
Noise reduction, smoothing and time interval
segmentation of noisy signals using an energy
optimisation method

S. Mahmoodi and B.S. Sharif

Abstract: Noise reduction and time interval segmentation of a noise-contaminated piecewise
continuous signal is considered by the authors as a non-linear optimisation problem. The math-
ematical framework of this method is presented both in continuous-time and discrete-time
domains. The smoothed signal and segmented time intervals of the original noisy signal are
calculated as an optimised solution for an energy functional. An algorithm similar to the
level set method is developed to find the optimised solution. In this algorithm, the discontinu-
ity points separating consecutive continuous signals are preserved while the noise is reduced.
Therefore this method fundamentally exhibits a better performance compared with a traditional
low-pass filter suppressing high frequency components, including discontinuity points. The
results also demonstrate a better quality in noise reduction in comparison to the median and
Gaussian filters.
1 Introduction

The purpose of this paper is to introduce a new method
based on energy optimisation in signal processing for
noise reduction and signal smoothing. Similar methods
have long been developed and used in image processing
and computer vision [1–7]. Image restoration, also known
as the ‘inverse problem’, was developed by Rudin et al. [7]
as an optimisation method based on the concept of total
variation. In another development within computer vision,
a method known as the ‘snake’ algorithm was introduced
for object segmentation in images by Kass et al. [2] and
was further developed as the Geodesic Active Contours
Model and the Level-Set Method [8–12]. Alternatively, a
non-linear functional was proposed by Mumford and Shah
[1] and later implemented by others [4, 5, 13] to simul-
taneously segment and denoise images contaminated with
noise. However, Mumford and Shah’s model has only
been developed for optimisation problems in computer
vision and it is inappropriate for signals because of the
fact that in their model, a contour whose length is mini-
mised is assumed to represent the discontinuity surrounding
objects in an image. This contour representation for discon-
tinuities in images should be replaced by single points in
signals. A novel method is therefore introduced in this
paper to model signals as piecewise continuous functions
for noise reduction and smoothing purposes based on the
energy optimisation. A similar modelling approach for
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signals is proposed in [14–18] in which discontinuities
are initially detected using (pseudo-) spectral methods
based on Fourier and Legendre series [14, 15]. The objec-
tive of this spectral method is then to recover the segmented
signals from artefacts introduced by the Gibbs phenomenon,
by using the Gegenbauer reconstruction algorithm [16–18],
whereas in our case, noise reduction of the segmented
signals is the main aim of the proposed method.
Furthermore in our approach, segmentation and noise
reduction are achieved simultaneously in contrast to the
spectral method, where segmentation and reconstruction
are performed separately. The difficulty of investigating
the non-linear functional considered in this paper is the
lack of differentiability in discontinuities. Hence, Euler–
Lagrange equations cannot be employed in this optimisation
problem.

A signal g(t) is considered as a timed sequence of separ-
ate continuous signals that are subject to channel noise and
degradation. g(t) can be approximated as a piecewise con-
tinuous function f (t) consisting of time series of at least
class C2 functions fi(t) over a time interval (ti21, ti).
These continuous functions fi (t) are optimal solutions of
the following energy functional

Eð f ; SÞ ¼
1

2

X
i

ðti
ti�1

ð fiðtÞ � gðtÞÞ2 þ m
dfiðtÞ

dt

� �2
" #

SiðtÞ dt

ð1Þ

where E( f, S) is the energy functional to be optimised, fi(t)
the smoothed function approximating g(t) over the time
interval (ti21, ti), m the non-negative parameter, Si(t) the
segmented time interval, which is a rectangular window
function in the time domain and can be defined as follows

SiðtÞ ¼
1 ti�1 , t , ti
0 otherwise

�
ð2Þ

In (1), the first term, ( fi(t)2 g(t))2, is a data fidelity term
whose minimisation indicates that fi(t) approximates g(t).
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The minimisation of the second term, which is a smoothing
term, guarantees a differentiable and smoother function fi(t)
than the original signal g(t). Finally, Si(t) implies that this
approximation is only performed for fi(t) over the time
interval (ti21, ti) where there is no discontinuity in g(t). In
fact, it is demonstrated in this paper that Si(t) functions,
which correspond to the intervals over which g(t) is con-
tinuous, minimise functional (1). The objective of this
paper is to find functions fi(t) and Si(t) over each time inter-
val i as the best solution minimising the energy functional
E( f, S) described in (1).

