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On new possibilities of increasing transmission
capacity of high-speed fiber-optic communication lines

Yu. I. SHOKIN∗, E. G. SHAPIRO†, M. P. FEDORUK∗, and S. K. TURITSYN†

Abstract — In this paper we propose several ways of increasing the information capacity of data
transmission based on the combination of the technologies of dispersion control, distributed amplifi-
cation, spectral channel multiplexing, and optical regeneration of signals. The results of mathematical
modelling can be used for upgrading existing lines and designing the next generation of trunk high-
speed fiber-optic communication lines.

1. INTRODUCTION

In view of considerable progress in the development of fiber-optic communication,
systems with the total information transmission rate greater than 1 Tbit/s will find a
wide commercial application within the next few years. However, since the number
of Internet users is permanently growing, even these rates will not be able to satisfy
their permanently increasing demand.

At the present stage, soliton communication lines with dispersion control are
regarded as the most probable candidates for the development of trunk superfast
lines (with transmission rate 40 Gbit/s and more per frequency channel). Dispersion
control systems use periodically alternating optical fibers with chromatic dispersion
of opposite signs, which allows one to control the dispersive pulse broadening, in-
crease the power-to-noise ratio of a signal, and decrease optical pulse degeneration
caused by nonlinear effects (see, e.g. [1]).

Mathematical modelling is of fundamental importance for the study of fiber-
optic communication lines, because the analytical methods for studying these sys-
tems are rather limited and laboratory experiments call for great expenses and are
often impossible.

The propagation of optical pulses along a fiber-optic transmission line is de-
scribed by the generalized nonlinear Schrodinger equation for the complex envelope
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A of the electromagnetic field [3]
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Here z is the distance along the line, t is the time, |A|2 is the power, β2 is the disper-
sion parameter of the group rate, β3 is the third-order dispersion, TR is the time of
the Raman response, σ is the Kerr nonlinearity factor, γ is the attenuation factor, g is
the signal amplification factor. The values β2, β3, σ , γ , and g are given as functions
of z to take into account the variations of these parameters in passing from one type
of optical fiber to another.

The nonlinearity factor σ is specified by the formula σ = (2πn2)/(λAeff), where
n2 is the nonlinear refractive index, λ is the wavelength carrier, ω = cl/λ is the
radial frequency of the carrier signal, cl is the speed of light, Aeff is the effective
area of the eigenmode of the optical fiber.

To solve numerically equation (1.1) we used the method of splitting over phys-
ical processes. Let us write this equation in the operator form:
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where D̃ is the operator of the linear part that takes into account the dispersion
effects and attenuation (amplification), and Ñ is a nonlinear operator
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The solution of the nonlinear Schrodinger equation can be formally written as
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The operator exp
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is calculated in the Fourier space
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We can show that the scheme is of the second-order of accuracy with respect to
the step h (see [3]).

The value of a bit-error rate that determines the number of erroneous bits per
total number of transmitted bits is the estimate of the communication system quality
[2]. The acceptable value of the bit-error rate is BER� 10−9, which corresponds to
one erroneously recorded bit per 109 transmitted bits. We define the values P1 and P0
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as the probabilities of error in recording ‘1’ and ‘0’, respectively. In turn, the given
values are defined as [2]

P1 =
Id∫

−∞

p1(x)dx, P0 =
∞∫

Id

p0(x)dx.

Suppose that the probability densities of zero and unity pi, i = 0,1, are dis-
tributed by the normal law
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where µi are the mean values, σi is dispersion, Id is the solvability level defined
from the minimality condition of the bit-error rate BER= (P1 + P0)/2. We further
introduce the value of the Q-factor which is connected with BER:
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Note that the bit-error rate BER� 10−9 is associated with Q � 6. We use in this work
the standard value of the Q-factor as the quality criterion of signal transmission.
The data transmission distance is defined as the distance for which the value of the
Q-factor is Q � 6. In order to calculate the data transmission distance, we used in
the calculations more than five pseudorandom sequences of 128 bits each and the
transmission range in each of the channels was defined as the median average of the
distances calculated in each sequence [10]. Next, the transmission length was taken
as the shortest distance in all possible channels.

There are two most probable ways for further increasing the information capac-
ity of fiber-optic communication systems [4]: increasing the total number of fre-
quency channels in spectral multiplexing systems and increasing the information
transmission rate in an individual channel.

