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Abstract: The identification of categories in image databases usually relies on clustering algor-
ithms that only exploit the feature-based similarities between images. The addition of semantic
information should help improve the results of the categorisation process. Pairwise constraints
between some images are easy to provide, even when the user has a very incomplete prior knowl-
edge of the image categories that one can expect to find in a database. A categorisation approach
relying on such semantic information is called semi-supervised clustering. A new semi-supervised
clustering algorithm, pairwise-constrained competitive agglomeration, is presented on the basis of
a fuzzy cost function that takes pairwise constraints into account. Evaluations show that with a
rather low number of constraints this algorithm can significantly improve the categorisation.

1 Introduction

Effective access to the content of an image collection
requires a meaningful categorisation of the images. To
identify ‘natural’ categories in a collection of images (or
other data items), unsupervised clustering (or cluster analy-
sis [1, 2]) relies exclusively on measures of similarity
between the images. When compared with what a human
would find natural on the same collection (note that a
human may be unable to process very high-dimensional
data and huge volumes of data), the results produced by
clustering may be quite disappointing.
By letting the user provide some supervision to the

system, one can expect to obtain more adequate results.
Supervision may consist in class labels for a few data
items (not necessarily from all the classes) or in pairwise
constraints specifying whether two items should be in a
same category or rather in different categories. Such pair-
wise constraints are indeed much easier to provide than
class labels, when the user has a very incomplete prior
knowledge of the categories that one can expect to find in
the database. A categorisation approach that takes into
account such simple semantic information during the clus-
tering process is called semi-supervised clustering and is a
topic of significant interest [3–7].
In the case of image collections, pairwise constraints can

either be directly provided by users or obtained from the
keyword annotations that are usually few and only available
for some categories. As a simple example, ‘must-link’ con-
straints can be defined between images that share many
keywords and ‘cannot-link’ constraints between annotated
images that have no keyword in common. A deeper analysis
of the semantic relations between keywords (synonymy, etc.)

can also be performed when generating the constraints, but
we do not address this issue here.

Existing semi-supervised clustering algorithms, such as
pairwise constrained K-means (PCKmeans [5]), rely on
parameters that are difficult to set (such as the desired
number of clusters) and require a high number of con-
straints to obtain significantly better results. The new
semi-supervised clustering algorithm we put forward in
the following, pairwise constrained competitive agglomera-
tion (PCCA), brings improvements on both issues.

2 Related research

The many existing clustering algorithms [1, 2] can be
grouped into two broad categories: partitional or hierarchical.
The partitional algorithms aim at producing a partition of
the data and are based on the optimisation of specific objec-
tive functions. As our main concern here is the categoris-
ation of a collection of images, we focus on the following
partitional algorithms.

Prototype-based partitional algorithms rely on the possi-
bility to represent each cluster by a prototype and attempt to
minimise a cost function that measures the dispersion of
the clusters. In general, the prototypes are the cluster
centroids, as in the popular K-means algorithm [8] or in
its fuzzy evolution, Fuzzy C-Means (FCM, [9]). FCM has
been constantly improved for more than 20 years by the
use of the Mahalanobis distance [10], the definition of com-
petitive agglomeration (CA) [11, 12] or the addition of a
noise cluster [13, 14]. Owing to their simplicity, compu-
tational efficiency (complexity of O(CN), C being the
number of prototypes and N the number of data items to
cluster) and flexibility in using various metrics, prototype-
based clustering algorithms are very popular. When
compared with their crisp counterparts, fuzzy clustering
algorithms are significantly more robust and can also
model situations where clusters actually overlap.

In a probabilistic framework, mixture-resolving cluster-
ing algorithms assume that the data items in a cluster are
drawn from one of several distributions and attempt to esti-
mate the parameters of these distributions. A major step was
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the introduction of the expectation maximisation algorithm
in Dempster et al. [15]. Recent developments concern the
choice of the number of clusters [16, 17]. Mixture-resolving
methods usually have a higher computational complexity
and make rather strong assumptions regarding the distri-
bution of the data.
Unsupervised clustering algorithms do not take into

account prior knowledge, unless it can be expressed directly
in the metric (or, for mixture-resolving methods, in the
distributions considered), so quite often the resulting cat-
egories do not reflect user expectations. Consequently,
semi-supervised clustering – letting ‘knowledge’ provide
a limited form of supervision – has recently become a
topic of interest. More specifically, to help unsupervised
clustering, a small amount of knowledge can be used, con-
cerning either class labels for some items (not necessarily
from all the classes) or pairwise constraints between data
items; the constraints specify whether two data items
should be in the same cluster or not.
Unlike traditional clustering, the semi-supervised

approach to clustering has a short history and few
methods were published until now. Two sources of infor-
mation are usually available to a semi-supervised clustering
method: the similarity between data items and some must-
link or cannot-link pairwise constraints (Fig. 1). Semi-
supervised clustering implicitly assumes that these two
sources of information do not contradict each other comple-
tely. These two sources of information are combined either
by modifying the search for appropriate clusters or by
adapting the similarity measure