2 Optimisation of energy functional

2.1 Continuous-time signals

A pair of functions, fi(t) and Si(t), is required to optimise the
energy functional in (1) for each time segment i. As Si(t) is a
rectangular window function in the time domain, its general
form is known and it can therefore be determined by speci-
fying the time interval (ti21, ti) minimising the energy
functional. fi(t) is assumed to be a continuous function
with continuous first derivative over the time interval
(ti21, ti). Methods of calculus of variations are used in
this section to derive the differential equations leading to
solutions fi(t) and Si(t) [19, 20].
We initially consider an arbitrary time interval (ti21, ti)

and find the solutions fi(t) and Si(t) to optimise energy func-
tional (1). These solutions can then be applied to any time
interval in (1). In the time interval (ti21, ti), the energy func-
tional Ei( fi, Si) is considered as

Eið fi; SiÞ ¼
1

2

ðti
ti�1

ð fiðtÞ � gðtÞÞ2 þ m
dfi

dt

� �2
" #

SiðtÞ dt ð3Þ

Si(t) is initially considered fixed and fi(t) is varied. In
this case, functional (3) is convex and therefore its
minimiser fi(t) exists [20]. Equation (3) can therefore be
rewritten as

Eið fi; SiÞ ¼
1

2

ðti
ti�1

ð fiðtÞ � gðtÞÞ2 þ m
dfi

dt

� �2
" #

dt ð4Þ

Let dfi represent a class C2 function, then we calculate the
variations of Ei( fi, Si) by varying fi(t) as much as dfi

Eið fi þ md fi; SiÞ � Eið fi; SiÞ

¼
1

2

ðti
ti�1

ð fi þ md fi � gÞ2 þ m
dð fi þ md fiÞ

dt

� �2
" #

dt

 

�

ðti
ti�1

ð fi � gÞ2 þ m
d fi

dt

� �2
" #

dt

!

dEi ¼
1

2

ðti
ti�1

½ð fi þ md fi � gÞ2 � ð fi � gÞ2� dt

�

þm

ðti
ti�1

dð fi þ mdfiÞ

dt

� �2

�
d fi

dt

� �2
" #

dt

!
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dEi ¼
1

2

ðti
ti�1

"
ð2fimdfi þ m2df 2i � 2gmd fiÞ

þ m m2 ddfi

dt

� �2

þ2m
dfi

dt

� �
ddfi

dt

� � !#
dt

dEi

dfi
¼ lim

m!0

dEi

m
¼

ðti
ti�1

ð fi � gÞdfi dt þ m

ðti
ti�1

dfi

dt

� �
ddfi

dt

� �
dt

ð5Þ

Integrating by part and assuming that fi changes only over
the time interval (ti21, ti) and remains fixed at ti21 and ti

dEi

dfi
¼

ðti
ti�1

ð fi � gÞ � m
d2fi

dt2

� �
dfi dt ¼ 0 ð6Þ

As d fi = 0 over the time interval (ti21, ti), in order that (6)
becomes zero with the optimised fi, we should have

m
d2fiðtÞ

dt2
¼ ð fiðtÞ � gÞ; ti�1 , t , ti ð7Þ

The solution to differential equation (7) would optimise the
energy functional (1) over the time interval (ti21, ti). The
time interval (ti21, ti) optimising energy functional (1) can
be specified by varying the time interval and optimising
functional (1) by considering variations of fi. This is
achieved by varying ti and calculating fi variations in a
neighbourhood of ti. The conclusion would then be
applicable to ti21 as well. Fig. 1 shows how fi and fiþ1

change if ti moves to t0i where t0i ¼ ti+ dti.
Let us assume that ti corresponds to a discontinuity and

study the behaviour of f by moving ti backward and
forward as much as dti. This is to say that variations of
f are considered in a neighbourhood (say I) of t0i. We
further define fþ and f2 corresponding to t0i ¼ tiþ dti and
t0i ¼ ti2 dti, respectively, as can be seen in Fig. 1.

