
32 communicationS of the acm | OcTOber 2010 | VOL. 53 | nO. 10

practice

P
h

o
t

o
g

r
a

P
h

 b
y

 r
i

c
h

a
r

d
 M

o
r

t
g

e
n

s
t

e
i

n

Over the PASt two decades, Adobe Photoshop
has become the de facto image-editing software
for digital photography enthusiasts, artists, and
graphic designers worldwide. Part of its widespread
appeal has to do with a user interface that makes
it fairly straightforward to apply some extremely
sophisticated image editing and filtering techniques.
Behind that façade, however, stands a lot of complex,
computationally demanding code. To improve the
performance of these computations, Photoshop’s
designers became early adopters of parallelism—in
the mid-1990s—through efforts to access the extra
power offered by the cutting-edge desktop systems
of the day that were powered by either two or four
processors. At the time, Photoshop was one of the

only consumer desktop applications to
offer such a capability.

Photoshop’s parallelism, born in the
era of specialized expansion cards, has
managed to scale well for the two- and
four-core machines that have emerged
over the past decade. As Photoshop’s
engineers prepare for the eight- and 16-
core machines that are coming, howev-
er, they have started to encounter more
and more scaling problems, primarily a
result of the effects of Amdahl’s Law and
memory-bandwidth limitations.

In this ACM Case Study, Adobe Pho-
toshop principal scientist Russell Wil-
liams speaks with Clem Cole, architect
of Intel’s Cluster Ready program, about
how the Photoshop team is addressing
these challenges. Although in their cur-
rent positions they represent different
aspects of the parallel-computing land-
scape, both have long histories of tack-
ling parallelism at the operating-system
level.

Prior to joining the Photoshop de-
velopment team, Williams had a long
career as an operating-system designer
at companies such as Apple, where he
worked on the Copland microkernel,
and Elxsi, where he helped develop
mini-supercomputers. The diversity
of that background now allows him to
maintain a well-rounded perspective
on parallelism at different levels of the
stack.

Cole is a veteran operating-system
developer with years of experience in
Unix kernel and tool development. His
current efforts to advance methods that
take advantage of multiple processors—
using Intel’s next generation of multi-
core chips—makes him a fitting inter-
viewer for Williams, whose work in large
part builds on top of the platforms Cole
helps to create at Intel.

While Photoshop comes with a
unique set of problems and constraints,
many of the engineering challenges it
presents will undoubtedly seem familiar
to any software engineer who has ever
attempted to achieve parallelism in an
application. Still, to get a handle on the
issues Photoshop’s engineers are facing
today, we must first consider the appli-

Doi:10.1145/1831407.1831423

 Article development led by
 queue.acm.org

Clem Cole and Russell Williams discuss
Photoshop’s long history with parallelism,
and what is now seen as the chief challenge.

acm caSe StuDY

Photoshop
Scalability:
Keeping it
Simple

OcTOber 2010 | VOL. 53 | nO. 10 | communicationS of the acm 33

clem cole (left) and Russell Williams

34 communicationS of the acm | OcTOber 2010 | VOL. 53 | nO. 10

practice

cation’s history with parallelism over
the past 15 years.

coLe: You’ve been writing software for
a long time, and for the past 11 years
you’ve been working with Photoshop
and have become increasingly engaged
with its parallel aspects. Which parts of
that have proved to be easy and what has
turned out to be surprisingly hard?

WiLLiamS: The easy part is that Pho-
toshop has actually had quite a bit of
parallelism for a long time. At a very sim-
plistic level, it had some worker threads
to handle stuff like asynchronous cursor
tracking while also managing asynchro-
nous I/O on another thread. Making
that sort of thing work has been pretty
straightforward because the problem
is so simple. There’s little data shared
across that boundary, and the goal is not
to get compute scaling; it’s just to get an
asynchronous task going.

