
86 COMMUNICATIONS OF THE ACM | OCTOBER 2014 | VOL. 57 | NO. 10

review articles

I
M

A
G

E
 B

Y
 A

V
N

 P
H

O
T

O
 L

A
B

SOFTWARE-DEFINED NETWORKING (SDN) has received a
lot of attention in recent years as a means of addressing
some of the long-standing challenges in networking.
SDN starts from two simple ideas: generalize network
hardware so it provides a standard collection of packet-
processing functions instead of a fixed set of narrow
features, and decouple the software that controls the
network from the devices that implement it. This
design makes it possible to evolve the network without
having to change the underlying hardware and enables
expressing network algorithms in terms of appropriate
abstractions for particular applications.

Figure 1 contrasts the architectures of traditional
networks and SDN. In SDN, one or more controller
machines execute a general-purpose program that
responds to events such as changes in network topology,
connections initiated by end hosts, shifts in traffic load,
or messages from other controllers, by computing

a collection of packet-forwarding
rules. The controllers then push these
rules to the switches, which imple-
ment the required functionality effi-
ciently using specialized hardware.

Because SDN does not specify how
controllers are implemented, it can
be used to implement a variety of net-
work algorithms, including simple
ones such as shortest-path routing,
and more sophisticated ones such as
traffic engineering.

Many novel applications have been
implemented with SDN including
policy-based access control, adaptive
traffic monitoring, wide-area traffic
engineering, network virtualization,
and others.6,9,16,18–20,44 In principle, it
would be possible to implement any
of these applications in a traditional
network, but it would not be easy: the
programmer would have to design
new distributed protocols and also ad-
dress practical issues because tradi-
tional switches cannot be easily con-
trolled by third-party programs.

Early SDN controller platforms ex-
posed a rudimentary programming
interface that provided little more than
a thin wrapper around the features of
the underlying hardware. Where there
were higher-level abstractions, they
reflected structures already found in
traditional networks such as topology
or link-state information. However,
there is now a growing body of work
exploring how SDN can change not
only which control algorithms can be

 key insights

 SDN is a new network architecture
that decouples the software that
controls a network from the devices
that implement it.

 By providing global visibility into
network state, SDN can dramatically
simplify the way that many network
algorithms are expressed.

 SDN also makes it possible to evolve the
functionality of a network without having
to change the underlying hardware.

 SDN is enabling the development of new
network programming models, systems
abstractions, and verification tools.

Abstractions
for Software-
Defined
Networks

DOI:10.1145/2661061.2661063

New abstractions are critical
for achieving SDN goals.

BY MARTIN CASADO, NATE FOSTER, AND ARJUN GUHA

OCTOBER 2014 | VOL. 57 | NO. 10 | COMMUNICATIONS OF THE ACM 87

88 COMMUNICATIONS OF THE ACM | OCTOBER 2014 | VOL. 57 | NO. 10

review articles

mations on packets. When a packet
arrives at a switch, the switch finds a
rule whose pattern matches the pack-
et headers and applies the associ-
ated actions. If multiple rules match,
the switch applies the actions of the
highest priority rule, while if no rules
match, the switch encapsulates the
packet in an OpenFlow message and
sends it to the controllers. The con-
trollers can either process the packet
directly, or send messages back to
the switch instructing it to install or
delete rules in its forwarding table.
The maximum size of a table is deter-
mined by hardware constraints, but
most switches have space for at least
several thousand rules.

To support traffic monitoring, ev-
ery rule has associated counters that
keep track of basic statistics such as
the number and total size of all pack-
ets processed with that rule. Control-
lers can read these counters using
OpenFlow messages. They can also
configure the physical ports on a
switch by creating queues that rate-
limit traffic or provide minimum
bandwidth guarantees—features that
are useful for implementing traffic
engineering applications.

As an example, consider the ac-
companying table: Read from top
to bottom, these rules block all SSH
traffic, forward non-SSH traffic des-
tined for hosts 10.0.0.1 and 10.0.0.2
out ports 1 and 2 respectively, and di-
vert all other traffic to the controller
for further processing.

Network-wide Structures
A major advantage of SDN is that the
controllers can compute network-wide
structures that give global visibility into
network state, using distributed algo-
rithms that provide strong guarantees
about the consistency of these struc-
tures across controllers. It would be
practically infeasible to maintain these
network-wide structures in a tradition-
al network where control is distributed
across a larger number of devices, but
by using them the logic of many appli-
cations can become much simpler. For
example, shortest path routing can be
implemented by evaluating Dijkstra’s
algorithm over the structure represent-
ing the topology.41

Example. To illustrate, consider
the task of maintaining a spanning

thateasily expressed, but how they can
best be written. Just as modern operat-
ing systems provide rich abstractions
for managing hardware-level resourc-
es, we believe that similar abstractions
will be needed for networks to fully re-
alize the vision of SDN.

These abstractions are the topic of
this article. We review recent and ongo-
ing work on improving SDN program-
ming models and abstractions, focus-
ing on the following areas:

Network-wide structures: SDN con-
trollers are built using relatively small
collections of tightly-coupled serv-
ers, which makes them amenable to
distributed algorithms that maintain
consistent versions of network-wide
structures such as topology, traffic sta-
tistics, and others.

Distributed updates: SDN control-
lers manage the entire network, so they
must often change rules on multiple
switches. Update mechanisms that
provide consistency guarantees during
periods of transition can simplify the
development of dynamic programs.

