
ORIGINAL ARTICLE

On artificial neural networking-based process monitoring
under bootstrapping using runs rules schemes

Babar Zaman & Muhammad Riaz & Shabbir Ahmad &

Saddam Akber Abbasi

Received: 14 February 2014 /Accepted: 4 August 2014 /Published online: 30 August 2014
# Springer-Verlag London 2014

Abstract Control charts are popular tools in statistical pro-
cess control (SPC) and artificial neural network (ANN) tech-
nique is an attractive alternative for efficient monitoring of
process parameters. This study uses the artificial neural net-
work technique with back propagation method to process
control system for dispersion parameter. We have trained an
artificial neural network to be used in statistical control charts
using varying runs rules schemes. By investigating the per-
formance of trained artificial neural network under normal and
bootstrapping environments we have made comparisons of
the usual ANN and three runs rules-based schemes for ANN
to gain the precision of process. We have used average run
length (ARL), extra quadratic loss (EQL), relative ARL
(RARL), and performance comparison index (PCI) measures
and explored the said structures of trained artificial neural
network under bootstrapping by implementing runs rules
schemes.We have also suggested a modification in the trained
ANN for variance change detection. An example with real
data is also given for practical considerations.

Keywords Artificial neural network (ANN) . Average run
length (ARL) . Bootstrapping . Extra quadratic loss (EQL) .
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1 Introduction

Statistical process control (SPC) charts is a collection of very
powerful tools to monitor and ensure stability of the parame-
ters of a process (manufacturing or non-manufacturing).
Control chart is the most important and widely used technique
in SPC tool kit. There are mainly three types of control charts
namely Shewhart, EWMA, and CUSUM. The major limita-
tion of the Shewhart type control charts is that these are not
very efficient in detecting small process shifts. To increase the
sensitivity of Shewhart control charts for small shifts, addi-
tional supplementary runs rules, in literature, have been sug-
gested at the cost of inflated false alarm rate, however some
remedial measures have also been proposed by different re-
searchers. Moreover, to address particularly the smaller shifts,
EWMA and CUSUM type charts serve the purpose
efficiently.

Artificial neural network (ANN) is also currently a tech-
nique popular to be used for monitoring process parameters as
an alternative to SPC control charts due to its application and
superior performance. These days ANNs are widely used in
different fields like industry, banking, marketing, medical, etc.
They are considered as efficient successors of charting
methods in modern era. A lot of work has been done in the
field of artificial neural network for process monitoring. Pugh
[35] provided comparisons of neural networking with SPC
control charting methodology. Guo and Dooly [17, 18] used
the neural network approach for process monitoring and qual-
ity improvement. Velasco and Rowe [46] used the back prop-
agation artificial neural networks in the analysis of quality
control charts to recognize patterns that indicate out-of-control
situations as specified by the Western Electric Company [47]
rules. Smith [45] trained ANN to discriminate between sam-
ples from probability distributions considered within control
limits and those which have shifted in both location and
variance. Neural networks are also trained to recognize
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samples and to predict future points from processes which
exhibit long-term or cyclical drift. In Bayesian framework, de
Freitas [14] used the Bayesian statistics to find the proper
structure of neural network. Chang and Ho [10] used two-
stage artificial neural network approaches with back propaga-
tion method for variance change detection and classification.
Sagiroglu et al. [42] used neural networks for control charts
pattern recognition.

Junsub et al. [21] used the neural network method for a
non-normal data to detect the process control shifts for loca-
tion parameter. Perry et al. [34] used back propagation artifi-
cial neural networks for the purpose of control chart pattern
recognition. Perry and Pignatiello Jr [33] used the technique of
neural network to recognition of pattern behavior of on-line
automated process analysis. Sigut et al. [44] used the artificial
neural network method to test the normality of data rather than
classical method. Muammer et al. [28] used the neural net-
work application for regression modeling purposes.
Fioramanti [16] used a comparative approach and predicted
sovereign debt crises using artificial neural networks: the
papers by Hwarng [20], Chiu et al. [13], Feipeng and
Amirkhanian [15], Mahmoudi et al. [25], Shaban et al. [43],
Natarajan et al. [29], Mohanty et al. [27] and the references
therein may also be seen for further literature. Rowley et al.
[40] used the idea of bootstrapping for face detection system,
Zio [51] applied bootstrap method for quantifying the uncer-
tainties in the output of supervised neural networks in nuclear
industry. Matchenko and Dube [26] used ANN and
bootstrapping techniques to test the significance of single
nucleotide polymorphisms (SNPs) in the categorization of
case control status in genetic association. Kaunga et al. [22]
explained about modeling chemical durability of high-level
waste glass for nuclear waste processing using bootstrap ag-
gregated neural networks. Raviv and Intrator [36] showed that
noisy bootstrap performs best in conjunction with weight-
decay regularization and ensemble averaging. On these lines,
we may find applications of ANN to identify the pattern of
process like increasing trend, decreasing trend, etc., and ANN
with bootstrapping technique in literature.

Our study contributes in the direction of ANN using
bootstrapping under runs rules schemes to monitor process
spread parameter for small, moderate, and large shifts. More
specifically, we will train an ANN with back propagation
technique for dispersion parameter by implementing runs
rules schemes under bootstrapping environments. The said
bootstrapped evaluation will help in determining the precision
of the ANN structures by taking into account the behavior of
consecutive points (in the form of runs rules schemes such as
2/2, 2/3, 3/3).

The organization of the rest of the study is as follows: In
Section 2, we provide the procedural details of our trained
ANN; Section 3 evaluates the performance of the trained
ANN and provides comparisons among the traditional and

runs rules-based ANN schemes using bootstrapping tech-
nique; Section 4 provides an illustrative example to justify
the practicability of proposals with real-life data set while
Section 5 presents the conclusions of our study and gives
some suggestions for future research.