I should note, however, that even
with that incredibly simple task of queu-
ing disk I/O requests so they could be
handled asynchronously by another
thread, the single longest-lived bug I
know of in Photoshop ended up being
nestled in that code. It hid out in there
for about 10 years. We would turn on
the asynchronous I/O and end up hit-
ting that bug. We would search for it for
weeks, but then just have to give up and
ship the app without the asynchronous
I/O being turned on. Every couple of
versions we would turn it back on so we
could set off looking for the bug again.

coLe: I think it was Butler Lampson
who said the wonderful thing about se-
rial machines is you can halt them and
look at everything. When we’re working
in parallel, there’s always something
else going on, so the concept of stop-
ping everything to examine it is really
hard. I’m actually not shocked your bug
was able to hide in the I/O system for
that long.

WiLLiamS: It turned out to be a very
simple problem. Like so many other
aspects of Photoshop, it had to do with
the fact that the app was written first for
the Macintosh and then moved over to
Windows. On the Macintosh, the set file
position call is atomic—a single call—
whereas on Windows, it’s a pair of calls.
The person who put that in there didn’t
think about the fact that the pair of calls
has to be made atomic whenever you’re
sharing the file position across threads.

coLe: Now, of course, you can look
back and say that’s obvious.

WiLLiamS: In fact, the person who
originally put that bug in the code was
walking down the hallway one of the
many times we set off looking for that
thing, smacked his forehead, and real-
ized what the problem was—10 years
after the fact.

Anyway, the other big area in Pho-
toshop where we’ve had success with
parallelism involves the basic image-
processing routines. Whenever you run
a filter or an adjustment inside Photo-
shop, it’s broken down into a number
of basic image-processing operations,
and those are implemented in a library
that’s accessed through a jump table.
Early on, that allowed us to ship acceler-
ated versions of these “bottleneck rou-
tines,” as they’re called. In the 1990s,
when companies were selling dedicated
DSP (digital signal processor) cards for
accelerating Photoshop, we could patch
those bottlenecks, execute our routine
on the accelerator card, and then return
control to the 68KB processor.

That gave us an excellent opportu-
nity to put parallelism into the app in a
way that didn’t complicate the imple-
mentations for our bottleneck-routine
algorithms. When one of those routines
was called, it would be passed a point-
er—or two or three pointers—to bytes
in memory. It couldn’t access Photo-
shop’s software-based virtual memory
and it couldn’t call the operating sys-
tem; it was just a math routine down at
the bottom. That gave us a very simple
way—prior to getting down to the math
routine—of inserting something that
would slice up the piece of memory we
wanted to process across multiple CPUs
and then hand separate chunks of that
off to threads on each CPU.

coLe: The key there is you had an
object that could be broken apart into
smaller objects without the upper-level
piece needing to worry about it. It also
helps that you had a nice, clean place to
make that split.

WiLLiamS: The other nice aspect is that
the thing on the bottom didn’t need to
know about synchronization. It was still
nothing more than a math routine that
was being passed a source pointer—or
maybe a couple of source pointers and
counts—along with a destination point-
er. All the synchronization lived in that
multiprocessor plug-in that inserted

itself into the jump table for the bottle-
neck routines. That architecture was put
into Photoshop in about 1994. It allowed
us to take advantage of Windows NT’s
symmetric multiprocessing architec-
ture for either two or four CPUs, which
was what you could get at the time on a
very high-end machine. It also allowed
us to take advantage of the DayStar mul-
tiprocessing API on the Macintosh. You
could buy multiprocessor machines
from DayStar Digital in the mid- to late-
1990s that the rest of the Mac operating
system had no way of taking advantage
of—but Photoshop could.

Photoshop has well over a decade of
using multiple processors to perform
the fundamental image-processing
work it does on pixels. That has scaled
pretty well over the number of CPUs
people have typically been able to obtain
in a system over the past decade—which
is to say either two or four processors.
Essentially, no synchronization bugs
ended up surfacing in those systems
over all that time.

coLe: That’s an amazing statement!
Is there an insight associated with that
that you can share? What do you think
the rest of us can learn from that?