f þ ¼

f þi t [ I and t , ti þ dti

f þiþ1 t [ I and t . ti þ dti

unchanged t � I

8>><
>>:

f � ¼

f �i t [ I and t , ti � dti

f �iþ1 t [ I and t . ti � dti

unchanged t � I

8>><
>>:

Fig. 1 Variations of f by varying ti
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Sþ and S2 are defined in a similar fashion. Variations in E
are then calculated as

dEþ ¼ Eþð f ; ti þ dtiÞ � Eð f ; tiÞ

¼
1

2

X
i

ðþ1

0

ð f þ � gÞ2 þ m
df þ

dt

� �2
" #

Sþi ðtÞ dt

�
1

2

X
i

ðþ1

0

ð f � gÞ2 þ m
df

dt

� �2
" #

SiðtÞ dt ð8Þ

dE� ¼ Eð f ; tiÞ � E�ð f ; ti � dtiÞ

¼
1

2

X
i

ðþ1

0

ð f � gÞ2 þ m
df

dt

� �2
" #

SiðtÞ dt

�
1

2

X
i

ðþ1

0

ð f � � gÞ2 þ m
df �

dt

� �2
" #

S�i ðtÞ dt ð9Þ

dE ¼ dEþ þ dE� ¼
1

2

ð
I

ð f þ � gÞ2 þ m
df þ

dt

� �2
" #

dt

�
1

2

ð
I

ð f � � gÞ2 þ m
df �

dt

� �2
" #

dt ð10Þ

In order to optimise the energy functional (1) with respect to
ti, (10) should be set equal to zero, while dti ! 0, that is

dE

dti
¼ ð f þ � gÞ2 þ m

df þ

dt

� �2
" #

� ð f � � gÞ2 þ m
df �

dt

� �2
" #

¼ 0 ð11Þ

In a neighbourhood of the discontinuity, ti satisfying (11)
corresponds to the discontinuity point. This concept has
been used to develop an algorithm for discontinuity detec-
tion in Section 3.
In addition to the first variation, it is also important to

consider the second variation of functional (1) with
respect to ti. Using (8) and (9), the second variation can
be written as

d2E ¼ dEþ � dE� ¼
1

2

ð
I

ð f þ � gÞ2 þ m
df þ

dt

� �2
" #

dt

þ
1

2

ð
I

ð f � � gÞ2 þ m
df �

dt

� �2
" #

dt

�

ð
I

ð f � gÞ2 þ m
df

dt

� �2
" #

dt ð12Þ

where I is the neighbourhood that includes the variations of
f þand f 2.
If the neighbourhood I includes a discontinuity over

which f þ and f 2 are smoothed, then this implies that in
such a neighbourhood, the following properties are
correct: the slope of f þ and f 2 are higher than f and the
terms ( f þ2 g)2 and ( f 22 g)2 are larger than ( f2 g)2, as
shown in Fig. 1. As a result, according to (12), d2E . 0,
which indicates that a discontinuity point is a minimiser
of functional (1). Let us now assume that neighbourhood I
is away from any discontinuity so that in this neighbour-
hood, the original signal g, and hence f and its first
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 2, April 2006
derivative, is continuous. Hence

f þ ¼ f � ¼ f

df þ

dt
¼

df �

dt
¼

df

dt

It is seen from (11) that dE ¼ 0 for a point away from any
discontinuity. Furthermore, according to (12), d2E ¼ 0.
Therefore any point away from any discontinuity is a
saddle point of our functional and is not a solution to the
minimisation problem. To detect discontinuities as minimi-
sers of functional (1), the following minimisation condition
must therefore be met for any point in question [20], that is

dE ¼ 0

d2E . 0

At this stage, it is interesting to examine the behaviour of
(4) and (7) by varying coefficient m. If m ! 0, then the
first term in (4) becomes dominant, implying that fi
follows g(t) and its fluctuations. However if m ! 1, the
first term in (4) can be ignored, and according to (7), fi is
heavily smoothed and therefore approximated as a line. In
Section 3, the implementation of the algorithm based on
(7) and (11) is described to minimise (3). This leads to a
noise removal method, preserving discontinuities that
characterise the noiseless original signal. Before imple-
mentation, the equivalence of (7), (11) and (12) and the
minimisation condition discussed in this section for
discrete-time signals will be derived in Section 2.2.