2 Artificial neural networking approach

Neural networks are used inmodeling the relationships among
certain variables of interests. They are commonly used in
modeling complex relationships between inputs and outputs
and also finding the patterns in datasets. There are mainly
three types of ANNs namely supervised, unsupervised, and
reinforcement learning, which are used for any type of net-
work architecture. Here, we are mainly concerned with mon-
itoring the process variability for both large and small shifts
and we have adopted the supervised technique of ANN. For
our study purposes, the supervised technique of ANN with
back propagation namely multi-layer perception (MLP) net-
work is the most suitable choice since we require different
desired outputs according to different inputs. Here, the main
problem is to find out the numbers of hidden layers and nodes
for each layer, for the minimum error and the choice of
learning rate that gives optimal weights for the network. The
mathematical details regarding the choice of optimal weights
may be seen in Bishop [8, 9].

The general form of the neural network structure is
[n−m−k−O] (we will call it topology of ANN in this
article) where n is number of inputs, m is number of
nodes of first hidden layer, k is number of nodes of
second hidden layer, and O is the final output. For the
selection of hidden layers and nodes we adapted the
rule as described by Chang and Ho [10] and selected
the ANN with the ANN topology [n−12−12−1] for our
study purposes. An improved monitoring of process
parameters is always desirable for all types of
manufacturing/non-manufacturing processes and runs
rules schemes meet this objective very efficiently. The
papers by Klein [24], Khoo [23], Antzoulakos and
Rakitzis [6, 7], Abbas et al. [1], Riaz et al. [38, 39],
and the references there in may be consulted. The runs
rules idea can be applied in the structure of neural
network techniques for an efficient process monitoring.
Taking inspiration from the above-mentioned works, we
suggest here three runs rules schemes to be applied with
neural network to monitor the variability parameter.
Also, we investigate the performance of runs rules
schemes of ANN under bootstrapping environment for
practical considerations when limited data is available
for study purposes instead of full information on popu-
lation distribution.
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2.1 Runs rules-based ANN

Now, we use the trained ANN (cf. Chang and Ho [10])
for variance change detection to implement runs rules-
based schemes for an efficient monitoring of variance.
The trained ANN works with q normal distributions
consisting of a total of 120×q observations from
N(0, ρ2σ0

2) where ρ represents different amounts of
variance/shifts. We assume here that xji (for j=1,2,…,
120 and i=1,2,…,n) for each choice of (ρ=1,2,…,q) is
the raw data from the said normal distribution. It is to
be noted that we have used q=5 (for our study purposes) and
each distribution with a different variance/shifts will generate
120 observations which results in 600 observations for our
trained ANN. Here, we will consider σ0=1 throughout our
study without loss of generality. The data xji for each group are

transformed to Zji ¼ xji−xj
�� �� (where xj ¼ 1

n ∑
i¼1

n

xji ) values

which are chosen as input to ANN due to its robustness in
statistical tests for equality of variances.

Figure 1 provides the layout of the suggested runs rules-
based ANN structure for detecting out-of-control signals for
the trained ANN which deals with the five inputs at a time
with two hidden layers having 12 nodes for each layer and
which produces a single output.

The ANN algorithm can be decomposed in the following
four steps.

& Feed–forward computation
& Back propagation to the output layer
& Back propagation to the hidden layer
& Weights updated

In our derivations here xk is the output from the kth
input z1k,z2k,z3k,z4k,z5k. Based on the output nlk from the
lth node in the second hidden layer and weights ul
between −1 and 1 are randomly assigned to them we
have the following expression.

xk ¼ f
X12

l¼1
ulnlk

� �
¼ 1

1þ e
−
X12

l¼1
ulnlk

 ! ; ð1Þ

where xd denoting the desired output, the loss square func-
tion is given by:

E ¼ 1

2

X120

k¼1
xd−xk
� �2 ¼ 1

2

X120

k¼1
e2k

where ek=x
d−xk.

Let T denotes the whole set of weights w, v, and u. Given
initial set of weights T, which have been randomly set to

values between −1 and 1, we find a better set of weights T
from the following:

T t þ 1ð Þ ¼ T tð Þ−h dE=dTð Þ; ð2Þ

where dE/dT refers to the first order derivative. This is in
fact the well-known substitution method. An alternative meth-
od the Newton’s method is the following.

T t þ 1ð Þ ¼ T− d2E=dT
2

� �−1
dE=dTð Þ; ð3Þ

This is more efficient but requires a second-order
derivative.

Optimum weights between output and second hidden
layer Following Eq. (1) for optimum weights between output
and second hidden layer, we have

ul t þ 1ð Þ ¼ ul tð Þ−h dE=dulð Þ; ð4Þ

The differential of E in Eq. (4) w. r. t weight ul is given by

dE

dul
¼ −

X120

k¼1
ek dxk=dulð Þ

¼ −
X120

k¼1
ek f

0 X12

l¼1
ulnlk

� � d

dul

X12

l¼1
ulnlk

� �
¼ −

X120

k¼1
ek f

X12

l¼1
ulnlk

� �
1− f

X12

l¼1
ulnlk

� �� �
nlk

dE

dul

¼ −
X120

k¼1
ekxk 1−xkð Þnlk

ð5Þ

Now for updating the weight of ul we put (5) in (4) we get

ul t þ 1ð Þ ¼ ul tð Þ þ h
X120

k¼1
ekxk 1−xkð Þnlk ð6Þ

Optimum weights between first and second hidden
layers Following Eq. (1) for optimum weights between first
and second hidden layers, we have

vlj t þ 1ð Þ ¼ vlj tð Þ−h dE=dvlj
� � ð7Þ

The output from node l with kthinput(i.e.,z1k,z2k,z3k,z4k,
z5k) in the second hidden layers is given by

nlk ¼ f
X12

l¼1
vljgjk

� �
¼ 1

1þ e
−
X12

l¼1
vljgjk

 ! ð8Þ

The differential of E in Eq. (7) w. r. t weight vlj the
differential of E in Eq. (7) w. r. t weight vlj is given as:
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isgivenas