WiLLiamS: I think the big win came
from not having to write synchroniza-
tion for the processing routines that
were to be parallelized. In other words,
people could write convolution kernels
or whatever else it was they needed to
do in terms of pixel processing without
having to worry about getting all those
synchronization issues right. If acquir-
ing one asynch I/O thread was all it took
for us to introduce a bug that managed
to elude us for 10 years, then it’s clear
that minimizing synchronization issues
is very important.

That said, the way synchronization
was approached 10 years ago involved
the use of far more error-prone synchro-
nization primitives than what we’ve got
available to us today. Things like “enter
critical section” and “leave critical sec-
tion” on Windows could be really fast,
but they were also very error prone. Try-
ing to keep track of whether you’ve put
critical sections every place you might
need them, and whether or not you’ve
remembered to leave as many times as
you entered, that can all tend to be very
difficult and error prone.

The nettlesome bug that managed to re-

practice

OcTOber 2010 | VOL. 53 | nO. 10 | communicationS of the acm 35

main obscured within Photoshop’s syn-
chronization code for 10 years serves to
illustrate just how tricky parallel pro-
gramming can be. But it also highlights
how much progress has been made in
terms of improved resources for man-
aging some of this complexity. Had Pho-
toshop’s synchronization been written
today using C++’s stack-based locking,
for example, it’s unlikely a bug of that
sort would have been introduced. As
processors get more cores and grow in
complexity, the need will only intensify
for new tools and better programming
primitives for hiding the complexity
from developers and allowing them to
code at higher levels of abstraction.

At the same time, software archi-
tects also need to keep an eye on some
other fundamental issues. For example,
despite using less-sophisticated syn-
chronization primitives in the original
design, the Photoshop team was able
to essentially forget about complex
thread-synchronization problems, in
part because the image-processing
problem itself was so amenable to par-
allelization. Also, however, Photoshop’s
architecture made it possible to estab-
lish some very clean object boundaries,
which in turn made it easy for program-
mers to slice up objects and spread the
resulting pieces across multiple proces-
sors. Indeed, the architects of Photo-
shop were keenly aware of where their
best opportunities for parallelization
existed, and they designed the applica-
tion accordingly.

Generalizing on this, it’s clear that—
with or without advances in tools and
programming abstractions—in order
for developers to fully leverage the mul-
ticore architectures that are coming,
they’ll need to be adept at identifying
those parts of a program that can ben-
efit most from parallelization. It’s in
these portions of the code that new
tools, techniques, and parallel pro-
gramming abstractions are likely to
have the greatest impact.

coLe: As operating-system designers, we
both grew up in a world where we had
to deal with parallelism. It’s not always
clear that the solutions we came up with
for our operating systems proved to be
the right ones. In an earlier conversa-
tion, you mentioned your experience
with creating and removing mutexes.
We’ve gotten smarter over the years.

We’ve learned how to do things that are
more efficient, but that doesn’t mean it
has gotten any easier. What do we have
up our sleeves to make it easier?

WiLLiamS: Parallelism remains diffi-
cult in a couple of ways. It’s one thing
to ask for a new Photoshop filter for
processing a grid of pixels to do that in
parallel. It’s quite another thing to say,
“I’m going to parallelize and thus speed
up the way that Photoshop runs JavaS-
cript actions.” For example, I’ve got a
JavaScript routine that opens 50 files
one after the other and then performs a
set of 50 steps on each one. I don’t have
control over that script. My job is just to
make that—or any other script the user
has to run—faster.

I could say, “Rewrite all your scripts
so we can design a completely new in-
terface that will let you specify that all
these images are to be processed in par-
allel.” That’s one answer, but it would
require a lot of work on the user’s part,
as well as on our part. And it would still
leave us with the problems associated
with parallelizing the opening of an
image, parsing the image contents, in-
terpreting the JavaScript, running the
key command object through the ap-
plication framework, and updating the
user interface—all of which typically is
tied into an app framework and thus
involves calling some horrendously se-
quential script interpreter. Once you
start looking at the Amdahl’s Law num-
bers on something like that, it soon be-
comes apparent that trying to get that
to parallelize eight ways would just be
completely hopeless.