In this paper we propose several ways for increasing the information capacity of
data transmission on the basis of the combination of the technologies of dispersion
control, distributed amplification, spectral channel multiplexing, and optical signal
regeneration.

2. USE OF RAMAN AMPLIFIERS FOR INCREASING
TRANSMISSION CAPACITY OF FIBER-OPTIC
COMMUNICATION LINES

The principle of operation of distributed Raman amplifiers (DRAs) [5] is based on
induced Raman scattering. Since distributed amplification provides a low level of
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noise, the distance between the amplifiers can be increased. This circumstance is
important for domestic fiber communication lines. In the simplest Raman amplifi-
cation model used in the work, the depletion of a pump wave is neglected and its
exponential decay along the optical fiber length is assumed. In this case, for exam-
ple for reverse Raman pumping along the length L the amplification factor has the
form

g(z) = g0 exp[−2γp(L− z)].

Here the value g0 is proportional to the pump power and γp is the attenuation coef-
ficient of the signal amplitude at the pump wavelength.

Any type of optical amplifier, besides amplifying the input optical signal, adds
to it the noises of amplified spontaneous emission (ASE). The presence of ASE de-
teriorates the signal-to-noise ratio of the system, increases the bit-error rate, and de-
teriorates the transmission characteristics of the fiber transmission line. The model
of ‘white’ noise that is added to the system in each amplifier is used as the initial
mathematical model for describing spontaneous emission noises.

In the case of Raman fiber amplifiers, the ‘white’ noise spectral density was
calculated by the formula

Ssp = 2g(z)δ znsphν

where h is the Plank constant, ν is the signal frequency, δ z is the typical value of
the variation of the function g(z), and the value of the spontaneous emission factor
nsp was defined as

nsp = 1+
1

e(hν)/(kT )−1
.

We show the basic possibility to increase the total rate of information trans-
mission in Raman amplifiers from 2.5 Gbit/s to 160 Gbit/s using the numerical
modelling of the Novosibirsk–Omsk channel as an example [9].

The Novosibirsk–Omsk line consists of four sections of standard one-mode fiber
(SMF) of length 127 km, 135 km, 138 km, and 163 km [9]. At the end of each piece
of optical fiber there is an electric regenerator that restores the optical pulse form.
However, the use of these regenerators limits the data transmission rate to 2.5 Gbit/s.

In order to increase the line transmission capacity we propose to use the tech-
nologies of dispersion control and spectral multiplexing of channels. We replace the
electric regenerators at the end of each SMF segment by commercial modules with
optical dispersion compensation fiber (DCF). The lengths of DCF pieces are chosen
so that the average line dispersion 〈D〉 is close to zero. To compensate for the optical
losses in each SMF+DCF section we use the fiber Raman amplifier.

We carried out calculations for a spectral multiplexing four-channel system with
separation 0.8 nm (100 GHz) at wavelength 1548.8 nm, 1548.88 nm, 1548.96 nm,
and 1549.04 nm. The data transmission rate in each channel amounted to 40 Gbit/s.

Below we give the graphs of the Q-factor, which is calculated after the transmis-
sion through the worst (as to the value of the Q-factor) of the four channels, versus
the optical pulse width with fixed average power 0.5 dBm (Fig. 1) and versus the



Increasing transmission capacity 553

Figure 1. Q-factor versus optical pulse width TFWHM (ps).

Figure 2. Q-factor versus average pulse power 〈P〉 (dBm).

average power with fixed pulse width 8 ps (Fig. 2). Figures 1 and 2 clearly demon-
strate the existence of modes resistant to width and power variation at which the
Q-factor is larger than 6.

3. USE OF FLAT-TOP FORMAT FOR INCREASING DATA
TRANSMISSION SPECTRAL EFFICIENCY

A further increase in the transmission capacity of fiber-optic communication lines
is possible by increasing the spectral efficiency of data transmission. In the past
decade great interest has been shown in high-rate (40 Gbit/s and more) technologies
of data transmission with densely located frequency channels.

We investigate data transmission in N × 40 Gbit/s spectral multiplexing sys-
tems using a flat top format along the frequency band B and the signal time profile
sin(πBt)/t. Using pulses of this shape, the strong interaction of neighbouring bits
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Figure 3. Time profile of pulse power P (mW) before (Fig. 3a) and after supergaussian optical filter
(Fig. 3b).

can be suppressed by the resonance arrangement of zeros in the function sin(πBt)/t
at the centers of bit intervals.