dE=dvab ¼
X120

k¼1
ek dxk=dvabð Þ

¼
X120

k¼1
ek f

0 X12

l¼1
ulnlk

� � d

dvab

X12

l¼1
ulnlk

� �
¼
X120

k¼1
ek f

X12

l¼1
ulnlk

� �
1 f

X12

l¼1
ulnlk

� �� �X12

l¼1
ul

d

dvab
nlk

¼
X120

k¼1
ekxk 1xkð Þ

X12

l¼1
ul f

0 X12

j¼1
vljgjk

� � d

dvab

X12

j¼1
vljgjk

� �
Since

d
X12

j¼1
vjkgjk

� �
dvab

¼ gbk if l ¼ a
0 if l a

�
Sowehave

dnlk

dvab
¼ f 0

X12

j¼1
vajgjk

� �
gbk if l ¼ a

0 if l a

(
andweget

dE=dvab ¼
X120

k¼1
ekxk 1xkð Þ

X12

l¼1
ul f

X12

j¼1
vajgjk

� �
1 f

X12

j¼1
vajgjk

� �� �
gbk

dE=dvab ¼
X120

k¼1
ekxk 1xkð Þuanak 1nakð Þgbk ð9Þ

Out put

Fig. 1 Runs rules-based ANN structure for variance shifts detection
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Put Eq. (8) in (7), we get the following:

vab t þ 1ð Þ ¼ vab tð Þ þ h
X120

k¼1
ekxk 1−xkð Þuanak 1−nakð Þgbk ð10Þ

Optimum weights between inputs and first hidden
layers Following Eq. (1) for optimumweights between inputs
and first hidden layers, we have

wlj t þ 1ð Þ ¼ wlj tð Þ−h dE=dwlj

� � ð11Þ

The output from node l with input kth(i.e.z1k,z2k,z3k,z4k,z5k)
in the first hidden layer is

gjk ¼ f
X5

j¼1
wjlzjk

� �
¼ 1

1þ e
−
X5

j¼1
wjlzjk

 ! ; ð12Þ

The differential of E in Eq. (11) w. r. t weight wac is given
as:

dE=dwac ¼ −
X120

k¼1
ek dxk=dwacð Þ

¼ −
X120

k¼1
ek f 0

X12

l¼1
ulnlk

� � d

dwac

X12

l¼1
ulnlk

� �
¼ −

X120

k¼1
ek f

X12

l¼1
ulnlk

� �
1− f

X12

l¼1
ulnlk

� �� �X12

l¼1
ul

d

dwac
nlk

¼ −
X120

k¼1
ekxk 1−xkð Þ

X12

l¼1
ul f

0 X12

j¼1
vljgjk

� � d

dwac

X12

j¼1
vljgjk

� �
¼ −

X120

k¼1
ekxk 1−xkð Þ

X12

l¼1
ul f

X12

j¼1
vljgjk

� �
1− f

X12

j¼1
vljgjk

� �� � d

dwac

X12

j¼1
vljgjk

�
¼ −

X120

k¼1
ekxk 1−xkð Þ

X12

l¼1
ulnak 1−nakð Þ d

dwac

X12

j¼1
vljgjk

� �
¼ −

X120

k¼1
ekxk 1−xkð Þ

X12

l¼1
ulnak 1−nakð Þ

X12

j¼1
vlj

d

dwac
gjk
� �

¼ −
X120

k¼1
ekxk 1−xkð Þ

X12

l¼1
ulnak 1−nakð Þ

X12

j¼1
vlj f

0 X5

j¼1
wljzjk

� � dwlj

dwac

Wehave
dglk
dwac

¼ f 0
X5

j¼1
wajzjk

� �
zck if l ¼ a

0 if l ≠a

(

dE=dwac ¼ −
X120

k¼1
ekxk 1−xkð Þgak 1−gakð Þzck

X12

l¼1
ulnlk 1−nlkð Þvla; ð13Þ

Put Eq. (13) in (12) got the following expression

wjl t þ 1ð Þ ¼ wjl tð Þ þ h
X120

k¼1
ekxk 1−xkð Þgak 1−g

ak

� �
zck
X12

l¼1
ulnlk 1−nlkð Þvla

ð14Þ

The aim is to obtain the minimum error to get the optimum
weights for the whole network. The optimum weights be-
tween output and second hidden layer (cf., Eq. 6), optimum
weights between first and second hidden layers (cf., Eq. 10)
and optimum weights between inputs and first hidden layers
(cf., Eq. 14).

where A, B, C, D, and E the representatives of
different groups of distributions as are mentioned in
Table 1 which will use for our study proposes. If the
proposed ANN is not able to produce the desired
outputs (cf., Table 1) for all the shifts, this means
that there is need of necessary corrections to train
ANN by back propagation method for optimal
weights.

Loss function ¼ E ¼ 1

2

X
A;B;C;D;E

desired output−actual outputð Þ2

ð15Þ
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The ANN algorithm is stopped when the value of the loss

function defined above has become sufficiently small (cf.,

Fig. 2a).
The plot of each percentage data is shown in Fig. 2b. As it

is advocated that the outputs of ANN scatter around the
desired values for a particular process, a good estimate of
variance change magnitude cannot be obtained. This issue
may be addressed by looking at grouping in the form of

clusters and monitoring their patterns in variance, if any, for
possible detection (Table 2).

The said runs rules-based ANN schemes are based on the
following terms and definitions.

Actions Limit
(AL)

This is a threshold value of neural network
statistic (output in Fig. 1). If values of the
neural network exceed the AL, the process is
called out of control. The AL is greater than

Table 1 Input data for training and desired output from ANN

Group Input data for training ANN Desired output from ANN

No. of samples Distribution N(0,(ρσ0)
2) Shift ρ=σ/σ0 Desired outputs=xd Interpretation

A 120 N(0,12) 1 0.050 ρ=1 no shift

B 120 N(0,22) 2 0.275 ρ=2 shift

C 120 N(0,32) 3 0.500 ρ=3 shift

D 120 N(0,42) 4 0.725 ρ=4 shift

E 120 N(0,52) 5 0.950 ρ=5 shift
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E
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o
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(a)

(b)

Fig. 2 a Error behavior with
10,000 iterations. b Behavior of
percentage ANN Outputs for
different shifts
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usual critical limit of neural network for a
given ARL0.

Warning Limit
(WL)

This is a critical limit for the value of the
neural network statistic beyond which (but
not crossing the AL) some pattern of
consecutive points indicates an out-of-
control situation. The value of theWLwould
be greater than Central Line (CL) and
smaller than the usual neural network statis-
tic for a fixed ARL0.

With the help of the above information, we propose three
runs rules schemes for our trained neural network technique.

Scheme I (2 out of 2): A process is called out of control if
one of the following conditions is true.