At the other end of the spectrum you
might find, for example, a mathemati-
cal algorithm that conceptually lends
itself to parallelism simply because it
has a bunch of data structures it needs
to share. So how hard would it be to cor-
rectly implement that mathematically
parallelizable algorithm?

I think we’ve made some incremen-
tal gains in our ability to deal with par-
allelism over the past 20 years, just as
we’ve made stepwise progress on all
other programming fronts. Remember
that back in the 1970s, there was a lot of
talk about the “software crisis,” regard-
ing how software was getting more and
more complicated, to the point where
we couldn’t manage the bugs anymore.
Well, in response to that, there was no
huge breakthrough in software produc-

RuSSeLL WiLLiamS

i think we’ve made
some incremental
gains in our ability
to deal with
parallelism over
the past 20 years,
just as we’ve
made stepwise
progress on all
other programming
fronts.

36 communicationS of the acm | OcTOber 2010 | VOL. 53 | nO. 10

practice

tivity, but we did realize a bunch of in-
cremental gains from object-oriented
programming, improved integrated
development environments, and the
emergence of better symbolic debug-
ging and checker tools that looked for
memory leaks. All of that has helped us
incrementally improve our productivity
and increase our ability to manage com-
plexity.

I think we’re seeing much the same
thing happen with parallelism. That
is, whereas the earliest Photoshop syn-
chronization code was written in terms
of “enter critical section, leave critical
section,” we now have tools such as
Boost threads and OpenGL, which es-
sentially are programming languages,
to help us deal with those problems. If
you look at Pixel Bender [the Adobe li-
brary for expressing the parallel compu-
tations that can be run on GPUs], you’ll
find it’s at a much higher level and so
requires much less synchronization
work of the person who’s coding the al-
gorithm.

coLe: The key is that you try to go to a
higher level each time so you have less
and less of the detail to deal with. If we
can automate more of what happens
below that, we’ll manage to become
more efficient. You also mentioned that
we have better tools now than we did be-
fore. Does that suggest we’ll need even
better tools to take our next step? If so,
what are we missing?

WiLLiamS: Debugging multithreaded
programs at all remains really hard.
Debugging GPU-based programming,
whether in OpenGL or OpenCL, is still
in the Stone Age. In some cases you run
it and your system blue-screens, and
then you try to figure out what just hap-
pened.

coLe: That much we’re aware of.
We’ve tried to build stronger libraries so
that programmers don’t have to worry
about a lot of the low-level things any-
more. We’re also creating better librar-
ies of primitives, such as open source
TBB (Threading Building Blocks). Do
you see those as the kinds of things de-
velopers are looking to suppliers and
the research community for?

WiLLiamS: Those things are absolutely
a huge help. We’re taking a long hard
look at TBB right now. Cross-platform
tools are also essential. When some-
body comes out with something that’s
Windows only, that’s a nonstarter for

us—unless there is an exact-equivalent
technology on the Mac side as well. The
creation of cross-platform tools such as
Boost or TBB is hugely important to us.

The more we can hide under more
library layers, the better off we are.
The one thing that ends up limiting
the benefit of those libraries, though,
is Amdahl’s Law. For example, say that
as part of some operation we need to
transform the image into the frequency
domain. There’s a parallel implementa-
tion of FFT (Fast Fourier Transform) we
can just call, and maybe we even have a
library on top of that to decide whether
or not it makes any sense to ship that
all down to the GPU to do a GPU im-
plementation of FFT before sending
it back. But that’s just one step in our
algorithm. Maybe there’s a parallel li-
brary for the next step, but getting from
the FFT step to the step where we call
the parallel library is going to require
some messing around. It’s with all that
inter-step setup that Amdahl’s Law just
kills you. Even if you’re spending only
10% of your time doing that stuff, that
can be enough to keep you from scaling
beyond 10 processors.

Still, the library approach is fabu-
lous, and every parallel library imple-
mentation of common algorithms we
can lay our hands on is greatly appreci-
ated. Like many of the techniques we
have available to us today, however, it
starts to run out of steam at about eight
to 16 processors. That doesn’t mean
it isn’t worth doing. We’re definitely
headed down the library path ourselves
because it’s the only thing we can even
imagine working if we’re to scale to
eight to 16 processors.