2.2 Discrete-time signals

In this section, discontinuities in discrete-time signals are
defined based on a threshold-based approach, and hence,
we prove that they are the minimisers of the proposed func-
tional. The formulation based on minimising functional (1)
for continuous-time signals can be demonstrated to be
applicable to discrete-time signals with a few minor
changes.

Functional (1) can be reformulated in discrete time as
follows

Eð f ; SÞ ¼
X
i

X
n

½ð fiðnÞ � gðnÞÞ2

þ mð fiðnÞ � fiðn� 1ÞÞ2�SiðnÞ ð13Þ

Equation (7) can be simply discretised into a second-order
difference equation, that is

mð fiðnþ 1Þ � 2fiðnÞ þ fiðn� 1ÞÞ ¼ fiðnÞ � gðnÞ ð14Þ

where g(n) are the samples from continuous-time signal
g(t), and fi(n) are calculated iteratively using (14).

The concept of discontinuity discussed in Section 2.1 for
continuous-time signals is defined for discrete-time signals,
and an equivalent equation to (11) for discontinuity detec-
tion in discrete signals is derived. To define a discontinuity
in a discrete-time signal g(n) at sample nþ 1, we use

jgðnþ 1Þ � gðnÞj ¼ M . T ð15Þ

where T is the threshold to discriminate between a sample
representing discontinuity and a sample corresponding
to continuity. At sample i where the sampled data are
considered continuous, the following property applies

jgðiÞ � gði� 1Þj ¼ m � T ð16Þ
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Let us first assume that our sampled data are character-
ised by one single discontinuity defined by (15) and (16),
as depicted in Fig. 2

gðnþ 1Þ � gðnÞ ¼ M . T

This can further be generalised to a signal with any number
of discontinuities. Let us assume that the earlier inequality
applies at nþ 1 and n, so that samples nþ 1 and n are
included in the intervals introduced by Si(n) and Siþ1(n)
respectively. If Si(n) and Siþ1(n) are moved forward by
one sampling period, then fi(n) and fiþ1(n) are changed to
fi
þ(n) and fiþ1

þ (n). However f þ would differ from f in a
neighbourhood (say I) of the discontinuity point. Let us
now calculate the variations in the energy term (13)
because of these variations in Si(n) and Siþ1(n)

DEþ ¼
X
n[I

½ð f þðnÞ � gðnÞÞ2 þ mðDf þÞ2�

�
X
n[I

½ð f ðnÞ � gðnÞÞ2 þ mðDf Þ2� ð17Þ

where Df þ ¼ f þ(n)2 f þ(n2 1) and Df ¼ f (n)2 f (n2 1).
It can be proved that in the neighbourhood of a disconti-

nuity, DEþ . 0. To do this, we rewrite (17) as

DEþ ¼
X
n[I

½ð f þðnÞ � gðnÞÞ2 � ð f ðnÞ � gðnÞÞ2�

þ
X
n[I

m½ðDf þÞ2 � ðDf Þ2� ð18Þ

Using the boundary condition at nþ 1, f þ(nþ 1)¼
g(nþ 1), (14) at n can be written as

f þðnÞ ¼
mgðnþ 1Þ þ mf þðn� 1Þ þ gðnÞ

2mþ 1

In contrast, as a boundary condition for f (n), we have

f ðnÞ ¼ gðnÞ

Therefore

f þðnÞ � f ðnÞ ¼
mðgðnþ 1Þ � gðnÞÞ þ mð f þðn� 1Þ � gðnÞÞ

2mþ 1

¼
mðM þ f þðn� 1Þ � gðnÞÞ

2mþ 1

For m . 0, f þ(n)2 f (n) must be positive. Otherwise, for
f þ(n)2 f (n) � 0, it is concluded that f þ(n) � g(n). As
f þ(nþ 1) ¼ g(nþ 1), then

f þðnþ 1Þ � f þðnÞ � gðnþ 1Þ � gðnÞ

The earlier mentioned inequality cannot be true, as the
objective of the functional is to minimise f þ fluctuations
in comparison to g. Therefore