† In search-based methods, the clustering algorithm itself
is modified so that user-provided constraints can be used
to bias the search for an appropriate partition. This can be
done in several ways, such as by performing a transitive
closure of the constraints and using them to initialise clus-
ters [5], by including in the cost function a penalty for
lack of compliance with the specified constraints [3], or
by requiring constraints to be satisfied during cluster assign-
ment in the clustering process [4].
† In similarity-adapting methods, an existing clustering
algorithm using a similarity measure is employed;
however, the similarity measure is first adapted in order to
satisfy the constraints in the supervised data. Several simi-
larity measures have been used for similarity-adapting
semi-supervised clustering: the Jensen–Shannon diver-
gence trained by gradient descent [18], the Euclidean
distance modified by a shortest-path algorithm [19] or

Mahalanobis distances adjusted by convex optimisation
[20]. Among the clustering algorithms using such adapted
similarity measures, we can mention hierarchical single-
link [6] or complete-link [19] clustering and K-means [6, 20].

Similarity-adapting methods can potentially be applied to
a wider range of situations, but they either need a signifi-
cantly higher amount of supervision or rely on specific
strong assumptions regarding the relation between the
initial and the target similarity measures.

3 CA: short reminder

Most early partitional algorithms assumed that the number
of clusters was known prior to clustering; as this is rarely
the case, techniques for finding an ‘appropriate’ number
of clusters had to be devised. For methods based on the
minimisation of a cost function, the problem is partly
solved by including a regularisation term in the cost func-
tion. This way, instead of having to specify arbitrarily a
value for the desired number of clusters – with a strong
impact on the outcome of the clustering – one must set a
regularisation parameter for which a relatively wide range
of values allows to obtain good clustering results.

In the CA fuzzy partitional algorithm introduced in Frigui
and Krishnapuram [11], regularisation makes clusters
compete for membership of data items and the number of
clusters is progressively reduced until a minimum of the
full cost function is reached. Let xi, i [ f1, . . . , Ng be
the vectors representing the N data items to be clustered,
V the matrix having as columns the prototypes mk,
k [ f1, . . . , Cg of C clusters (C � N ) and U the matrix of
the membership degrees, with uik being the membership
of xi to the cluster k. Let d(xi, mk) be the distance between
the vector xi and the cluster prototype mk. The cost function
CA attempts to minimise [11] is

J ðV ;UÞ ¼
XC
k¼1

XN
i¼1

u2ik d
2ðxi;mkÞ � bðtÞ

XC
k¼1

XN
i¼1

uik

 !2

ð1Þ

under the constraint

XC
k¼1

uik ¼ 1; for i [ f1; . . . ;Ng ð2Þ

The first term in (1) is the standard FCM [9] cost func-
tion. The second term defines the competition that progress-
ively reduces the number of clusters. The b(t) factor sets a
balance between the terms, and its dependence on t (iter-
ation number) will be explained later.

We selected CA as the basis for our semi-supervised clus-
tering algorithm (presented in the following) because CA
has a low computational complexity, shows good robust-
ness and does not require a prior specification of the
desired number of clusters.

4 Pairwise constrained competitive
agglomeration

4.1 Principle of the method

The cost function to be minimised by our semi-supervised
clustering algorithm must take into account both the
feature-based similarity between data points and knowledge
of the pairwise constraints. Let M be the set of must-link
constraints, (xi, xj) [ M implying that xi and xj should be

Fig. 1 Illustration of semi-supervised clustering using pairwise
constraints

The clustering process takes into account the must-link (continuous
line) and cannot-link (dashed line) constraints provided
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assigned to the same cluster, and C the set of cannot-link
constraints, (xi, xj) [ C implying that xi and xj should be
assigned to different clusters. With the notations defined
for CA, the objective function PCCA minimises is