Modular composition: Many net-
work programs naturally decompose
into several modules. Controllers that
provide compositional programming
interfaces make it easy to specify or-
thogonal aspects of network behavior

in terms of modular components.
Virtualization: Decoupling applica-

tion logic from the physical topology
simplifies programs, ensures isolation,
and provides portability. Virtual net-
work abstractions can also provide en-
hanced scalability and fault tolerance.

Formal verification: To help pro-
grammers write correct programs,
some controllers provide tools for au-
tomatically checking formal properties
and diagnosing problems when unex-
pected errors occur.

Here, we explore these abstractions
in further detail. To provide a common
basis for discussion, we begin by in-
troducing OpenFlow as a concrete in-
stance of SDN.

OpenFlow
The OpenFlow specification defines a
standard collection of features switch-
es must provide, as well as an interface
controllers can use to communicate
with switches: instructions for install-
ing and deleting forwarding rules, and
notifications about flows, topology,
and traffic statistics.31

An OpenFlow switch maintains a
forwarding table that contains a list
of prioritized rules. Each rule has a
pattern that describes a set of packets
and actions that describe transfor-

Example of OpenFlow forwarding table.

Priority Pattern Action Counters

30 TcpDstPort = 22 Drop 〈7156, 124〉

20 IpDstAddr = 10.0.0.1 Forward 1 〈2648, 38〉

10 IpDstAddr = 10.0.0.2 Forward 2 〈14184, 246〉

0 * Controller 〈1686, 14〉

Figure 1. Traditional and software-defined architectures.

Traditional Network

Switch Programmable
Switch Controller

MachineControl Plane

Data Plane

Software-Defined Network

OCTOBER 2014 | VOL. 57 | NO. 10 | COMMUNICATIONS OF THE ACM 89

review articles

tree that connects the switches in the
network. Such a tree could be used to
forward broadcast traffic without any
danger of forwarding loops. Designing
a distributed algorithm to construct
and maintain a spanning tree is sur-
prisingly difficult because it must work
correctly in arbitrary topologies and
rapidly reconverge to a new tree when
events such as unexpected device or
link failures occur.

Traditional solution. The classic way
to build a spanning tree is to use the
spanning tree protocol36—a fully distrib-
uted protocol, in which the switches
periodically exchange information
with their neighbors using pairwise an-
nouncements. The switches agree on a
root node by running a distributed lead-
er election protocol, and then construct
the spanning tree incrementally from
that node, enabling and disabling links
to select the shortest path to the root,
and breaking ties using switch identifi-
ers. Note that an implementation of the
spanning tree protocol requires neigh-
bor discovery, leader election, as well as
the actual tree construction algorithm,
but because these components are spe-
cific to the protocol, their logic cannot
be easily reused by other protocols that
require similar functionality. Moreover,
when the topology changes, the time to
calculate a new tree scales with the size
of the longest loop-free path.

SDN solution. Most SDN controllers
provide a suite of common functions
that arise in many applications such as
topology discovery and link fault detec-
tion and also maintain structures that
keep track of information about the
state of the network such as host loca-
tions, link capacities, the traffic matrix
etc. The database that stores this infor-
mation is often called a Network Infor-
mation Base (NIB).25 Using a NIB, an
SDN implementation of spanning tree
can be dramatically simpler than its
distributed counterpart: whenever the
topology changes, it simply computes a
spanning tree from the topology using
Prim’s algorithm, and installs rules on
switches that forward along the tree.

Richer applications. By providing
programmers with information about
the state of the entire network, the NIB
also makes it easy to implement richer
applications such as traffic engineer-
ing that would be difficult to realize in
traditional networks.11 For example,

the B4 and SWAN systems use SDN
to balance load across the wide-area
links between datacenters, achieving
much higher utilization than was pos-
sible with traditional approaches.18,19
These applications require distributed
controllers that automatically manage
data replicated across many control-
lers through the NIB.26

Using multiple controllers address-
es important issues such as scalability
and fault tolerance—for example, one
controller can take over for another if
its load becomes high, or if its links
with the switches fail. However, be-
cause the number of controllers is typi-
cally small, these controllers can use
algorithms such as Paxos—something
that would not scale in fully distributed
settings. Hence, although controllers
do use distributed algorithms, they are
simpler and often converge faster than
traditional protocols since there are
fewer controllers than switches.

Discussion. SDN can make many
network programs vastly simpler by
providing network-wide structures
and allowing common distributed
programming abstractions to be im-
plemented once and reused across
many applications. Such reuse is ef-
fectively impossible in traditional net-
works, where forwarding and control
are tightly coupled on each device,
implementations of functions such as
leader election are tied to specific pro-
tocols, and devices have varying CPU,
memory, and storage capabilities.

Distributed Updates
In traditional networks, it is often ac-
ceptable for configuration updates to
be merely eventually consistent. For
example, if the network configuration
is recalculated due to a link failure, a
packet may traverse a switch once in
the original state and a second time
in the updated state. This can lead to
behaviors such as forwarding loops or
dropping packets, but since most net-
works only provide best-effort delivery,
as long as the network eventually con-
verges to the new state, transient errors
during the transition may be accept-
able. However, eventually consistent
updates do not always suffice in SDN.
For example, an SDN controller might
manage filtering rules in addition to
forwarding rules, and these rules may
be critical for ensuring invariants such

SDN can make
many network
programs
vastly simpler
by providing
network-wide
structures and
allowing common
distributed
programming
abstractions to be
implemented once
and reused across
many applications.