In order to produce sinc-shaped signal carriers with a limited spectrum, a short
gaussian pulse (1.7 ps) was first put through a supergaussian optical filter. Figure 3
shows the time profile of the pulse in front of and behind the optical filter, respec-
tively. The dotted curve in Fig. 3 corresponds to the plot of the function sin(πBt)/t.
Note that the optical filter width B is chosen so that zeros in the function sin(πBt)/t
are at the centers of bit intervals. In view of this, the interaction between the neigh-
bouring bits decreases.

With no loss of generality, we consider the propagation of sinc-shaped signals
in the spectral multiplexing communication system whose periodic section has the
following configuration:

SMF(20 km)+ DCF(6.8 km)+ SMF(20 km)+ EDFA.

Here EDFA (erbium-doped fiber amplifier) is an erbium fiber-optic amplifier.
In the case of erbium-doped fiber amplifiers, the spectral ‘white’ noise density

is calculated by the formula [2]

Ssp = (G−1)nsphν .

The spontaneous emission factor nsp is related to the amplifier noise figure NF by
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Figure 4. Signal propagation distance z (km) versus the value of optical filters shear ∆ν (GHz).

Figure 5. Schematic optical regenerator diagram (Fig. 5a) and symmetric fiber-optic communication
line (Fig. 5b).

the relation
NF = 2nsp(G−1)/G.

Here G is the gain coefficient of the erbium-doped fiber amplifier. Note that erbium
fiber-optic amplifiers are called lumped amplifiers, because the length on which the
signal is amplified (several tens of meters) is much less than the distance between
the amplifiers (several tens of kilometers). In this case, the signal gain in equation
(1.1) has the form

g(z) =
√

Gδ (z− zk)

where zk are amplifier locations.
Let us consider data transmission in eight frequency channels in the wavelength

range of 1548.78 –1551.98 nm. The distance between the neighbouring channels
is 0.4 nm (50 GHz). The mixing and separation of channels are done by a super-
gaussian sixth-order filter of width 43 GHz and a preset optimal shift relative to the
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Figure 6. Q-factor versus propagation distance z (km) in one of frequency channels in the system with
an optical regenerator (solid line) and without it (dotted line) for the symmetric dispersion pattern TF
+ CF + TF.

channel center. It should be emphasized that the value of the optical filter shift ∆ν
relative to the frequency channel center is a very important parameter of the prob-
lem. Figure 4 shows the propagation distance as the function of the optical filter shift
relative to the channel center for a supergaussian sixth-order filter (solid line) and
a rectangular filter (dotted line). Note that the optimal shift depends on the shape
of the optical filter. For example, the optimal shift for the supergaussian sixth-order
filter is 6 GHz.

Thus, direct numerical modelling shows that data transmission with spectral
efficiency 0.8 bit/s/Hz in N × 40 Gbit/s spectral multiplexing systems at distances
of more than 1100 km without data correction is possible [8].

4. USE OF OPTICAL 2R REGENERATORS FOR INCREASING
INFORMATION CAPACITY OF FIBER-OPTIC
COMMUNICATION LINES

One of the promising ways to considerably increase the information capacity of
trunk fiber-optic communication lines is to use optical signal regenerators. Let us
consider the results of modelling a fiber-optic communication line with spectral
multiplexing of channels with built-in 2R optical regenerators on the basis of a sat-
urable absorber (SA). The principle of operation of the given unit is based on the
absorption of the input optical signal power if it turns out to be lower than some
threshold power Psat. With power higher than Psat, the SA transmittance rapidly in-
creases and asymptotically approaches unity. Under these conditions, the low-power
radiation of the amplified spontaneous noise and the background dispersive radia-
tion are suppressed by the SA. The use of the SA in combination with a narrow
band optical filter and a highly nonlinear fiber (HNF) allows one to suppress noises
in unit bits. The structure of the optical regenerator (OR) is shown in Fig. 5a.
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Figure 7. Isolines of data transmission distance in the plane (average dispersion, peak power) for the
line PSCF + RDF + PSCF + EDFA.

Figure 8. Isolines of data transmission distance in the plane (average dispersion, peak power) for the
line TL + RTL + TL + EDFA.