J ðV ;UÞ ¼
XC
k¼1

XN
i¼1

u2ik d
2ðxi;mkÞ

þ a
X

ðxi;xjÞ[M

XC
k¼1

XC
l¼1;l=k

uik ujl

0
@

þ
X

ðxi;xjÞ[C

XC
k¼1

uik ujk

1
A� b

XC
k¼1

XN
i¼1

uik

 !2

ð3Þ

with the same constraint (2).
The prototype of a cluster k (k [ f1, . . . , Cg) is given by

mk ¼

PN
i¼1 u

2
ikxiPN

i¼1 u
2
ik

ð4Þ

and the cardinality of the cluster is defined as

Nk ¼
XN
i¼1

uik ð5Þ

The first term in (3) is the sum of the squared distances to
the prototypes, weighted by the memberships and originates
in the FCM cost function. This term attempts to reinforce
the compactness of the clusters.
The second term is composed of

† The cost of violating the pairwise must-link constraints.
The penalty corresponding to the presence of two such
points in different clusters is weighted by the corresponding
membership values.
† The cost of violating the pairwise cannot-link con-
straints. The penalty corresponding to the presence of two
such points in a same cluster is weighted by the membership
values.

This term is weighted by a, a factor that specifies the rela-
tive importance of the supervision and is discussed later.
The last term in (3), coming from the CA cost function, is

the sum of the squares of the cardinalities of the clusters and
controls the number of clusters.
When all the terms are combined and a, b have

appropriate values, the final partition will minimise the
sum of intra-cluster distances, while partitioning the data
set into the smallest number of clusters such that the
specified constraints are respected as well as possible.
When the desired number of clusters is given and the
membership degrees are crisp, this cost function can
be simplified to obtain the one defined by Basu et al. [5]
for the PCKmeans algorithm.
We show in the appendix that the equation for updating

memberships is

urs ¼ uFCMrs þ uConstraintsrs þ uBiasrs ð6Þ

where

uFCMrs ¼
1=ðd2ðxr;msÞÞPC
k¼1 1=ðd

2ðxr;mkÞÞ
ð7Þ

uConstraintsrs ¼
a

2d2ðxr;msÞ
ð �Cvr � CvrsÞ ð8Þ

uBiasrs ¼
b

d2ðxr;msÞ
ðNs � �NrÞ ð9Þ

In (8), Cvrs
and C̄vr

are defined as

Cvrs ¼
X

ðxr;xjÞ[M

XC
l¼1;l=s

ujl þ
X

ðxr;xjÞ[C

ujs ð10Þ

�Cvr ¼
1PC

k¼1 1=ðd
2ðxr;mkÞÞ

�
XC
k¼1

P
ðxr;xjÞ[M

PC
l¼1;l=k ujl þ

P
ðxr;xjÞ[C ujk

� �
d2ðxr;mkÞ

and N̄r in (9) is

�Nr ¼

PC
k¼1 Nk=ðd

2ðxr;mkÞÞPC
k¼1 1=ðd

2ðxr;mkÞÞ
ð11Þ

The first term in (6), urs
FCM, is the same as the membership

term in FCM and only considers distances between data
items and cluster prototypes. The second term, urs

Constraints,
takes into account the available supervision: memberships
are reinforced or deprecated according to the pairwise con-
straints available. The third term, urs

Bias, controls the compe-
tition that leads to a reduction of the cardinality of spurious
clusters; as for CA, these clusters are discarded if their car-
dinality drops below a threshold (Section 4.2).

The b factor controls the competition between clusters
and is defined at iteration t by

bðtÞ ¼
h0 expð�jt � t0j=tÞPC

j¼1

PN
i¼1 uij

� �2
�

XC
j¼1

XN
i¼1

u2ijd
2ðxi;mjÞ

" #
ð12Þ

Because of the exponential component of b(t), the last term
in (3) will dominate during the early iterations of the algor-
ithm in order to eliminate spurious clusters, then the first
two terms will become dominant and help to find the best
partition of the data. Wide ranges of values for h0 and t
allow competition to operate correctly. The effects of com-
petition can be seen very quickly, so the value of t0 does not
need to be high (we used t0 ¼ 5).