90 COMMUNICATIONS OF THE ACM | OCTOBER 2014 | VOL. 57 | NO. 10

review articles

on different switches. At all times, the
network is expected to filter forbidden
packets and forward other packets to
their destinations.

 ˲ Server load balancing: Initially the
network is configured to redirect in-
coming requests to several back-end
server replicas. At some point, more
servers are brought online. The con-
troller then generates a new configura-
tion that balances the load among the
new set of servers. At all times, the net-
work is expected to forward incoming
traffic to one of the back-end servers
while ensuring connection affinity—
all packets in a connection should be
sent to the same server.

In each of these scenarios, comput-
ing the initial and final configurations
is straightforward, but transitioning
between them while preserving the
desired invariants is not. In particu-
lar, because the controller lacks the
ability to update the state of the entire
network atomically, packets travers-
ing the network will necessarily be
processed by old, new, or even inter-
mediate configurations containing
a mixture of forwarding rules from
both configurations.

Update abstractions. Consistent
update abstractions allow a control-
ler to update the forwarding state of
the entire network while ensuring a
packet will never traverse a path that is
in transition between two states. The
abstractions themselves are straight-
forward to describe: the controller pro-
gram specifies the version of the state
being pushed into the network and
the update subsystem guarantees that
each packet traversing the network
only “sees” a consistent version of the
state. Beyond the basic abstraction of
versioning, the state update subsystem
of the controller can expose multiple
consistency models to the application.

One possible model is per-packet
consistency: each packet is processed
using a single version of the forwarding
state.39 That is, every packet is either
processed with the old network-wide
configuration, or the new configura-
tion, but not a mixture of the two. An-
other model is per-flow consistency: ev-
ery set of related packets is processed
using a single configuration version.39
Other extensions consider bandwidth
and attempt to avoid creating addition-
al congestion during the transition.18,27

as access control or isolation between
the traffic of tenants sharing the net-
work. If configuration updates are
propagated to switches in a merely
eventually consistent manner, these
invariants can easily be violated during
periods of transition.

Programmers can sometimes work
around these problems by carefully
ordering updates so that packets only
traverse paths whose configurations
have been fully propagated into the
network. For example, a programmer
might update the ingress switches
first, and check that all partially updat-
ed paths in the interior of the network
are otherwise unreachable during the
transition. But calculating orderings
manually is complicated and makes
updates slow to roll out. Recent work
has investigated abstractions that pro-
vide general mechanisms for handling
distributed updates as well as guar-
antees ensuring packets never “see” a
partially updated path. The idea is to
attach versions to configurations and
carefully design update protocols that
ensure every packet (or set of related
packets) is processed by a single con-
sistent version.

Examples. The need for configura-
tion updates that provide strong con-
sistency is a significant departure from
traditional networks. To demonstrate
they are not only of academic interest,
consider the following scenarios:

 ˲ Shortest-path routing: Initially the
network is configured to forward along
shortest paths. Then the operator de-
cides to take several switches down for
maintenance. The controller generates
a new network-wide configuration that
forwards along a different set of paths.
At all times, the network is expected to
provide connectivity and be free of for-
warding loops.

 ˲ Distributed access control: Initial-
ly the network is configured to filter a
set of “forbidden” packets and other-
wise forward along shortest paths. Be-
cause the filtering rules are too large
to fit into a single forwarding table,
the rules are distributed across several
switches in the network. The configura-
tion is carefully constructed to ensure
each packet traverses the appropriate
switches containing the necessary fil-
tering rules. Later, the operator decides
to rearrange the rules, maintaining the
same policy but placing filtering rules

Beyond the basic
abstraction of
versioning, the
state update
subsystem of the
controller can
expose multiple
consistency models
to the application.

OCTOBER 2014 | VOL. 57 | NO. 10 | COMMUNICATIONS OF THE ACM 91

review articles

Update mechanisms. A general mech-
anism for implementing consistent
updates is to use a two-phase update.
As its name suggests, a two-phase up-
date proceeds in two steps: the control-
ler modifies the new configuration by
instrumenting the forwarding rules so
they only match packets stamped with
a tag corresponding to the new version,
and installs it on every switch; the con-
troller updates the rules at the perim-
eter of the network to stamp packets
with the new version tag, and unin-
stalls the old configuration from every
switch. Although the network contains
a mixture of rules from the old and new
configurations during the transition,
these rules have the property that any
given packet will be processed accord-
ing to a single version. Similar mecha-
nisms can be used to implement per-
flow consistency.39

In many situations, optimized mecha-
nisms can be used in place of two-phase
update. For example, if the update
only adds paths, then only rules that
impinge on those paths need to be up-
dated. Likewise, if the update only af-
fects a subset of the switches (and the
policy has the property that it never
forwards traffic across those switches
more than once) then the other switches
do not need to be updated at all. These
optimized mechanisms generate fewer
messages, use less rule space on switch-
es, or complete the transition more rap-
idly than full two-phase update. Consis-
tent updates can also be implemented
incrementally21 or by diverting some
packets to the controller.31