For the engineers on the Photoshop
development team, the scaling limita-
tions imposed by Amdahl’s Law have
become all too familiar over the past
few years. Although the application’s
current parallelism scheme has scaled
well over two- and four-processor sys-
tems, experiments with systems featur-
ing eight or more processors indicate
performance improvements that are far
less encouraging. That’s partly because
as the number of cores increases, the
image chunks being processed, called
tiles, end up getting sliced into a greater
number of smaller pieces, resulting in
increased synchronization overhead.
Another issue is that in between each

cLem coLe

Locking your data
structures is truly
only the beginning.
the new tuning
problem is going to
be a real nightmare.

practice

OcTOber 2010 | VOL. 53 | nO. 10 | communicationS of the acm 37

of the steps that process the image data
in parallelizable chunks, there are se-
quential bookkeeping steps. Because
of all this, Amdahl’s Law quickly trans-
forms into Amdahl’s wall.

Photoshop’s engineers tried to miti-
gate these effects by increasing the tile
size, which in turn made each of the
sub-pieces larger. This helped to re-
duce the synchronization overhead,
but it presented the developers with yet
another parallel-computing bugaboo:
memory-bandwidth limitations. Com-
pounding the problem was the fact that
Photoshop cannot interrupt pixel-pro-
cessing operations until an entire tile is
complete. So to go too far down the path
of increasing tile sizes would surely re-
sult in latency issues, as the application
would become unable to respond to
user input until it had finished process-
ing an entire tile.

Although Williams remains confi-
dent his team can continue to improve
Photoshop’s scaling in the near future
through the use of better tools, librar-
ies, and incremental changes to the
current approach to parallel process-
ing, eventually those techniques will
run out of steam. This means the time
has come to start thinking about mi-
grating the application to a different
approach altogether that involves new
parallel methods and the increased use
of GPUs.

coLe: I think you already have some in-
teresting ways of splitting things apart
for image processing, but for your base
application, have you considered other
programming paradigms, such as MPI
(message passing interface)?

WiLLiamS: No, we haven’t because
we’ve been occupied with moving from
the four-core world to the eight- to 16-
core world, and what we see is that Pho-
toshop is just going to be stuck in that
world for the next few years. Another
reason we haven’t looked all that seri-
ously at changing to a message-passing-
style interface is that it would require
such a huge re-architecture effort and
it’s not at all clear what the win would
be for us there.

coLe: The reason I ask is that Intel
is obviously looking to enable as many
cores in a box as possible, and you men-
tioned you had previously had prob-
lems with memory bandwidth. That’s
part of the reason why another division

of Intel has become interested in the
NUMA (non-uniform memory architec-
ture) way of putting things together. I
certainly feel we’re going to have appli-
cations that have both threadish parts
and heavily parallel parts, and we’re go-
ing to see the processors inside of work-
stations become more cluster-like in
many ways. We may not necessarily go
off-chip or out of the box, but we’re go-
ing to break memory up somehow. And
we’re going to have to do lots of other
things to give back some memory band-
width just because that’s going to have a
huge impact for somebody like you.

WiLLiamS: This comes up in a num-
ber of different ways. We get asked a lot
about how we’re going to handle some-
thing like Larrabee [the engineering
chip for Intel’s MIC—Many Integrated
Cores—architecture]. The answer is:
basically nothing for now. The reason
is that any of these future architectures
that promise to solve some particular
parallelism problem or some particular
part of the performance problem are all
kind of speculative at this point. Photo-
shop, on the other hand, is a mass-mar-
ket application. So, unless we are fairly
certain there are going to be millions
of one of these platforms out there, we
can’t afford to bet our software’s archi-
tectural direction on that. Right now, we
don’t see desktop architectures moving
beyond the mild and cache-coherent
form of NUMA we see today.

As a rule, we avoid writing large
amounts of processor-specific or man-
ufacturer-specific code, although we do
some targeted performance tuning. For
us, life will start to get interesting once
we can use libraries such as OpenGL,
OpenCL, and Adobe’s Pixel Bender—or
any higher-level libraries that take ad-
vantage of these libraries—to get access
to all that GPU power in a more general
way.