f þðnÞ � f ðnÞ . 0 ð19Þ

Fig. 2 Variations of f(n) by changing time intervals with one
sampling period
104
If interval I starts from sample m and the discontinuity is
at sample n so that n . m and f þ(m) ¼ f (m) as can be seen
from Fig. 2, then (14) can be written for both f þ and f as

f þðmþ 1Þ ¼
mð f þðmþ 2Þ þ f þðmÞÞ þ gðmþ 1Þ

2mþ 1

f ðmþ 1Þ ¼
mð f ðmþ 2Þ þ f ðmÞÞ þ gðmþ 1Þ

2mþ 1

Then

f þðmþ 1Þ � f ðmþ 1Þ ¼
m

2mþ 1
ð f þðmþ 2Þ � f ðmþ 2ÞÞ

ð20Þ

f þðmþ 2Þ � f ðmþ 2Þ ¼
m

2mþ 1
½ð f þðmþ 3Þ � f ðmþ 3ÞÞ

þ ð f þðmþ 1Þ � f ðmþ 1ÞÞ� ð21Þ

f þðiÞ � f ðiÞ ¼
m

2mþ 1
½ð f þðiþ 1Þ � f ðiþ 1ÞÞ

þ ð f þði� 1Þ � f ði� 1ÞÞ�;

mþ 1 � i � n ð22Þ

As implied from (20)–(22), sequences f þ(i)2 f (i) for
mþ 1 � i � n must have the same sign, that is, they are all
either positive or negative. According to inequality (19),
as f þ(n)2 f (n) . 0 (in the case of g(nþ 1)2 g(n) ¼
M . 0), therefore

f þðiÞ � f ðiÞ . 0; mþ 1 � i � n ð23Þ

It is easy to conclude that

f þðiÞ � gðiÞ . f ðiÞ � gðiÞ; mþ 1 � i � n ð24Þ

According to (23), and (20), it can be further seen that

f þðmþ 2Þ � f ðmþ 2Þ . f þðmþ 1Þ � f ðmþ 1Þ ð25Þ

Using (21) and (25), it is easy to prove that

f þðmþ 3Þ � f ðmþ 3Þ . f þðmþ 2Þ � f ðmþ 2Þ ð26Þ

and in general

f þðiÞ � f ðiÞ . f þði� 1Þ � f ði� 1Þ;

mþ 1 � i � n ð27Þ

Therefore

f þðiÞ � f þði� 1Þ . f ðiÞ � f ði� 1Þ;

mþ 1 � i � n ð28Þ

Using inequalities (24) and (28), it can be seen in (18) that
DEþ . 0. In contrast, DE2 can be calculated using the
same method for DEþ in (18)

DE� ¼
X
n[I

½ð f ðnÞ � gðnÞÞ2 � ð f �ðnÞ � gðnÞÞ2�

þ
X
n[I

m½ðDf Þ2 � ðDf �Þ2� ð29Þ

where f 2 is obtained by moving Si(n) and Siþ1(n) backward
by one sample and is defined in the same fashion as f þ.
Using the same method for DEþ, it can be proven that
DE2 , 0.

This implies that

DEþDE� , 0 ð30Þ
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 2, April 2006



With the same method, it can be seen that inequality (30)
is applicable in the neighbourhood of a discontinuity satis-
fying g(nþ 1)2 g(n) ¼ M , 2T , 0. This inequality
indicating a zero crossing in DE at discontinuities for
discrete-time signals is equivalent to (11) for continuous-
time signals. The minimisation condition discussed in
Section 2.1 therefore requires that at any point satisfying
(30), the following inequality is met

DEþ � DE� ¼ T . 0

In the above equation, T is the threshold that can be empiri-
cally set by the user to avoid over- or under-segmentation in
the presence of noise.
In the next section, we use the concepts discussed in

Sections 2.1 and 2.2 to develop an algorithm for discontinu-
ity detection.