Discussion. Updates are a funda-
mental abstraction for any SDN con-
troller. But despite some promising
initial results, many open questions
remain. An obvious concern is effi-
ciency: the mechanisms just described
require substantial space for rules and
a large number of control messages to
implement transitions. In large net-
works, the costs of these mechanisms
would be prohibitive. The optimiza-
tions discussed here are a good start,
but a more comprehensive investiga-
tion is needed. Another important is-
sue is the responsiveness of updates.
The abstractions described in this
section make no guarantees about
how long an update will take to com-
plete. For planned changes, this may
be acceptable, but when reacting to

failures, a fast response is essential.38
It would be interesting to explore ab-
stractions that trade off weaker guar-
antees for more responsive update
mechanisms. For example, an ab-
straction that only guarantees packets
ultimately reach their final destina-
tion and do not traverse loops seems
natural, and would admit more effi-
cient implementations. Finally, it may
be useful to synthesize updates from
application-specific invariants.28,35

Modular Composition
In operating systems, processes allow
multiple users to share the available
hardware resources on a single ma-
chine. Each process is associated with
a thread of execution, along with sys-
tem resources such as memory, locks,
file descriptors, and sockets. The oper-
ating system requires all interactions
between processes take place over
well-specified interfaces. For example,
memory allocated to one process can-
not be tampered with by another, un-
less it has explicitly been shared by the
first process. Although SDN controllers
have been compared to “network op-
erating systems,” current controllers
lack abstractions analogous to pro-
cesses.13 Instead, most controllers give
applications unfettered access to the
forwarding tables on every switch in
the network, which makes it difficult to
write programs in a modular way.

This is unfortunate, because net-
work programming should lend itself
naturally to modularization. SDN ap-
plications are commonly built out of
standard building blocks such as rout-
ing, broadcast, monitoring, and access
control. However, the lack of modu-
larity in most SDN controllers forces
programmers to reimplement these
fundamental services from scratch in
each new application instead of simply
obtaining them from libraries.

Examples. The following scenarios il-
lustrate why modularity can be difficult
to achieve in current SDN controllers.

Forwarding and monitoring: The net-
work implements forwarding and traf-
fic monitoring. Because switch tables
implement both features, the rules
must be carefully crafted to forward and
monitor certain packets but only for-
ward or monitor others. If the program-
mer executes standard forwarding and
monitoring programs side-by-side, the

programs may install overlapping rules
and the overall behavior of the system
will be unpredictable.

Forwarding with isolation: The net-
work is partitioned into two sets of
hosts. Each set is isolated from the
other, but the network forwards traffic
between pairs of hosts in the same set.
As with the previous example, the pro-
gram decomposes into two orthogonal
functions: isolation and forwarding.
However, the programmer must con-
sider both functions at once as rules
generated by one module could easily
forward traffic to hosts in the other set,
violating the intended policy.

Low-latency video and bulk data trans-
fer: The network provides low-latency
service to a videoconferencing applica-
tion and allows a backup application
to forward traffic along several differ-
ent paths, as long as there is sufficient
bandwidth. The programmer must con-
sider both functions simultaneously, to
ensure the service-level requirements of
each application are met.

Although these examples involve
different applications, the problems
share a common cause: allowing pro-
grams to manipulate low-level network
state directly makes it effectively im-
possible to develop SDN applications
in a modular way.

Programming language abstrac-
tions. One way to make SDN appli-
cations more modular is to change
the programming interface they use.
Rather than explicitly managing low-
level forwarding rules on switches,
SDN programmers could use a high-
level language that compiles to Open-
Flow. Such a language should allow
programmers to develop and test
modules independently without wor-
rying about unintended interactions.
A programmer could even replace a
module with another that provides
the same functionality.

The NetKAT2 language (and its pre-
decessor NetCore14,32,33) provides a
collection of high-level programming
constructs including operators for
composing independent programs.
In the first example, the forwarding
and monitoring modules could be
composed using its union operator,
which would yield a module that both
forwards and monitors, as desired.
The NetKAT compiler takes this poli-
cy and generates equivalent forward-

92 COMMUNICATIONS OF THE ACM | OCTOBER 2014 | VOL. 57 | NO. 10

review articles

Multi-tenant datacenter: In datacen-
ters, one often wants to allow multiple
tenants to impose different policies on
devices in a shared physical network.
However, overlapping addresses and
services (Ethernet vs. IP) lead to com-
plicated forwarding tables, and it is
difficult to guarantee that traffic gener-
ated by one tenant will be isolated from
other tenants. Using virtual switches,
each tenant can be provided with a vir-
tual network they can configure how-
ever they like without interfering with
other tenants.

Scale-out router: In large networks,
it can be necessary to make a collec-
tion of physical switches behave like
a single logical switch. For example,
a large set of low-cost commod-
ity switches could be assembled into
a single carrier-grade router. Besides
simplifying the forwarding logic for
individual applications, this approach
can also be used to obtain scalability—
because such a router only exists at
the logical level, it can be dynamically
augmented with additional physical
switches as needed.

As these examples show, virtual-
ization can make applications more
portable and scalable, by decoupling
their forwarding logic from specific
physical topologies.

Virtualization abstractions. The
most prominent example of a virtual
network abstraction for SDN is VM-
ware’s Network Virtualization plat-
form (NSX).7,9 The Pyretic controller
supports similar abstractions.33 These
controllers expose the same funda-
mental structure to programmers at
the virtual and physical levels—a graph
representing the network topology—
which allows programs written for the
physical network to be used at the vir-
tual level, and vice versa.