The input signal triggered in the optical regenerator is first amplified by the
erbium-doped fiber amplifier (EDFAOR). Then the pulse is saturated in the SA. The
loss function α(t) in the SA, which is dependent on the time and power of the input
signal, is described by the ordinary differential first-order equation:

dα (t)
dt

= −α (t)−α0

τ
− α (t)P(z∗, t)

τPsat
(4.1)

where P(z∗, t) = |A(z∗, t)|2 is the power distribution of the input signal, α0 =−3 dB
is the constant loss, z∗ ≡ const is the fixed distance, Psat is the threshold saturation
power, and τ corresponds to the pulse decay time. To find the function α(t), we
solve a boundary value problem with periodic boundary conditions α(0) = α(T ),
where T is the duration of the bit sequence. Then the transfer function S(t) = 1−
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α(t,P(z∗, t)), and the effect of the saturable absorber on the signal is described by

Pout [z∗, t) = [1−α (t,Pin (z∗, t))]Pin (z∗, t) = S(t)Pin (z∗, t) . (4.2)

Then the signal propagates in the HNF with anomalous dispersion. Since the pulse
has a considerable energy, it becomes narrower when passing through the HNF due
to phase self-modulation and its spectrum, accordingly, becomes broader. Next, an
optical filter (F) is set up, it provides losses which are greater if the input pulse
energy is higher. Thus, the signal energy is self-regulated. The width of the optical
filter that has the gaussian form amounts to 100 –120 GHz. The optimal HNF length
is 3–6 km. At the output from the OR the average signal power is restored to its
initial value by a unit called an attenuator.

We consider examples of the optimization of the 4×40 Gbit/s symmetric fiber-
optic communication line (see Fig. 5b) with periodic cell length 60 km and the dis-
tance between the optic regenerators 300 km [11]. The periodic section of this line
consists of two equal pieces of transmission fiber (TF) with positive dispersion and
between them there is a piece of dispersion-compensating fiber (CF) with negative
dispersion. The types of optical fibers and their parameters used in the calculations
are given in Table 1.

The distance between the neighbouring frequency channels was 1.6 nm (200
GHz). An individual optical regenerator was employed for each channel after the
signal demultiplexing.

We give some computational results for two configurations of symmetric fiber-
optic communication lines:

PSCF+ RDF+ PSCF+ EDFA

TL+ RTL+ TL+ EDFA.

To calculate the transmission length we used from 5 to 11 pseudorandom se-
quences of 128 bits each.

The typical behaviour of the Q-factor versus the distance is shown in Fig. 6. As
seen, the presence of optical regenerators in the system allows one to considerably
increase the distance for which Q � 6.

The results of extensive numerical calculations are presented in Figs. 7 and 8.
Figure 7 shows the results of the optimization of the line PSCF + RDF + PSCF +
EDFA. The calculations showed that it is possible to attain the data transmission
range over 10,000 km by the proper choice of the optical regenerator parameters,
input peak pulse power, and the average line dispersion. The corresponding system
without optical regenerators demonstrates the propagation range about 2000 km.

Figure 8 shows the results of the optimization of the line TL + RTL + TL + EDF.
Here, with optimal parameters of the system, the propagation range over 8000 km
becomes possible.
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Table 1.
Types of optical fibers and their parameters.

PSCF Attenuation at wavelength 1550 nm 0.18 dB/km
Effective mode area 110 µm2

Dispersion 20 ps/nm/km
Dispersion slope 0.06 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

RDF Attenuation at wavelength 1550 nm 0.3 dB/km
Effective mode area 20 µm2

Dispersion −42 ps/nm/km
Dispersion slope −0.13 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

TL Attenuation at wavelength 1550 nm 0.21 dB/km
Effective mode area 60 µm2

Dispersion 8 ps/nm/km
Dispersion slope 0.08 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

RTL Attenuation at wavelength 1550 nm 0.28 dB/km
Effective mode area 28 µm2

Dispersion −16 ps/nm/km
Dispersion slope −0.16 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

HNF Attenuation at wavelength 1550 nm 0.5 dB/km
Effective mode area 6.5 µm2

Dispersion 2 ps/nm/km
Dispersion slope 0.03 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

5. USE OF NONLINEAR INFORMATION TRANSMISSION
MODES IN OPTICAL COMMUNICATION LINES

A decrease in the total chromatic dispersion allows one to suppress the fluctuation
of separate bits positions – the so-called Gordon–Haus effect [7]. Therefore, when
designing fiber-optic communication lines, zero average dispersion is often fixed. In
this section, however, it is shown that in some situations a rather large absolute value
of average chromatic dispersion 〈D〉 provides better quality of signal transmission
than linear modes in which the absolute value of the average dispersion is close to
zero. These modes are essentially nonlinear, though the average dispersion symbol
does not correspond to the classical soliton cases of signal propagation.