3 Implementation

Before discussing the details of algorithm development,
practical issues concerning discretising (7) and (11) need
to be addressed. The desired solution, f (t), can be con-
sidered as a piecewise continuous function minimising an
energy term such as

Eð f ; SÞ ¼
X
i

ð
m

dfi

dt

� �2

SiðtÞ dt

"

þ
X
n

ð fiðnÞ � gðnÞÞ2SiðnÞ

#
ð31Þ

where f (n) and Si(n) are samples of f (t) and Si(t) with the
same sampling rate used for g(n). Equations (7) and (11)
would then change, respectively, to

m
d2fi

dt2

����
t¼n

¼ fiðnÞ � gðnÞ ð32Þ

DEþDE� , 0 ð33Þ

where DEþ and DE2 are calculated as

DEþ ¼
X
n[I

½ð f þðnÞ � gðnÞÞ2 � ð f ðnÞ � gðnÞÞ2�

þ m

ð
t[I

df þ

dt

� �2

�
df

dt

� �2
" #

dt

DE� ¼
X
n[I

½ð f ðnÞ � gðnÞÞ2 � ð f �ðnÞ � gðnÞÞ2�

þ m

ð
t[I

df

dt

� �2

�
df �

dt

� �2
" #

dt

where I is a neighbourhood of discontinuity.
Discrete estimates of df/dt and d2f/dt2 in (32) and (33)

can then be implemented by using different methods such
as spline transform [21–24] or Taylor’s series (finite differ-
ence) [5, 19, 25, 26]. Up-sampling and down-sampling can
also be defined for interpolation and magnification in both
methods. Smoothing spline [21] is a linear case of energy
term (31), where the original signal is assumed not to
contain any discontinuity. Therefore a modification for the
energy term used in smoothing spline [21] such as (31) is
required to enable it to solve this non-linear optimisation
problem. However, this would then lead to a similar
energy term to that given in (31). Spline transform is com-
putationally more expensive because of the requirements
for control-point calculations; however, it is smoother than
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 2, April 2006
the finite-difference method. The comparison of numerical
accuracy of these two methods remains to be investigated.
In this paper, finite difference is used for discretisation
where the desired solution f is sampled at the same sampling
rate used for the original signal g(t). It is important to note
that similar to smoothing spline, higher derivatives could
be added to (1) or (31). In the case of signals represented
as piecewise continuous functions separated by discontinuity
points, this would then lead to slightly more smoothed signals
albeit at the expense of added numerical complexity.
However, including higher derivative terms could detect
points in which the desired signal is Cn, where n is the
highest order of derivative in the functional. In this case,
the desired signal can be approximated by piecewise continu-
ous polynomials with degree n whose parameters are calcu-
lated by minimising the functional.

An algorithm is proposed to implement the non-linear
minimisation method considered in Section 2. This algor-
ithm is based on (7) or its equivalence in the discrete-time
domain (30) and minimisation condition discussed in
Section 2. It should be noted that this algorithm is similar
to the level set method used in computer vision for segmen-
tation [4, 5, 8]. The main difference between the proposed
method and the level set method is that in our case, the
smoothed function f is used instead of signed distance func-
tion which is widely used in the level set framework.

The idea is that a point representing the discontinuity is
assumed to be moving along the signal. At any sample,
signal is broken in two parts and for each part, a smoothed
function f is calculated using (7) or (14). Functional (1) is
then obtained for the left and right neighbourhoods (I) of
the point, respectively, and the difference DE can be con-
sidered as ‘geometrical forces’ acting on the point to
move it in a direction of the stronger force. If the point
crosses a discontinuity, (30) is satisfied, that is, the direction
of the stronger force reverses. However, before the direction
of the point movement reverses due to the stronger force,
the second variation (DE)n2 (DE)n21 is evaluated to
ensure that it is greater than the user-defined threshold T,
that is