To define a virtual network, the
programmer specifies a mapping be-
tween the elements in the logical net-
work and the elements in the physi-
cal network. For example, to create a
single “big switch” out of an arbitrary
topology, they would map all of the
switches in the physical network onto
the single virtual switch and hide all
internal links.7,33

Virtualization mechanisms. Virtu-
alization abstractions are easy to de-
scribe, but their implementations are
far from simple. Platforms such as

ing rules that can be installed on the
switches by its runtime system. The
Maple controller43 allows program-
mers to write modules as packet-pro-
cessing functions in Java or Haskell
and thus use the modularity mecha-
nisms those languages provide. Ma-
ple uses a form of runtime tracing to
record program decisions and create
optimized OpenFlow rules.

Isolated slices. In certain situa-
tions, programmers need to ensure
the programs being combined will
not interfere with each other. For ex-
ample, in the traffic isolation scenar-
io, the two forwarding modules must
be non-interfering.

Combining them using union
would be incorrect—the modules
might interact by sending packets to
each other. One way to guarantee iso-
lation is by using an abstraction that
allows multiple programs to execute
side-by-side while restricting each to
its own isolated “slice” of the network.
FlowVisor interposes a hypervisor be-
tween the controller and the switch-
es, inspecting each event and control
message to ensure the program and
its traffic is confined to its own seg-
ment of the network.42 The FortNOX
controller also provides strong isola-
tion between applications, using a
framework based on role-based au-
thentication.37 A recent extension to
NetKAT also provides a programming
construct analogous to slices.2,15

Participatory networking. Combin-
ing behaviors from multiple modules
sometimes leads to conflicts. For ex-
ample, if one module reserves all the
bandwidth available on a link, other
modules will not be able to use that
link. The PANE controller10 allows net-
work administrators to specify mod-
ule-specific quotas and access control
policies on network resources. PANE
leverages this mechanism to provide
an API that allows end-host applica-
tions to request network resources.
For example, a videoconferencing
application can easily be modified
to use the PANE API to reserve band-
width for a high-quality video call.
PANE ensures its bandwidth request
does not exceed limits set by the ad-
ministrator and does not starve other
applications of resources.

Discussion. Abstractions for de-
composing complex applications

into simple modules are critical tech-
nology for SDN. Without them, pro-
grammers have to write programs in
a monolithic style, developing, test-
ing, and reasoning about the poten-
tial interactions between each piece
of the program simultaneously. The
abstractions provided by high-level
languages such as NetKAT and Maple,
hypervisors such as FlowVisor and
FortNOX, and controllers such as
PANE, make it possible to build ap-
plications in a modular way. But al-
though these abstractions are a prom-
ising first step, much more work is
needed. For example, developers need
intuitive reasoning principles for es-
tablishing properties of programs
built out of separate modules—for
example, whether one module can be
replaced by another without affecting
the behavior of the overall program.
They also need better ways of express-
ing and resolving conflicts, especially
for properties involving security and
resource constraints.

Virtualization
SDN decouples the software that con-
trols the network from the underlying
forwarding elements. But it does not
decouple the forwarding logic from
the underlying physical network to-
pology. This means a program that
implements shortest-path routing
must maintain a complete represen-
tation of the topology and it must
recompute paths whenever the topol-
ogy changes. To address this issue,
some SDN controllers now provide
primitives for writing applications
in terms of virtual network elements.
Decoupling programs from topology
also creates opportunities for making
SDN applications more scalable and
fault tolerant.

Examples. As motivation for virtual-
ization, consider these scenarios:

Access control: Access control is
typically implemented by encoding
information such as MAC or IP ad-
dresses into configurations. Unfortu-
nately, this means topology changes
such as a host moving from one loca-
tion to another can undermine secu-
rity. If access control lists are instead
configured in terms of a virtual switch
that is connected to each host, then
the policy remains stable even if the
topology changes.

OCTOBER 2014 | VOL. 57 | NO. 10 | COMMUNICATIONS OF THE ACM 93

review articles

NSX are based on a controller hypervi-
sor that maps events and control mes-
sages at the logical down to the physi-
cal level, and vice versa. To streamline
the bookkeeping needed to implement
virtualization, most platforms stamp
incoming packets with a tag (for ex-
ample, a VLAN tag or MPLS label) that
explicitly associates it with one or more
virtual networks.

Packet processing in these systems
proceeds in several steps. First, the
system identifies the logical context
of the packet—that is, its location in
the virtual network consisting of a
switch and a port. Second, it process-
es the packet according to the policy
for its logical context, which relocates
the packet into a different logical
context (and possibly generates ad-
ditional packets). Finally, it maps the
packet down to the physical level. The
hypervisor typically generates physi-
cal-level forwarding rules that imple-
ment all three steps simultaneously.
One challenge concerns the rule
space available on physical switches.
Depending on the number of virtual
networks and the size of their poli-
cies, the hypervisor may not be able
to accommodate the complete set
of rules needed to realize these poli-
cies on the switches. Hence, just as in
memory management in an ordinary
operating system, the hypervisor typi-
cally implements a form of “paging,”
moving rules onto and off of physical
switches dynamically.