1. One point of neural network statistic falls outside theAL
2. Two consecutive points of neural network statistic fall

between WL and AL
Scheme II (2 out of 3):A process is called out of control if
one of the following conditions is true.

1. One point of neural network statistic falls outside theAL
2. Two out of three consecutive points of neural network

statistic fall between WL and AL

Scheme III (3 out of 3): A process is called out of control
if one of the following conditions is true.

1. One point of neural network statistic falls outside theAL
2. Three consecutive points of neural network statistic

fall between WL and AL
Usual Scheme
(1 out of 1)

A process is called out of control if one point
of neural network statistic falls outside the
usual control limit of Shewhart chart.

3 Performance measures and comparisons

In this section, we evaluate the performance of runs rules-
based schemes for the trained ANN under normal and

Table 2 Percentages of ANN outputs falling into specified output range

Output range Input data ρ=1
vs target=0.05 (%)

Input data ρ=2
vs target=0.275 (%)

Input data ρ=3 vs
target=0.5 (%)

Input data ρ=4
vs target=0.725 (%)

Input data ρ=5
vs target=0.95 (%)

0.00–0.05 0.00 0.00 0.00 0.00 0

0.05–0.10 17.04 1.53 0.35 0.12 0

0.10–0.15 33.47 5.42 1.40 0.51 0.24

0.15–0.20 22.80 7.96 2.17 0.80 0.36

0.20–0.25 13.68 9.12 2.88 1.31 0.59

0.25–0.30 6.96 10.32 3.68 1.36 0.61

0.30–0.35 3.55 10.41 4.51 1.84 0.85

0.35–0.40 1.57 9.87 5.60 2.48 1.17

0.40–0.45 0.61 10.10 6.42 3.32 1.65

0.45–0.50 0.23 8.98 7.20 4.40 2.10

0.50–0.55 0.07 8.12 8.69 5.25 2.98

0.55–0.60 0.02 6.50 9.76 6.70 4.00

0.60–0.65 0.00 5.39 10.72 8.52 5.51

0.65–0.70 0.00 3.61 11.13 11.15 7.91

0.70–0.75 0.00 1.93 10.68 13.29 11.33

0.75–0.80 0.00 1.00 8.60 14.55 15.85

0.80–0.85 0.00 0.16 4.75 14.88 20.39

0.85–0.90 0.00 0.01 1.37 8.35 19.87

0.90–0.95 0.00 0.00 0.09 1.16 4.40

0.95–1.00 0.00 0.00 0.00 0.01 0.15

Table 3 Error and critical values of the trained ANN for ARL0=175

n Error CV usual CV 2 out of 2 CV 3 out of 3 CV 2 out 3

2 24.1039 0.5629 0.4705 0.4303 0.4850

3 17.5137 0.5435 0.4210 0.3668 0.4400

4 12.6862 0.4766 0.3250 0.2606 0.3472

5 10.6862 0.4248 0.2860 0.2288 0.3065

8 5.6828 0.3724 0.1963 0.1372 0.2215

10 3.9601 0.3066 0.1730 0.1760 0.1924
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bootstrapping environments to detect shifts in variability pa-
rameter of the quality characteristic of interest. The perfor-
mances evaluations are based on vary common performance
measure in quality control literature namely average run
length (ARL). The ARL is a famous tool and is widely used
by researchers for measuring the performance of memory type
control charts. The performance is assessed by two types of
ARL2, i.e. ARL0 and ARL1. ARL0 is the expected number of
samples before an out-of-control point is detected when the
process is actually in control. ARL1 is the expected number of
samples before an out-of-control signal is received when the
process is actually shifted to an out-of-control state. For a
fixed value of ARL0, a chart is considered to be more effective
than other charts if it has a smaller ARL1 (see Wu et al. [48]).
Some other effective performance measures are also

incorporated in order to have more efficient picture of perfor-
mance of proposals. The details of these measures as:

Extra Quadratic Loss (EQL): The ARL evaluates the
performance of a charting structure at a specific shift
point. The EQL is an alternative performance measure,
which describes the overall effectiveness of a control
chart. The EQL is defined as a weighted average ARL
over the whole process shift domain ρmin<ρ<ρmax using
the square of shift (ρ2) as a weight. Mathematically the
EQL is given as

EQL ¼ 1

ρmax−ρmin

Z ρmax

ρmin

ρ2 ARL ρð Þdρ : ð16Þ

Fig. 3 a ARL performance of usual scheme and runs rules-based ANN using ARL0=175 n=4 and E=12.6862. b SDRL performance of runs rules-
based ANN using ARL0=175 n=4 and E=12.6862

Fig. 4 a ARL performance of usual scheme and runs rules-based ANN using ARL0=175 n=5 and E=10.6862. b SDRL performance of runs rules-
based ANN using ARL0=175 n=5 and E=10.6862
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Relative Average Run Length (RARL): The RARL de-
scribes the overall effectiveness of particular a charting
structure relative to the benchmark chart. It examines that
how close a particular chart performs to the benchmark
chart for each shift in terms of ARL (cf.Wu et al. [48] and
Ryu et al. [41]). The RARL measure can be defined
mathematically as:

RARL ¼ 1

ρmax−ρmin

Z ρmax

ρmin

ARL ρð Þ
ARLbmk ρð Þdρ ; ð17Þ

where ρ is the amount of shift in the process
variance σy, ARL(ρ) and ARLbmk(ρ) are the average
run lengths of a particular chart and the benchmark
chart at ρ respectively. The chart having the

minimum value of EQL is considered to be bench-
mark chart. The RARL may be observed as
RARL=1 (for benchmark chart) and RARL>1 (for
the other charts). The RARL value above 1 shows
the inferiority in performance of a particular chart
relative to the benchmark chart. Zhao et al. [50]
and Han et al. [19] also considered the uniform
distribution of ρ in their studies.

Performance comparison index (PCI): According to Ou
et al. [32], it is the ratio between the EQL of a chart and
the EQL of the best chart under the same conditions. This
index facilitates the performance comparison and a rank-
ing based on the EQL. The chart with the lowest EQL has
a PCI value equal to one, and the PCI values of all other
charts are larger than one.