ðDEÞn � ðDEÞn�1 . T

where n is the iteration number. If this condition is met, the
process continues until the point settles down in a disconti-
nuity in a way similar to the Pendulum movement however
with non-linear forces. In this implementation, neighbour-
hood I is considered as a 10 sample window whose centre
is the moving point. As soon as a discontinuity is detected,
a new point is assigned to continue moving from the
recently detected discontinuity to find the next one. This
process repeats until no other discontinuity is detected.
There are some issues which need to be addressed with
regard to this algorithm. As ‘geometrical forces’ are non-
linear, they sharply increase in a close neighbourhood of a
discontinuity and it is therefore necessary to avoid setting
the speed of our point proportional to forces acting on it.
Instead, the speed is set to a constant value. This constant
is halved, every time the moving point crosses a discontinu-
ity, which therefore guarantees a smooth convergence of the
point on discontinuity. Fig. 3 shows some iterations of this
algorithm applied on a signal with SNR ¼ 11.66, where
SNR is the ratio of the power of signal to the power of
noise. As can be seen in Fig. 3, the moving point depicted
by a square is affected by ‘geometrical forces’ and finally
converges to discontinuities one by one. The detected dis-
continuities are presented by circles in Fig. 3. Once a
discontinuity is detected, a time interval Si(t) and its
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corresponding smoothed function fi(t) are obtained simul-
taneously. Finally, it should be noted that the performance
of the proposed algorithm will eventually degrade under
very low SNR values, which can lead to over or under
segmentation.

4 Results

In the first part of this section, we discuss the behaviour of
the algorithm, its input and output signals. The second part
compares the results of this algorithm with those of the
low-pass and median filters [27], and finally, an algorithm
is proposed to find an optimised m for a given noisy signal.
Initially, a signal consisting of six discontinuities is con-

sidered as can be seen in Fig. 4 (top of the figure). Gaussian
noise with standard deviation 20 is then added to result in a
noisy signal as shown in Fig. 4 (middle). The algorithm is
finally applied to the noisy signal for noise reduction with

Fig. 3 Noisy signal with SNR ¼ 11.66 and its smoothed signal
using our algorithm (m ¼ 80, T ¼ 246)

a n ¼ 2
b n ¼ 4
c n ¼ 6
d n ¼ 15
e n ¼ 18
f n ¼ 36

Fig. 4 Original signal (top), signal with Gaussian noise
(middle), enhanced signal using the proposed method with
m ¼ 5 and T ¼ 460 (bottom)
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m ¼ 5, and Fig. 4 (bottom) shows f (t) representing the
enhanced signal as the final result.

However, it is interesting to investigate fi and Si functions
separately, as these functions, which f (t) is composed of,
are immediate outputs of the algorithm. Fig. 5 illustrates fi
and Si individually for the signal considered in Fig. 4. As
indicated in Fig. 5, Si s representing the time intervals in
which fi s are valid can be regarded as the segmented time
intervals of fi s. It is important to note that no prior knowl-
edge about the length of time intervals of fi s is required for
this segmentation. As mentioned earlier and also depicted in
Figs. 4 and 5, fi s are detected because of the discontinuities
in the original signal therefore this method can be con-
sidered to preserve these discontinuities.

Fig. 6 depicts a typical square wave signal and its noisy
version with an additive Gaussian noise (SNR ¼ 5.42).
The algorithm described in this paper is applied to the
noisy signal of Fig. 6. As shown in Fig. 7, the enhanced
signals using different values of m (¼10, 20, 50, 100 from
top to bottom (left) in Fig. 7, respectively) in (1) and (7)
are calculated. As seen from the figure, the higher the m,
the smoother the enhanced signal is, while preserving dis-
continuities specific to the original noiseless signal. A

Fig. 6 Square wave signal and its noisy version (SNR ¼ 5.42)

Fig. 5 fi (left) and Si (right) functions for i ¼ 1 to 7 (top to
bottom)
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Gaussian low-pass filter with different bandwidths is
applied to the noisy signal of Fig. 6 and the results for band-
widths 4p/5, 2p/5, p/5 and p/10 are shown in Fig. 7
(middle). As can be observed from this figure, a linear
system such as Gaussian filter reduces the noise but
smoothes the discontinuities. The same kind of problem is
observed in median filter applied to the noisy signal of
Fig. 6. A high-order median filter reduces the noise;
however, it leaves the discontinuity points fuzzy, and a
low-order median filter preserves the discontinuity points
but fails to reduce the noise in the signal (Fig. 7, right).
The main advantage of the proposed non-linear method
compared to common linear and non-linear filters such as
Gaussian and median filters discussed above is that it sim-
ultaneously segments and smoothes the original signal.
Therefore it can preserve the discontinuities.
The enhanced signals, shown at the bottom row of Fig. 7,

achieved using the three methods are compared in more
detail in Fig. 8. As observed from this Figure, the enhanced
signal obtained using the optimisation method with
m ¼ 100 best approximates the original noiseless signal
compared to the Gaussian low-pass and median filters.
The difference signal between the original noisy signal

and the enhanced signals in Fig. 8 is depicted in Fig. 9.
Errors for different methods used in this paper can also be
calculated by taking the sum of the absolute difference
between the enhanced signals and the original noiseless