Discussion. Virtualization abstrac-
tions are an important component of
modern SDN controllers. Decoupling
programs from the physical topol-
ogy simplifies applications and also
enables sharing the network among
several different programs without
interference. However, although sev-
eral production controllers already
support virtualization, many open
questions remain. One issue con-
cerns the level of detail that should be
exposed at the logical level. Current
implementations of SDN virtualiza-
tion provide the same programming
interface at the logical and physical
levels, eliding resources such as link
capacities, queues, and local switch
capacity. Another question is how to
combine virtualization with other ab-
stractions such as consistent updates.
Doing this combination directly is not

always possible as both abstractions
are commonly implemented using
tagging schemes. Finally, current plat-
forms do not support efficient nested
virtualization. Semantically there are
no deep issues, but there are practical
ramifications of implementing nested
virtualization using hypervisors.

Formal Verification
Today’s network operators typically
work with low-level network configu-
rations by hand. Unsurprisingly, this
leads to configuration errors that
make many networks unreliable and
insecure. By standardizing the inter-
face to network hardware, SDN offers
a tremendous opportunity to develop
methods and tools that make it much
easier to build and operate reliable
networks. There are many critical in-
variants that arise in networks, several
of which are described here. These
properties can be checked automati-
cally using static or dynamic tools that
formally model the state of the net-
work and controller.

Examples. Many network properties
are topology-specific, so they can only
be stated and verified given a model of
the structure of the network.

Connectivity: Packets emitted by
any host in the network are eventually
delivered to their intended destina-
tions, except possibly due to conges-
tion or failures.

Loop freedom: No packet is ever
forwarded along a loop back to a lo-
cation in the network where it was
previously processed with the same
headers and contents.

Waypointing: Packets emitted by
untrustworthy hosts traverse a mid-
dlebox that scans for malicious traffic
before being forwarded to their in-
tended destinations.

Bandwidth: The network provides
the minimum bandwidth specified in
service-level agreements with tenants.

Other properties are either entirely
topology-agnostic or hold for large
classes of topologies. These properties
capture general correctness criteria for
applications that are intended to be ex-
ecuted on many different networks:

Access control: The network blocks all
traffic emitted by unauthorized hosts,
as specified by an access control list.

Host-learning: The controller even-
tually learns the location of all hosts

Decoupling
programs from
the physical
topology simplifies
applications and
also enables
sharing the
network among
several different
programs without
interference.

94 COMMUNICATIONS OF THE ACM | OCTOBER 2014 | VOL. 57 | NO. 10

review articles

in switch-level configurations.17 Guha
et al. describe a framework for estab-
lishing controller correctness using a
proof assistant, as well as a machine-
verified implementation of the Net-
Core language against a detailed
operational model of OpenFlow.14
VeriCon shows that Hoare-style verifi-
cation is possible for controllers writ-
ten as simple imperative programs3
and has been applied successfully to
a number of examples adapted from
the SDN literature (for example, fire-
walls, routing algorithms, and so
on). Nelson, et al. present a Datalog-
based SDN programming language,
called Flowlog, that they also use to
write and verify several canonical
properties.34 Because Flowlog is de-
signed to be finite-state, it is amena-
ble to automatic verification without
the need for complex programmer-
supplied assertions.

Discussion. There is a tremendous
need for tools that can provide rigor-
ous guarantees about the behavior,
performance, reliability, and security
of networked systems. By standardiz-
ing the interfaces for controlling net-
works, SDN makes it feasible to build
tools for verifying configurations and
controllers against precise formal
models. Some possible next steps in
this area include developing custom
logics and decision procedures for
expressing and checking properties,
enriching models with additional
features such as latency and band-
width, and better integrating proper-
ty checking and debugging tools into
SDN controller platforms.

Related Work
Enormous momentum has gathered
behind SDN in recent years, but the
ideas behind SDN build on many
previous efforts. Tempest,40 an archi-
tecture developed at Cambridge in
the mid-1990s, was an early attempt
to decouple forwarding and control
in the context of ATM networks. Sev-
eral features from Tempest can be
found in SDN today including an em-
phasis on open interfaces and sup-
port for virtualization. Similarly, the
IETF ForCES working group defined
a standard protocol that a control-
ler could use to manage multiple
heterogeneous devices in a single
network.8 The Soft-Router project

and the network forwards packets di-
rectly to their intended destinations.

Spanning tree: The network for-
wards broadcast traffic along a tree
that contains every switch (if the net-
work is connected).

Both types of properties have been
difficult to establish in traditional net-
works, as they require reasoning about
complex state distributed across many
heterogeneous devices. Building on
the uniform interfaces provided by
SDN, several recent tools have made it
possible to verify many network prop-
erties automatically.

Verifying configurations. Verifying
properties such as loop freedom and
connectivity, among others, requires
modeling both the topology and switch
configurations. Header Space Analy-
sis23 models switches and the topol-
ogy as functions in an n-dimensional
space, where points represent the vec-
tor of packet headers. This model can
be used to generate test packets that
provide coverage for each rule in the
overall configuration46 and extensions
can check configurations incremen-
tally.22 FlowChecker is based on similar
ideas, but encodes policies as binary-
decision diagrams.1 Anteater29 encodes
switch configurations as Boolean
SAT instances, building on an encod-
ing originally developed by Xie et al.45
VeriFlow24 develops domain-specific
representations and algorithms for
checking properties in real time, which
is important because the forwarding
behavior of an SDN can rapidly evolve,
especially if the controller is reacting to
changing network conditions. Finally,
NetKAT2 includes a sound, complete,
and decidable equational reasoning
system for proving equivalences be-
tween network programs.