Fig. 5 a ARL performance of usual scheme and runs rules-based ANN using ARL0=175 n=10 and E=3.9601. b SDRL performance of runs rules-
based ANN using ARL0=175 n=10 and E=3.9601
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PCI ¼ EQL

EQLbenchmark
ð18Þ

Some modifications of these measures may be seen in
Zhang and Wu [49], Wu et al. [48], Ryu et al. [41], Ou
et al. [31, 32], Ahmad et al. [2], Ahmad et al. [3, 5]. The

values of WL and AL are proportional to the value of
ARL for a given shift, e.g., if the value of ARL is higher
than value of WL then AL is also high and vice versa.
There are many pairs of WL and AL that give the desired
ARL0 and we look for the optimum pair of WL and AL
(i.e., it minimizes the ARL1 for fixed ARL0). We have

Table 4 EQL, RARL, and PCI values of different schemes at different sample sizes

N Usual scheme 2 out of 2 2 out of 3 3 out of 3

EQL RARL PCI EQL RARL PCI EQL RARL PCI EQL RARL PCI

2 30.60 1.00 1.09 35.61 1.17 1.27 27.88 0.90 1.00 38.48 1.26 1.38

3 21.11 1.00 1.17 20.91 0.98 1.16 17.91 0.83 1.00 20.73 0.97 1.15

4 17.69 1.00 1.18 16.70 0.93 1.11 14.92 0.83 1.00 16.02 0.90 1.07

5 15.70 1.00 1.15 15.73 1.00 1.15 13.59 0.85 1.00 14.07 0.88 1.03

Fig. 7 aARL curves of ANN scheme I for varying n. bARL curves of ANN scheme II for varying n. cARL curves of ANN scheme III for varying n. d
ARL curves of ANN the usual scheme for varying n
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evaluated the ARL performance of the three proposed
runs rules-based ANN schemes and also the usual ANN
scheme.

3.1 Comparisons for mean-based ANN schemes

We use here the trained ANN based on Zjρ ¼ xjρ−xjρ
�� �� using

the topology [n−m−k−O]=[n−12−12−1] for varying num-
ber of inputs n and compute their ARL measures with and
without bootstrapping. We also investigate the effect of re-
placing xjρ by exjρ in Zjρ on ARL performance taking inspira-
tion from Riaz and Saghir [37]. According to the percentage
output of ANN a cut point/s is selected as critical value for

out-of-control signal for different schemes. This means if the
output of ANN greater than cut point, the process is consid-
ered to be out of control (cf., Table 3).

Runs rules-based ANN performance We have evaluated the
ARL performance of the trained ANN using the three pro-
posed runs rules schemes and also the usual ANN scheme (the
usual one—we call it 1/1 scheme) for varying number of
inputs n. We have trained the ANN for each n with minimum
error E for the above-mentioned topology [n−12−12−1] of
ANN. The ARL results, along with standard deviation of run
length (SDRL), at ARL0=175 are provided (for different runs
rules schemes of ANN) in Figs. 3a, 4a, and 5a for different
values on n with their respective errors (E) which is actually
the loss function as defined in Chang and Ho [10]. Table 3

Fig. 8 a Bootstrapped ARL performance of scheme II for Trained ANN at n=2. b Bootstrapped ARL performance of scheme III for trained ANN at n=2

Fig. 9 a Bootstrapped ARL performance of scheme I for trained ANN at n=8. b Bootstrapped ARL performance of scheme II for trained ANN at n=8
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contains the information of all Critical Values (CV) of usual
and proposed schemes and errors of the different sample sizes
to fix ARL0=175. It is to be noted that the error for all
schemes reduce with the increase in sample size for all
schemes (cf. Fig. 6a–b).

The ARL comparisons indicate that all the three proposals
for ANN are superior to the usual ANN scheme (cf. Figs. 3a,
4a, and 5a). Also the related SDRL curves indicate the preci-
sion of outcomes for different schemes, which is not varying
significantly from each other (cf. Figs. 3b, 4, and 5b). From
among the three proposals, Scheme II is the best in terms of
smallest ARL1 and EQL in all the cases, as can be seen from
Figs. 3a, 4a, and 5a and Table 4, respectively. Also schemes I
and III have very close performance ability in shift detection.
For larger shifts all the schemes behave almost same as the
usual ANN scheme (cf. Figs. 3a, 4a, and 5a). Moreover, with
an increase in the size of ANN topology the detection ability
of all the schemes keeps improving (cf. Figs. 7a–d). It is to be
mentioned here that for our study purposes, we fixed the size
of the hidden layers and size of nodes of hidden layers, but a
variation in these quantities may also affect the performance
of ANN.

Bootstrapped performance of trained ANN with runs rules
schemes We investigate the performance of the runs rules
schemes for the trained ANN under bootstrapped environ-
ments for the practical considerations. For this purpose, we
have considered limited population data of sizes 10, 15, 20,
30, 50 and 100. For all these data sets of different sizes (from
normal setup with the same parameters as used for Figs. 3a,
4a, and 5a results), we have evaluated ARLs EQL, RARL and
PCI for ANN using repeated samples of size n=2 and 8 by
fixing ARL0 at 175 again for comparison and validity

purposes. The same we have also done for all the schemes
including usual and runs rule-based schemes, for the same
choices of different quantities.

The resulting bootstrapped ARL curves for different
data sizes, as mentioned above, are provided in
Figs. 8a, b and 9a, b for runs rules-based ANN
schemes. The bootstrapped pattern of ARL curves has
revealed that runs rules-based schemes for ANN may
work satisfactorily with the limited data to maintain its
ability closer to the actual one (i.e., based on whole
population behavior) as obvious from Figs. 8a, b and
9a, b. It is observed that the suggested scheme II needs
comparatively more data as compared to other schemes
to converge to the true ARL performance for better
detection of out-of-control signals. It is to be noted that
the established superiority of runs rules-based ANN
schemes, as claimed based on Figs. 3a, 4a, and 5a, also
holds in all bootstrapped scenarios (cf. Fig. 10a, b)
(Tables 5 and 6).