Fig. 7 Enhanced signals using the optimisation method (left)
with m ¼ 10, 20, 50 and 100 and T ¼ 530 (top to bottom) and a
Gaussian low-pass filter (middle) with bandwidths 4p/5, 2p/5,
p/5, and p/10 (top to bottom) and a median filter (right) with
orders 5, 10, 20 and 50 (top to bottom)

Fig. 8 Enhancement of noisy signal of Fig. 7 using median filter
with order 50, a Gaussian low-pass filter with bandwidth p/10 and
the optimisation method described in this paper with m ¼ 100, and
the original noiseless signal plotted for comparison
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signal to quantify the comparison. The errors are further
divided by the number of samples to indicate the average
error per sample for the different methods considered in
this study. Further the variance of each difference signal
is calculated. Table 1 shows the results. As observed from
the table, the variance of difference signal obtained from
the optimisation method is closest to the actual variance
(actual variance ¼ 1089).

Finally, we propose an adaptive algorithm to automati-
cally find the optimised m for a signal contaminated with
homogeneous Gaussian noise with variance s2. Once the
signal is segmented (and simultaneously smoothed) with
an initial m using the proposed algorithm discussed in
Section 3, the mean-square error between smoothed signal
and original noisy signal is then calculated and m is
changed accordingly so that the mean-squared error term
approaches the variance of noise, that is, if with initial m,
the mean-squared error term is less than the variance of

Fig. 9 Noise added to the original noiseless signal (a), the differ-
ence signal between the original noisy signal and the enhanced
signal using the optimisation method with m ¼ 100 (b), using
Gaussian low-pass filter with bandwidth p/10 (c), using median
filter with order 50 (d)

Table 1: Total error, error per sample of the enhanced
signals (Fig. 8) and variance of the difference signals
(Fig. 9) for the three methods discussed in this paper

Method Total

error

Error per

sample

Variance of difference

signal in Fig. 9

Optimisation 978.09 4.8905 1019.7

Low-pass filter 3135.9 15.6795 1313.4

Median filter 2768.2 13.8410 1343.6

Fig. 10 Original noiseless signal (top), noisy signal with
SNR ¼ 37.8, smoothed signal with m ¼ 12 obtained using the
adaptive algorithm (middle) and noisy signal with SNR ¼ 9.9
and smoothed signal with m ¼ 34 obtained using the adaptive
algorithm (bottom)
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noise, m increases; otherwise it decreases, until the mean-
squared error term approaches the variance of noise. The
typical results of this adaptive method are presented in
Fig. 10. As can be seen from the figure, different values
of SNR result in different values in m for the most optimised
solution. It should be noted that the proposed method in this
paper iteratively detects and smoothes noisy signals, so that
the number of iterations depends on the number of samples
as well as on the discontinuities. Therefore this algorithm is
slower than the conventional low-pass Gaussian and median
filters.

5 Conclusions

The optimisation method discussed in this paper presents a
novel scheme for noise reduction and time interval segmen-
tation. The study in this paper indicates that this method can
achieve a significant noise reduction while preserving dis-
continuities specific to the signal. The results obtained in
this work show that the proposed optimisation method per-
forms better than the traditional methods such as low-pass
and median filters.
The finite-difference method has been used in this study

for implementation because of its numerical efficiencies.
Other interpolation schemes such as spline transform could
also be employed; however, the spline transform is more
computationally expensive due to requirements for control-
point calculations. Implementation of this optimisation
problem using spline transform and numerical comparison
between spline transform and finite difference could there-
fore be a subject for future study. Implementation of this
method for segmentation and noise reduction of 2D and 3D
images can be another interesting subject for future research.
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