Verifying controllers. In addition
to tools that can verify properties of
configurations, some recent efforts
have focused on tools that can verify
control programs themselves, often
focusing on topology-independent
properties. NICE5 uses a combina-
tion of symbolic execution and model
checking to verify several important
properties, including the absence
of race conditions and bugs akin
to switch memory leaks. Another
tool developed by Scott et al. checks
whether abstractions provided by
SDN controllers are correctly realized

There is
a tremendous
need for tools
that can
provide rigorous
guarantees
about the behavior,
performance,
reliability,
and security
of networked
systems.

OCTOBER 2014 | VOL. 57 | NO. 10 | COMMUNICATIONS OF THE ACM 95

review articles

explored the benefits of separating
forwarding and control in terms of
extensibility, scalability, reliability,
security, and cost.26

The Routing Control Platform,4 de-
veloped at AT&T, demonstrated that
logical centralization could be used
to dramatically simplify routing al-
gorithms while still providing good
performance. These ideas were later
expanded in the 4D platform,12 which
introduced the distinction between
management and control planes. The
benefits of expressing algorithms us-
ing network-wide data structures in-
stead of using distributed algorithms
in SDN can also be seen in this work.

The most immediate predecessor
of SDN was Ethane,6 a system aimed
at providing fine-grained in-network
access control. Ethane provided a
high-level language for defining secu-
rity policies, and a controller program
that implemented those policies by
installing and uninstalling custom
forwarding rules in programmable
network switches. The NOX control-
ler was based on Ethane,13 and the
protocol used by the Ethane control-
ler to communicate with switches lat-
er evolved into the first version of the
OpenFlow standard.31

Conclusion
Many of the initial efforts around
SDN have focused on architectural
concerns—making it possible to
evolve the network and develop rich
applications. But the growth of this
new software ecosystem has also led
to the development of fundamen-
tal new abstractions that exploit the
ability to write network control soft-
ware on standard servers with a less
constrained state distribution mod-
el. We believe these abstractions are
critical for achieving the goals of SDN
and may prove to be some of its most
lasting legacies.

Acknowledgments. The authors
wish to thank Shrutarshi Basu, An-
drew Ferguson, Anil Madhavapeddy,
mark Reitblatt, Jennifer Rexford,
Mooly Sagiv, Steffen Smolka, Robert
Soulé, David Walker, and Communica-
tions’ reviewers for helpful comments.
Our work is supported by NSF grant
CNS-1111698, ONR award N00014-12-
1-0757, a Sloan Research Fellowship,
and a Google Research Award.

References
1. Al-Shaer, E. and Al-Haj, S. FlowChecker: Configuration

analysis and verification of federated OpenFlow
infrastructures. In Proceedings of SafeConfig, 2010.

2. Anderson, C.J., Foster, N. Guha, A., Jeannin, J-B,
Kozen, D., Schlesinger, C. and Walker, D. NetKAT:
Semantic foundations for networks. In Proceedings of
POPL, 2014.

3. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev,
A., Sagiv, M., Schapira, M. and Valadarsky, A. VeriCon:
Towards verifying controller programs in software-
defined networks. In Proceedings of PLDI, 2014.

4. Caesar, M., Caldwell, D.F., Feamster, N., Rexford,
J., Shaikh, A.and van der Merwe, J.E. Design and
implementation of a routing control platform. In
Proceedings of NSDI, 2005.

5. Canini, M., Venzano, D., Perešíni, P., Kostić, D. and
Rexford, J. A NICE way to test OpenFlow applications.
In Proceedings of NDSI, 2012.

6. Casado, M., Freedman, M.J. Pettit, J., Luo, J.,
McKeown, N. and Shenker, S. Ethane: Taking control
of the enterprise. In Proceedings of SIGCOMM, 2007.

7. Casado, M., Koponen, T., Ramanathan, R. and Shenker,
S. Virtualizing the network forwarding plane. In
Proceedings of PRESTO, 2010.

8. Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang,
W. Dong, L., Gopal, R. and Halpern, J. Forwarding and
control element separation (ForCES), 2010. IETF RFC
5810.

9. Koponen, T. et al. Network virtualization in multi-
tenant datacenters. In Proceedings of NSDI, 2014.

10. Ferguson, A.D., Guha, A., Liang, C., Fonseca, R. and
Krishnamurthi, S. Participatory Networking: An API
for application control of SDNs. In Proceedings of
SIGCOMM, 2013.

11. Fortz, B., Rexford, J. and Thorup, M. Traffic engineering
with traditional IP routing protocols. IEEE Commun.
(Oct. 2002).

12. Greenberg, A.G., Hjálmtýsson, G., Maltz, D.A., Myers,
A., Rexford, J., Xie, G.G., Yan, H., Zhan, J. and Zhang,
H. A clean slate 4D approach to network control and
management. SIGCOMM CCR 35, 5 (2005).

13. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado,
M., McKeown, N. and Shenker, S. NOX: Towards an
operating system for networks. ACM SIGCOMM CCR
38, 3 (2008).

14. Guha, A., Reitblatt, M. and Foster, N. Machine-verified
network controllers. In Proceedings of PLDI, 2013.

15. Gutz, S., Story, A., Schlesinger, C. and Foster, N.
Splendid isolation: A slice abstraction for software-
defined networks. In Proceedings of HotSDN, 2012.

16. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis,
Y., Sharma, P., Banerjee, S. and McKeown, N.
ElasticTree: Saving energy in datacenter networks. In
Proceedings of NSDI, 2010.