We’ve also been looking at the
change Intel’s Nehalem architecture
presents in this area. On all previous
multicore CPUs, a single thread could
soak up essentially all of the memory
bandwidth. Given that many of our
low-level operations are memory-band-
width limited, threading them would
have only added overhead. Our experi-
ence with other multicore CPUs is that
they become bandwidth limited with
only a couple of threads running, so
parallel speedups are limited by mem-

ory bandwidth rather than by Amdahl’s
Law or the nature of the algorithm.
With Nehalem, each processor core is
limited to a fraction of the chip’s total
memory bandwidth, so even a large
memcpy can be sped up tremendously
by being multithreaded.

coLe: I actually was just trying to
make more of an architectural state-
ment than anything. Rest assured,
you’re going to see just as many cores
as we can possibly get in there, but at a
certain point, what I refer to as “conser-
vation of memory bandwidth” starts to
become the big trade-off; that’s when
other architectural tricks are going
to have to be used that will have some
software impact. The question is, if
you can’t fire a gun and get everybody
to change software overnight, at what
point does it become economically in-
teresting for a company such as Adobe
to say, “OK, if I know I’m going to have
to deal with a cluster in a box, I’ve got
to slowly start moving my base so I’ll be
able to do that”?

WiLLiamS: I suspect we’ll end up see-
ing the same progression we saw with
SMP. That is, the hardware and operat-
ing-system support will be introduced
such that these platforms will be able
to run multiple programs, or multiple
instances of programs, not yet modi-
fied to take advantage of the new archi-
tecture. This has already proved to be
true with SMP and GPU use. There will
be some small handful of applications
that will absolutely depend on being
able to leverage the brand-new capa-
bility right away—as was the case with
video games and 3D rendering applica-
tions and their need to take advantage
of GPUs as soon as possible. The bulk
of applications, however, will not start
to take significant advantage of new ar-
chitectures until: (a) there’s an installed
base; (b) there’s software support; and
(c) there’s a clear direction for where
things are heading.

I assume the NUMA and MPI stuff
is at the research-lab level at this junc-
ture. And even though the MIC chip is
on its way, it’s still unclear to us what
the programming API will be other than
OpenGL and DirectX.

Now, just to throw a question back at
you: what do you see the progression be-
ing in terms of how the programming
API and operating-system support is
going to be rolled out, since people like

38 communicationS of the acm | OcTOber 2010 | VOL. 53 | nO. 10

practice

me are going to need that if we’re to
take advantage of these kinds of archi-
tectural innovations?

coLe: As we develop specialty hard-
ware, be it GPUs or network engines,
the machine is becoming essentially
a federation of processing elements
designed to handle specific tasks. The
graphics processor was highly tuned
for doing its job of displaying pixels and
performing certain mathematical func-
tions that are important to the graphics
guys and the gamers. Then other people
came along and said, “Hey, I want to be
able to do those same functions. Can I
get at them?” That’s when engineers
like me in the operating-systems world
start scratching our heads and saying,
“Yeah, well, I suppose we could expose
that.”

But I wonder if that’s what you re-
ally want. My experience has been that
every time we’ve had a specialty engine
like that and we’ve tried to feed it to the
world, you may have been able to write
an application library as you did with
Photoshop that was able to call some
graphics card, but that typically lived for
only a couple of generations. That is, it
proved to be cost-effective for only that
one particular application. So I think
the GPU will continue to get smarter
and smarter, but it will retain its focus
as a graphics engine just the same.
That’s really where it’s going to be most
cost-effective.

The rest of the box needs to be more
general, maybe with a bunch of spe-
cialty execution engines around it that
you’re able to call up and easily exploit.
Then the question becomes: how can
the operating system make all those en-
gines available?

Having been one of the early micro-
kernel guys, I smiled when I learned
about the early microkernel work you
were doing. Many of us in the operating-
system community have thought that
would be the right way to go.

