plane. It cannot be excited through a
slot-coupling element. Therefore, the dual-band rectangular DRA
was realised by exciting the fundamental TEy

111 mode and the
higher-order TEy

113 mode. This example shows that the modal
fields clearly explain why the TEy

113 mode is used instead of the
TEy

112 mode for dual-band DRA designs.
The two examples were simulated on a personal computer with a

3.4 GHz Intel Core and 8 GB RAM. Table 3 gives the central
processing unit (CPU) time of the CM analysis at a single
frequency. It shows that the CPU time for the two DRAs is <30 s.
It is noted that the CPU time includes the time for the computation
of the reduced matrix, solving the generalised eigenvalue equation,
and the modal tracking procedure as discussed in [32]. Apparently,
the CPU time is acceptable for such electrically small and medium

Fig. 6 Modal fields and modal radiation patterns of the rectangular DRA

Table 2 Comparison of the rectangular DRA resonant frequencies
obtained with the CM theory, measurement, and HFSS simulation with
feeding structure

Resonant
modes

Measured
results,
GHz [31]

CM HFSS simulation [31]

Frequency,
GHz

Error,
%

Frequency,
GHz

Error,
%

TEy
111 3.40 3.41 0.29 3.47 2.05

TEy
112 — 4.82 — — —

TEy
113 5.18 5.13 0.96 5.24 1.15
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problems (MoM unknowns≃ 2000). Therefore, the computational
efficiency for such problems is good enough for DRA design
using a common personal computer.

As discussed in the previous literature [2, 7], the developments of
the CM theory (either for the conventional PEC problem [2, 7], or
the dielectric problem discussed here) are intended for the analysis
of electromagnetic problems with electrically small and medium
sizes. In these problems, only a few modes are needed to
characterise the radiation and scattering properties. However, for
electrically large problems, there are too many closely spaced
resonances to identify using the CM theory. Therefore, the CM
theory is not so popular in the electrically large problems. In
principle, however, CM analysis for the electrically large problems
could be implemented using high-performance computing
techniques through solving the generalised eigenvalue equations
proposed in this paper.

5 Discussions and conclusions

This paper discusses the theory of CMs for dielectric resonators
using the PMCHWT formulation. Following the Poynting’s
theorem, two generalised eigenvalue equations are developed for
the CM analysis of dielectric resonators. The resultant CMs and
eigenvalues have the same physical meanings as those in the CM
theory for PEC bodies. Numerical results show that the developed
CM theory is able to solve the resonant frequencies accurately for
dielectric resonators. It is also capable of computing the internal
modal fields and modal radiation patterns, which are of great
importance in the excitation of a mode for specific radiation purpose.

In addition to the two new operators (ZE and ZM) and the
corresponding generalised eigenvalue equations derived from the
PMCHWT equation, one may also derive another two new
operators by conducting similar manipulations to (11) and (12).
However, they cannot provide physically meaningful CMs as in
the ZE and ZM cases. In the Appendix, we give mathematical
proofs and physical explanations to show why they cannot work
properly.
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8 Appendix

Mathematically, there are another two operators that can be derived
from (11) and (12). From (12) and the assumption of JS

n = 0 on
surface S, the Jn can be expressed in terms of the Mn

Jn = −(ZHJ )−1ZHMMn (49)

Table 3 CPU time for the CM analysis of the DRAs

Cylindrical DRA Rectangular DRA

number of triangle elements 206 698
number of unknowns 618 2094
number of modes 15 20
CPU time, s 2.59 25.15

The CPU time includes the time for the computation of the reduced
matrix, solving the generalised eigenvalue equation, and the modal
tracking procedure [32].
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Substituting Jn = −(ZHJ )−1ZHMMn into (11), we have

ZEM −ZEJ (ZHJ )
−1ZHM

( )
Mn = ZA1Mn (50)

where

ZA1 = ZEM −ZEJ (ZHJ )−1ZHM (51)

Apparently, ZA1 = (ZA1)T, that is, ZA1 is not a symmetric
operator.

In addition, if we try to find the characteristic equivalent surface
magnetic current Mn using ZA1, the inner product kM∗

n, ZA1Mnl
must have clear physical explanations to the complex power of the
system. Similar to the derivations in (27) and (42), kM∗

n, ZA1Mnl
can be written as

kM∗
n, ZA1Mnl = kM∗

n, ZEJ Jn +ZEMMnl

= −kM∗
n, E

(1)
n − E(2)

n l

= −k−n̂× (E(1)
n )

∗
, E(1)

n l+ kn̂× (E(2)
n )

∗
, E(2)

n l

=
∫
S
(E(1)

n )
∗ × E(1)

n · n̂ dS−
∫
S
(E(2)

n )
∗ × E(2)

n · n̂ dS

(52)

Evidently, kM∗
n, ZA1Mnl does not represent the complex power in

the system. Therefore, the generalised eigenvalue equation derived
from ZA1 cannot provide CMs with clear physical meanings.

Similarly, we can derive another operator from (11) and (12) with
consideration of the assumption of MS

n = 0 on surface S. From (11),
the Mn can be written as

Mn = −(ZEM)−1ZEJ Jn (53)

Substituting Mn = −(ZEM)−1ZEJ Jn into (12), we have

ZHJ − ZHM(ZEM)
−1ZEJ

( )
Jn = ZA2Jn (54)

where

ZA2 = ZHJ − ZHM(ZEM)−1ZEJ (55)

We can also observe that ZA2 is not a symmetric operator.
Again, if we try to solve the characteristic equivalent surface

electric current using ZA2, the inner product kJ∗
n, ZA2Jnl must

have clear physical explanations to the complex power of the
system. Similar to the derivations in (24) and (39), kJ∗

n, ZA2Jnl
can be written as

kJ∗
n, ZA2Jnl = kJ∗

n, ZHJ Jn + ZHMMnl

= −kJ∗
n, H

(1)
n −H (2)

n l

= −kn̂× (H (1)
n )

∗
, H (1)

n l+ kn̂× (H (2)
n )

∗
, H (2)

n l

=
∫
S
H (1)

n × (H (1)
n )

∗ · n̂ dS−
∫
S
H (2)

n × (H (2)
n )

∗ · n̂ dS

(56)

It is also evident to see that kJ∗
n, ZA2Jnl does not represent the

complex power in the system. Therefore, the generalised
eigenvalue equation derived from ZA2 cannot provide CMs with
clear physical meanings.
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