17. Heller, B. et al. Leveraging SDN layering to
systematically troubleshoot networks. In Proceedings
of HotSDN, 2013.

18. Hong, C-Y, Kandula, S., Mahajan, R., Zhang, M., Gill,
V., Nanduri, M. and Wattenhofer, R. Achieving high
utilization with software-driven WAN. In Proceedings
of SIGCOMM, 2013.

19. Jain, S. et al. B4: Experience with a globally
deployed software defined WAN. In Proceedings of
SIGCOMM, 2013.

20. Jose, L., Yu, M. and Rexford, J. Online measurement
of large traffic aggregates on commodity switches. In
Proceedings of HotICE, 2011.

21. Katta, N.P., Rexford, J., and Walker, D. Incremental
consistent updates. In Proceedings of HotSDN, 2013.

22. Kazemian, P., Chang, M., Zeng, H., Varghese, G.,
McKeown, N. and Whyte, S. Real-time network policy
checking using Header Space Analysis. In Proceedings
of NSDI, 2013.

23. Kazemian, P., Varghese, G. and McKeown, N. Header
space analysis: Static checking for networks. In
Proceedings of NSDI, 2012.

24. Khurshid, A., Zhou, W., Caesar, M. and Godfrey, B.
VeriFlow: Verifying network-wide invariants in real
time. In Proceedings of NSDI, 2013.

25. Koponen, T., Casado, M., Gude, N., Stribling, J.,
Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y.,
Inoue, H., Hama, T. and Shenker, S. Onix: A distributed
control platform for large-scale production networks.
In Proceedings of OSDI, 2010.

26. Lakshman, T.V., Nandagopal, T., Ramjee, R., Sabnani,
K. and Woo, T. The SoftRouter architecture. In
Proceedings of HotNets, 2004.

27. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R.
and Maltz, D. zUpdate: Updating datacenter networks
with zero loss. In Proceedings of SIGCOMM, 2013.

28. Mahajan, R. and Wattenhofer, R. On consistent updates
in software-defined networks. In Proceedings of
HotNets, 2013.

29. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey,
B. and King, S.T. Debugging the data plane with
Anteater. In Proceedings of SICOMM, 2011.

30. McGeer, R. A safe, efficient update protocol for
OpenFlow networks. In Proceedings of HotSDN, 2012.

31. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S. and Turner, J.
OpenFlow: Enabling innovation in campus networks.
SIGCOMM CCR 38, 2 (2008).

32. Monsanto, C., Foster, N., Harrison, R. and Walker,
D. A compiler and run-time system for network
programming languages. In Proceedings of POPL, 2012.

33. Monsanto, C., Reich, J., Foster, N., Rexford, J. and
Walker, D. Composing software defined networks. In
Proceedings of NSDI, 2013.

34. Nelson, T., Ferguson, A., Scheer, M., and Krishnamurthi,
S. Tierless programming and reasoning for software-
defined networks. In Proceedings of NSDI, 2014.

35. Noyes, A., Warszawski, T., Cerny, P. and Foster, N.
Toward synthesis of network updates. In Proceedings
of SYNT, 2013.

36. Perlman, R. An algorithm for distributed computation
of a spanning tree in an extended LAN. SIGCOMM
CCR 15, 4 (1985).

37. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson,
M. and Gu, G. A security enforcement kernel for
OpenFlow networks. In Proceedings of HotSDN, 2012.

38. Reitblatt, M., Canini, M., Foster, N. and Guha, A. Fattire:
Declarative fault-tolerance for software-defined
networks. In Proceedings of HotSDN, 2013.

39. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C.
and Walker, D. Abstractions for network update. In
Proceedings of SIGCOMM, 2012.

40. Rooney, S., van der Merwe, J.E., Crosby, S.A. and
Leslie, I.M. The Tempest: A framework for safe,
resource assured, programmable networks. IEEE
Commun. 36, 10 (1998).

41. Shenker, S., Casado, M., Koponen, T. and McKeown, N.
The future of networking and the past of protocols.
Invited talk at Open Networking Summit, Oct. 2011.

42. Sherwood, R. et al. Carving research slices out of your
production networks with OpenFlow. SIGCOMM CCR
40, 1 (2010).

43. Voellmy, A., Wang, J., Yang, Y.R., Ford, B. and Hudak, P.
Maple: Simplifying SDN programming using algorithmic
policies. In Proceedings of SIGCOMM, 2013.

44. Wang, R., Butnariu, D. and Rexford, J. OpenFlow-based
server load balancing gone wild. In Proceedings of
HotICE, 2011.

45. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg,
A.G., Hjálmtýsson, G. and Rexford, J. On static
reachability analysis of IP networks. In Proceedings
of INFOCOM, 2005.

46. Zeng, H., Kazemian, P., Varghese, G. and McKeown, N.
Automatic test packet generation. In Proceedings of
CoNext, 2012.

Martin Casado (mcasado@vmware.com) is fellow, senior
vice president and general manager of networking and
security at VMware and was the co-founder and CTO of
Nicira Networks, Palo Alto, CA.

Nate Foster (jnfoster@cs.cornell.edu) is an assistant
professor of computer science at Cornell University,
Ithaca, NY.

Ajun Guha (arjun@cs.umass.edu) is an assistant
professor of computer science at the University of
Massachusetts, Amherst, MA.

© 2014 ACM 0001-0782/14/10 $15.00

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