WiLLiamS: Elxsi was a message-based
operating system. It was similar to the
GNU Hurd of independent processes
in that it talked via messages. One of
the things that really hit us hard and is
showing up today with GPUs in a differ-
ent context—and, in fact, was the very
first thing I thought of when I started
looking at NUMA—is that message-
based operations are horrendously ex-
pensive relative to everything else you

do. This is something the video apps
have run into as well. They went down
this path of doing a rendering graph to
represent the stack of effects you had
on your video frames, and then they
would go down and start rendering and
compositing those things. As soon as
they got to anything they could do on
the GPU, they would send it down there
to get processed, and then they would
work on it until they hit a node in the
compositing stack graph that couldn’t
be handled on the GPU, at which point
they would suck it back into the CPU.

What they found was that even with
the fastest-bandwidth cards on the fast-
est-bandwidth interfaces, one trip was
all you got. Anything beyond that meant
you would have been better off just stay-
ing on the CPU in the first place. When
you start moving data around, the band-
width consumption associated with
that can quickly overwhelm the cost of
doing the computation. But the GPU
vendors are continually improving this.

coLe: That’s part of why I asked about
MPI. I come back to that now only be-
cause it seems to be today’s popular
answer. I’m not saying it is the answer;
it’s just a way of trying to control what
has to get shifted and when and how to
partition the data so you can write code
that will be able to exploit these execu-
tion units without having to move lots
of data around.

This is why companies such as Intel
are exploring interfaces such as RDMA
(remote direct memory access), which
is something you find inside of IB (In-
finiBand). About a year ago, Intel pur-
chased one of the original iWARP (Inter-
net Wide Area RDMA Protocol) vendors,
and the company is also heavily com-
mitted to the OpenFabrics Alliance’s
OFED (OpenFabrics Enterprise Distri-
bution) implementations, so we’re now
exposing that same RDMA interface
you find with InfiniBand in both Ether-
net form and IB. I certainly think that
kind of hardware is going to start show-
ing up inside the base CPU and will be-
come available to you as you try to move
those objects around. So you’re going to
have computational resources and data
movement resources, and the process-
ing power will become the federation of
all that stuff underneath.

That means the operating system
has got to change. And I think you’re
right: what will happen then is that the

apps will become richer and will be able
to exploit some of those pieces in the
hardware base, provided that the op-
erating system exposes it. That’s also
when you guys at Adobe will want to
start exploiting that, since you’ll have
customers who already have machines
with those capabilities built in.

WiLLiamS: When we started to look at
NUMA, we ran into some issues with
predictability. Ideally, on a big NUMA
system, you would want your image to
be spread evenly across all the nodes
so that when you did an operation, you
would be able to fire up each CPU to
process its part of the image without
having to move things around.

What actually happens, however, is
that you’ve got a stack of images from
which somebody makes a selection,
and maybe selects some circle or an
area from a central portion of the image
containing pixels that live on three out
of your 10 nodes. In order to distribute
the computation the user then invokes
on that selection, you now have to copy
those things off to all 10 nodes. You
quickly get to a point where your data
is fragmented all over the place, and
any particular selection or operation is
unlikely to get nicely distributed across
the NUMA nodes. Then you pay a huge
cost to redistribute it all as part of start-
ing up your operation. This, along with
the more general issue of bandwidth
management, is going to prove to be an
even harder parallelism problem than
the already well-documented problem
people have with correctly locking their
data structures.

coLe: Yes, we’re in violent agreement
on that score. Locking your data struc-
tures is truly only the beginning. The
new tuning problem is going to be exact-
ly the nightmare you just described.

 Related articles
 on queue.acm.org

Real-World Concurrency
Bryan Cantrill, Jeff Bonwick
http://queue.acm.org/detail.cfm?id=1454462

A Conversation with John hennessy
and David Patterson
http://queue.acm.org/detail.cfm?id=1189286

Software and the Concurrency Revolution
Herb Sutter, James Larus
http://queue.acm.org/detail.cfm?id=1095421

© 2010 acM 0001-0782/10/1000 $10.00

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