We considered an optical system consisting of 17 sections of the form

SMF(85 km) + EDFA + DCF(15 km) + EDFA.

Here SMF is the standard one-mode fiber, DCF is the dispersion-compensating
fiber. Each section has two amplifiers with amplification factors that allow one to
fully compensate for the signal attenuation in the corresponding fibers. The total
losses of one section amounted to 26.8 dB. The residual dispersion of the line was
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Figure 9. Optical pulse width TFWHM (ps) versus propagation distance. Solid curve – 〈D〉 = 0, dash-
dot curve – 〈D〉 = −0.65 ps/nm/km.

Figure 10. Q-factor versus input peak signal power P0 (mW). Solid line – 〈D〉 = 0, dash-dot line –
〈D〉 = −0.65 ps/nm/km.

compensated by an additional segment of the standard one-mode fiber (SMF). The
parameters of optical fibers are presented in Table 2.

Figure 9 shows the dependences of the optical pulse width on the distance z
at the points of its minimal width (the so-called chirpless points) for the gaussian
input signal of initial width 12.5 ps, which are obtained from the numerical solu-
tion of equation (1.1) with the average dispersion values 〈D〉 = 0 and 〈D〉 = −0.65
ps/nm/km, respectively.

As seen, with small negative values of average dispersion and with zero average
dispersion, the optical pulse broadens. An increase in the absolute value of the neg-
ative average dispersion stabilize the signal width. Thus, the regimes with relatively
large negative average dispersion 〈D〉 = −0.65 ps/nm/km or 〈D〉= −0.8 ps/nm/km
admit a quasistable nonlinear propagation regime without significant ‘spreading’ of
optical pulses, which decreases the role of the interaction between the neighbouring
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Figure 11. Q-factor versus the channel number N for 〈D〉 = 0,−0.35,−0.8 ps/nm/km (from bottom
upwards).

Table 2.
Types of optical fibers and their parameters.

SMF Fiber loss at wavelength 1550 nm 0.2dB/km
Effective mode area 80 µm2

Dispersion 17 ps/nm/km
Dispersion slope 0.07 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

DCF Fiber loss at wavelength 1550 nm 0.65 dB/km
Effective mode area 19 µm2

Dispersion −100 ps/nm/km
Dispersion slope −0.41 ps/nm2/km
Nonlinear refraction index 2.7×10−20 m2/W

bits. This allows one for a chosen pulse width to use stronger input signals, which,
in turn, improves the signal-to-noise ratio without significant deterioration of the
signal quality because of nonlinearity.

The numerical modelling of optical pulse propagation in eight channels at wave-
lengths 1550.1–1555.8 nm with separation 0.8 nm (100 GHz) between the neigh-
bouring channels and the transmission rate of 40 Gbit/s in a single frequency chan-
nel was implemented. To calculate the value of the Q-factor at the end of the line,
we used in the calculation 25 pseudorandom sequences of 128 bits each. Figure 10
shows the Q-factor in the worst channel versus the peak power of the input pulse
with average dispersions 〈D〉= 0 and 〈D〉=−0.65 ps/nm/km. The optimal value of
the peak power of the input signal with 〈D〉 = −0.65 ps/nm/km is larger than that
for zero dispersion. However, a decrease in the negative role of the nonlinear effects
in this case leads to a decrease in the error bit rate (an increase in the Q-factor).
Figure 11 shows the values of the Q-factor in eight channels at the end of the line
with z = 1700 km for the following values of the average system dispersion (from
the bottom upwards, respectively): 〈D〉 = 0,−0.35,−0.8 ps/nm/km.
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Thus, the results of numerical modelling show that the nonlinear regimes of
data transfer along the communication line with negative average dispersion of or-
der −1 ps/nm/km consisting of pieces of the standard one-mode fiber (SMF) and
the dispersion-compensating fiber (DCF) demonstrate better quality of information
transmission than the lines in which the absolute value of the average dispersion is
close to zero (linear propagation). The value Q � 4 attained in nonlinear data trans-
fer makes it possible to apply the method of forward error correction (FEC) to such
lines [8].
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