Fig. 10 aBootstrapped ARL performance of different schemes for n=2 and population size=20. bBootstrapped ARL performance of different schemes
for n=2 and population size=50

Table 5 Error and critical values of the modified ANN for ARL0=175

N Error CV usual CV 2 out of 2 CV 3 out of 3 CV 2 out 3

2 24.1068 0.5656 0.4703 0.4291 0.4926

3 18.6355 0.5034 0.4062 0.3510 0.4357

4 13.7801 0.4351 0.3231 0.2733 0.3358

5 12.6100 0.4446 0.3162 0.2613 0.3357

6 8.9870 0.3705 0.2530 0.2048 0.2802

7 6.7041 0.4093 0.2068 0.1446 0.2320

10 4.6500 0.4061 0.1826 0.1375 0.2035
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In order to justify the performance of proposed and
usual schemes explore in this study, we provide EQL,
RARL and PCI values at different sample sizes in
Table 6. It is evident from Table 6 that the proposed
scheme 2 out of 3 has exhibited best performance in
terms of EQL, RARL and PCI (smallest EQL, RARL,
and PCI values) that is in accordance with the graph-
ical presentation of ARL analysis in this section. It is
also observed that the performances of understudy
schemes improve with the increment of sample size
(Table 7).

3.2 Comparisons for median-based ANN (modified) schemes

Riaz and Saghir [37] proposed the use of average ab-
solute deviation from median in control charting setup
for dispersion parameter, Ahmad et al. [4] suggested the
use of median control charting, Ning and Wu [30]
proposed quantile-based control charting structures,
Chao-Yu et al. [11] investigated different dispersion
estimators for process monitoring. Taking inspiration
from the said literature, we intend here to do the same
in ANN setup for an efficient monitoring of dispersion
parameter using different runs rules schemes. We have
studied, till now, the ANN performance trained for the

data xjρ for each group by transforming to Zji ¼ xji−xj
�� ��

values which are chosen as input to ANN, where xj ¼ 1
n ∑
i¼1

n

xji for a sample of size n using j=1,2,…120, referring to

index of the observation within a sample. Now, we suggest a

modification for the trained ANN by replacing byex j (median

estimator) instead of xj (the mean estimator) in input Zji

¼ xji−xj
�� �� of ANN (cf., Riaz and Saghir [37]). Now eZji

¼ xji−ex j�� �� is the input estimator for ANN and now we again

train the neural network for different topologies [n−12−12−
1] for varying number of inputs “n”. We implement the same
runs rules schemes and investigate their performance for the

newly trained modified ANN for eZji ¼ xji−ex j�� �� for different

choices of n and also compare the performance of the modi-

fied ANNwith the original ANN based on to Zji ¼ xji−xj
�� �� as

we did previously.
We have carried out the ARL analysis on the similar

lines as previous and ARL curves are presented in
Figs. 11a–d and 12a–b for different runs rules and
varying values of n. In Fig. 12 the symbol “M” in
labels indicate modified ANN runs rules scheme other-
wise simple ANN runs rules scheme. The CVs of usual
and proposed schemes and errors of the different sample

Table 6 EQL and RARL values of different modified schemes at different sample sizes

N Usual scheme 2 out of 2 2 out of 3 3 out of 3

EQL RARL PCI EQL RARL PCI EQL RARL PCI EQL RARL PCI

2 28.53 1.00 1.12 33.24 1.16 1.30 25.38 0.88 1.00 36.32 1.28 1.43

3 17.92 1.00 1.20 18.73 1.04 1.26 14.86 0.82 1.00 18.63 1.03 1.25

4 14.67 1.00 1.29 13.78 0.93 1.29 11.34 0.77 1.00 13.39 0.91 1.18

5 13.21 1.00 1.40 11.21 0.85 1.19 9.41 0.72 1.00 10.41 0.79 1.10

Table 7 ARL values of different non modified and modified schemes at n=5 when ARL0=175

Shift Schemes Modified schemes

Usual scheme 2 out of 2 2 out of 3 3 out of 3 Usual scheme 2 out of 2 2 out of 3 3 out of 3

1.25 21.61 21.60 15.27 16.40 22.09 18.67 14.90 17.34

1.50 6.94 7.01 4.68 5.17 7.35 5.96 4.56 5.15

1.75 3.61 3.68 2.49 2.79 3.83 3.05 2.49 2.82

2.00 2.51 2.49 1.74 1.93 2.53 2.10 1.75 1.95

2.25 1.90 1.91 1.44 1.55 1.93 1.64 1.44 1.55

2.50 1.58 1.61 1.28 1.39 1.63 1.45 1.27 1.37

2.75 1.41 1.40 1.18 1.24 1.43 1.30 1.18 1.25

3.00 1.29 1.30 1.14 1.16 1.31 1.20 1.13 1.19
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sizes to fix ARL0=175 are provided in Table 2. The ARL
comparisons advocate that: (i) all the runs rules-based schemes
perform superior as compared to the usual scheme for the
modified ANN; (ii) modified Scheme II is the best in terms of
smallest ARL1 in all the cases and schemes I and III have very
close performance ability in shift detection; (iii) with an in-
crease in the size “n” of ANN topology the detection ability of
all the schemes for the modified ANN keeps improving (cf.
Fig. 11a–d) same as that of simple ANN; (iv); modified and
simple ANN has very close performance in normal setup for
different choices of n (however, in contaminated and/or non-
normal environments modified ANN may have an edge be-
cause of its robustness (cf. Riaz and Saghir [37])).

It is to be mentioned that the runs rule-based ANN
structures may have comparable performance as that of
runs rules-based SPC charts like R, S, and EWMA (like
those given in Abbas et al. [1] and Riaz et al. [39])
charts with an added advantage of estimating the vari-
ance with bootstrapping, as indicated by Chang and Ho
[10]. Table 6 provided EQL, RARL, and PCI analysis
for different modified schemes at different sample sizes.
The modified scheme 2 out of 3 has exhibited best
performance in terms of EQL, RARL and PCI measures
similarly as observed in Table 6. The performance of
modified schemes keep improves with the increment of
sample size as expected (cf. Table 6).

Fig. 11 a ARL curves of modified ANN with scheme I for varying n. b ARL curves of modified ANN with scheme II for varying n. c ARL curves of
modified ANN with scheme III for varying n. d ARL curves of modified ANN with the usual scheme for varying n

324 Int J Adv Manuf Technol (2015) 76:311–327



4 An example and application with real date set

In this section, an illustrative example is provided to demon-
strate how the application in practice using a real dataset. The
data used in this example is taken from Chen et al. [12] that
contains the information of the inside diameter of cylinder
bores in an engine block (cf. Table 8). We have used 1/1 and

2/3 run rules with the trained ANN and summary for the out-
of-control signals is provided here. It is to be mentioned that
the subsample values in Table 8 are recorded in the last digits
of its actual measurement as indicated by Chen et al. [12]. The
actual measurements are of the 3.5205, 3.5202, and 3.5204
and so on. It is evident from the summary of diagnosis for out-
control signals that our proposed runs rules-based schemes of

Table 8 Cylinder diameter data.
Only the last three digits of the
raw data are displayed here; the
rest of the digits are the same for
all data points

Samplei xi1 xi2 xi3 xi4 xi5 Samplei xi1 xi2 xi3 xi4 xi5

1 205 202 204 207 205 19 207 206 194 197 201

2 202 196 201 198 202 20 200 204 198 199 199

3 201 202 199 197 196 21 203 200 204 199 200

4 205 203 196 201 197 22 196 203 197 201 194

5 199 196 201 200 195 23 197 199 203 200 196 s

6 203 198 192 217 196 24 201 197 196 199 197

7 202 202 198 203 202 25 204 196 201 199 197

8 197 196 196 200 204 26 206 206 199 200 203

9 199 200 204 196 202 27 204 203 199 199 197

10 202 196 204 195 197 28 199 201 201 194 200

11 205 204 202 208 205 29 201 196 197 204 200

12 200 201 199 200 201 30 203 197 199 197 201

13 205 196 201 197 198 31 203 197 199 197 201

14 202 199 200 198 200 32 197 194 199 200 199

15 200 200 201 205 201 33 200 201 200 197 200

16 201 187 209 202 200 34 199 199 201 201 201

17 202 202 204 198 203 35 200 204 197 197 199

18 201 198 204 201 201

Fig. 12 a ARL curves of modified and simple ANN with the different runs rules schemes for n=4 and ARL0=175. b ARL curves of modified and
simple ANN with the different runs rules schemes for n=5 and ARL0=175
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ANN has better diagnostic ability relative to the usual ANN
scheme.

Diagnostic summary of out-of-control signals:

Sample size=35 Subgroup size=5 False alarm rate=0.0057

Run rules Control limits Diagnose ability

(1/1) 0.4248 13

(2/3) 0.3065 21

5 Conclusions and recommendations

The study has trained an ANN (with back propagation meth-
od) for process variance change detection and tested its per-
formance using different measures like ARL, EQL, RARL,
and PCI. The study also suggested the runs rules implemen-
tation with the trained ANN (with back propagation method).
The runs rules-based ANN schemes have shown an efficient
signaling ability as compared to the usual ANN scheme
(under normality as well as bootstrapped environment. More
specifically, scheme II (i.e., 2 out of 3) has performed the best
followed by I and III and then comes the usual (1 out of 1) for
variance change detection using the trained ANN with the
implementation of runs rules schemes. Moreover, a modifica-
tion in the trained ANN structure is also suggested. The scope
of study may be extended by training ANN for other input
estimators of location and dispersion with more runs rules
under different distributional environments like Gamma,
Weibull, Log-Normal and Rayleigh probability models. The
runs rules-based ANN may also be trained under EWMA and
CUSUM structures. Moreover, multivariate generalizations
and Bayesian analysis may be potential dimensions for further
exploration in this direction.

Acknowledgments The authors are thankful to the referees for their
valuable comments that helped to improve the initial version of the article.
The authors Muhammad Riaz and Saddam Akber Abbasi are indebted to
King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
respectively for providing excellent research facilities.

References

1. Abbas N, Riaz M, Does RJMM (2011) Enhancing the performance
of EWMA charts. Qual Reliab Eng Int 27(6):821–833

2. Ahmad S, Riaz M, Abbasi SA, Lin Z (2013) On efficient median
control charting. J Chin Inst Eng.

3. Ahmad S, Riaz M, Abbasi SA, Lin Z (2012) On median control
charting under double sampling scheme. Eur J Ind Eng.

4. Ahmad S, Riaz M, Abbasi SA, Lin Z (2013) On efficient median
control charting. J Chin Inst Eng. doi:10.1080/02533839.02532013.
02781794

5. Ahmad S, Riaz M, Abbasi SA, Lin Z (2013) On monitoring process
variability under double sampling scheme. Int J Prod Econ 142(2):
388–400

6. Antzoulakos DL, Rakitzis AC (2008) The modified R out of M
control chart. Commun Stat Theory Methods 37(2):396–408

7. Antzoulakos DL, Rakitzis AC (2010) Runs rules schemes for mon-
itoring process variability. J Appl Stat 37:1231–1247

8. Bishop CM (1995) Neural networks for pattern recognition. Oxford
University Press, Oxford

9. Bishop CM (2006) Pattern recognition and machine learning (infor-
mation science and statistics). Springer Science and Business Media,
New York

10. Chang SI, Ho ES (1999) A two stage neural network approach for
process variance change detection and classification. Int J Prod Res
37:1581–1599

11. Chao-Yu C, Pin-HaoW, Jiang BC (1999) A comparative study on the
estimators of standard deviation in statistical process control. J Chin
Inst Eng 22(1):109–116

12. Chen G, Cheng SW, Xie H (2001) Monitoring process mean and
variability with one EWMA chart. J Qual Technol 33:223–233

13. Chiu CC, Chen MK, Lee KM (2001) Shifts recognition in correlated
process data using a neural network. Int J Syst Sci 32(2):137–143

14. de Freitas JFG (1999) Bayesian methods for neural networks. Trinity
College, University of Cambridge

15. Feipeng X, Amirkhanian SN (2009) Effects of binders on resilient
modulus of rubberized mixtures containing rap using artificial neural
network approach. J Test Eval 37(2):129–138

16. Fioramanti M (2008) Predicting sovereign debt crises using artificial
neural networks: a comparative approach. J Financ Stab 4:149–164

17. Guo Y, Dooly KJ (1992) The application of neural networks to a
diagnostic problem in quality control. In: Proceeding of ASME-
WAM: monitoring and control for manufacturing processes. pp
111–122

18. Guo Y, Dooly KJ (1992) Identification of change structure in statis-
tics process control. Int J Prod Res 30:1655–1669

19. Han D, Tsung F, Li Y (2007) A CUSUM chart with local signal
amplification for detecting a range of unknown shifts. Int J Reliab
Qual Saf Eng 14(2):81–97

20. Hwarng HB (1997) A neural network approach to identifying cyclic
behavior on control charts: a comparative study. Int J Syst Sci 28(1):
99–112

21. Junsub Y, Victor RP, Howard RC (2001) ARL comparisons between
neural network models and control charts for quality characteristics
that are non normally distributed. Econ Qual Control 16(1):5–15

22. Kaunga DL, Zhang J, Ferguson K, Steele C (2013) Reliable model-
ing of chemical durability of high level waste glass using bootstrap
aggregated neural networks. Natl Comput 178–183

23. Khoo MBC (2004) Designs of runs rules schemes. Qual Eng 16(1):
27–43

24. Klein M (2000) Two alternatives to the Shewhart X control chart. J
Qual Technol 32:427–431

25. Mahmoudi AH, Nourbakhsh S, Amali R (2012) An alternative
approach to determine material characteristics using spherical inden-
tation and neural networks for bulk metals. J Test Eval 40(2):211–
219

26. Matchenko SN, Dube MP (2006) Bootstrap inference with neural-
network modeling for gene-disease association testing.
Computational Intelligence and Bioinformatics and Computational
Biology. 1–7

27. Mohanty JR, Verma BB, Ray PK, Parhi DRK (2010) Application of
artificial neural network for fatigue life prediction under interspersed
mode-I spike overload. J Test Eval 38(2):177–187

28. Muammer N, Hasan G, Ihsan T (2007) Comparison of regression and
artificial neural network for surface roughness with the cutting pa-
rameter in Cnc turning. Modeling and Simulation Engineering,
Article ID 92717

326 Int J Adv Manuf Technol (2015) 76:311–327

http://dx.doi.org/10.1080/02533839.02532013.02781794
http://dx.doi.org/10.1080/02533839.02532013.02781794


29. Natarajan C, Muthu S, Karuppuswamy P (2011) Investigation of
cutting parameters of surface roughness for a non-ferrous material
using artificial neural network in Cnc turning. J Mech Eng Res 3(1):
1–14

30. Ning X, Wu C (2011) Improved design of quantile-based control
charts. J Chin Inst Ind Eng 28(7):504–511

31. Ou YJ, Wu Z, Goh TN (2011) A new SPRT chart for monitoring
process mean and variance. Int J Prod Econ 132(2):303–314

32. Ou YJ, Wu Z, Tsung F (2012) A comparison study of effectiveness
and robustness of control charts for monitoring process mean. Int J
Prod Econ 135(1):479–490

33. PerryM, Pignatiello JJ Jr (2002) A review of artificial neural network
applications in control chart pattern recognition. In: Proceedings of
the Industrial Engineering Research Conference, Orlando, FL

34. Perry MB, Spoerre JK, Velasco T (2001) Control chart pattern
recognition using back propagation artificial neural networks. Int J
Prod Res 39(15):3399–3418

35. Pugh GA (1991) A comparison of neural networks to SPC charts.
Comput Ind Eng 21:253–255

36. Raviv Y, Intrator N (2010) Bootstrapping with noise: an effective
regularization technique. Connect Sci 8:355–372

37. Riaz M, Saghir A (2009) A mean deviation-based approach to
monitor process variability. J Stat Comput Simul 79:1173–1193

38. RiazM, Abbas N, Does RJMM (2011) Improving the performance of
Cusum charts. Qual Reliab Eng Int 27(4):415–424

39. Riaz M, Mehmood R, Does RJMM (2011) On the performance of
different control charting rules. Qual Reliab Eng Int 27(8):1059–
1067

40. Rowley HA, Baluja S, Kanade T (1998) Neural network based face
detection. Pattern Anal Mach Intell 20(1):23–38

41. Ryu JH,Wan H, Kim S (2010) Optimal design of a Cusum chart for a
mean shift of unknown size. J Qual Technol 42(3):311–326

42. Sagiroglu S, Besdok E, Erler M (2000) Control chart pattern recog-
nition using artificial neural networks. Turk J Electr Eng 8:137–147

43. Shaban A, ShalabyM,Abdelhafiez E, Youssef AS (2010)Automated
identification of basic control charts patterns using neural networks. J
Softw Eng Appl 3:208–220

44. Sigut J, Piñeiro J, Est vez J, Toledo P (2006) A neural network
approach to normality test. Intell Data Anal 10:509–519

45. Smith AE (1994) X-bar and R control charts interpretation using
neural computing. Int J Prod Res 32:309–320

46. Velasco T, Rowe MR (1993) Back propagation artificial neural
networks for the analysis of quality control charts. Comput Ind Eng
25(1–4):397–400

47. Western Electric Company (1956) Statistical quality control hand-
book. Indianapolis

48. Wu Z, Jiao JX, Yang M, Liu Y, Wang ZJ (2009) An enhanced
adaptive Cusum control chart. IIE Trans 41(7):642–653

49. Zhang S, Wu Z (2006) Monitoring the process mean and variance by
the WLC scheme with variable sampling intervals. IIE Trans 38(4):
377–387

50. Zhao Y, Tsun F, Wang Z (2005) Dual Cusum control schemes for
detecting a range of mean shifts. IIE Trans 37(11):1047–1057

51. Zio E (2006) A study of the bootstrap method for estimating the
accuracy of artificial neural networks in predicting nuclear transient
processes. Nucl Sci 53(3):1460–1478

Int J Adv Manuf Technol (2015) 76:311–327 327



Copyright of International Journal of Advanced Manufacturing Technology is the property of
Springer Science & Business Media B.V. and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.


	On artificial neural networking-based process monitoring under bootstrapping using runs rules schemes
	Abstract
	Introduction
	Artificial neural networking approach
	Runs rules-based ANN

	Performance measures and comparisons
	Comparisons for mean-based ANN schemes
	Comparisons for median-based ANN (modified) schemes

	An example and application with real date set
	Conclusions and recommendations
	References