The choice of a is very important for PCCA because a is
the weight given to the supervision. As the number of avail-
able constraints is expected to be much lower than the total
number of data items, to make sure that constraints have an
impact on the clustering process, the value of a should
balance the first two terms of J in (3). Also, we consider
the normalised performance index (NPI, the sum of the
squared distances between items and prototypes divided
by the sum of the squared memberships) to be a good quan-
tifier of the need for supervision: the higher the value of the
NPI, the more we need supervision. We then suggest the
following expression for a

a ¼
N

M

PC
k¼1

PN
i¼1 u

2
ik d

2ðxi;mkÞPC
k¼1

PN
i¼1 u

2
ik

ð13Þ

with M being the number of pairwise constraints available.
This expression for a also guarantees that the second term
in (3) is commensurate with the others.

The constraint-related terms in (3) can also be added to
other fuzzy unsupervised clustering algorithms, such
as the adaptive robust competition [14], but the interaction
between the semi-supervision and the other features of these
algorithms has to be studied.
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4.2 Cluster merging

In CA, as clustering proceeds, the clusters whose cardinality
drops below a threshold are discarded [11]. This threshold
reflects the minimum cardinality of the final clusters.
However, this method for discarding the spurious clusters
has two drawbacks:

† The outcome of the clustering process is very sensitive to
this threshold, even if choosing a minimum cardinality for
the clusters is often less arbitrary than setting a desired
number of clusters.
† As well-defined clusters may have very different cardin-
ality numbers, for many data sets there may be no good
compromise for the value of the threshold. With a low
value, several clusters (each with its own prototype) can
co-exist for a single large well-defined cluster. If the
threshold value is high, rather small but well-defined clus-
ters can be incorrectly discarded.

We suggest a strategy for improving the agglomeration
process in CA. First, we fix the minimum cardinality
threshold to a small percentage of the number of items in
the data set, so as to let even small clusters survive. Then,
we reduce the number of clusters by merging the clusters
having the nearest prototypes among all possible pairs of
clusters. This process is repeated until no more merging
is possible. At every iteration, we first compute all the dis-
tances between prototypes. If dmax ¼ maxfd(mk, mh)j1 � k,
h � Cg, then we merge clusters k and h when

dðmk;mhÞ

dmax

, proximity threshold ð14Þ

The proximity threshold was fixed to 0.1 in all the exper-
iments reported here, but can be seen as a relative resolution
parameter whose value is set by the user according to his
desired resolution.

4.3 PCCA algorithm

The PCCA algorithm performs the minimisation of the cost
function 1 and includes the cluster merging method put
forward in the previous section. The computational steps
are summarised in Fig. 2.
The pairwise constraints are provided before starting

PCCA. Depending on the application context, the set of
constraints can be available a priori or obtained from the
user. For producing a set of constraints before starting
PCKmeans, Basu et al. [7] proposed a constraint selection
method relying on querying the user with pairs of items

issued from a farthest-first traversal of the data. A similar
method can be employed for PCCA, but we believe that a
more attractive solution is to query the user during the clus-
tering process, according to the partial results obtained.

5 Experimental evaluation

We evaluated PCCA by comparing it to CA, the
unsupervised clustering algorithm it is based upon and to
the PCKmeans [5] semi-supervised clustering algorithm.
It is important to note that unsupervised clustering, semi-
supervised clustering and supervised classification rely on
different assumptions concerning the data, so benchmarks
designed for unsupervised clustering or for supervised
classification cannot be directly used for the evaluation of
semi-supervised clustering. Standard benchmarks for
unsupervised algorithms prove to be too simple for semi-
supervised clustering, whereas benchmarks for supervised
classification may be too difficult. As the semi-supervised
approach has a short history, few specific benchmarks
exist. We selected for our evaluation, the well-known
IRIS benchmark (also used in Basu et al. [5]) containing
three classes of 50 instances each and a ground truth
image database containing four classes of 100 images
each. A sample taken from the image database is shown
in Fig. 3. The classes are rather diverse and many images
belonging to different classes are quite similar. In both
experiments, random pairs of data items are selected and
corresponding constraints are provided from the ground
truth: depending on whether the two items belong to the
same class or not, a must-link or a cannot-link constraint
is generated.

The image features we used are the Laplacian weighted
histogram, the probability weighted histogram, the Hough
histogram, the Fourier histogram and a classical colour his-
togram obtained in HSV (hue, saturation, value) colour
space. The dimension of the joint feature vector (originally
above 600) was reduced by about five times using linear
principal component analysis.

Fig. 2 PCCA algorithm outline
Fig. 3 Every line shows a sample of images from a different class
of the image database
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As the shape of the clusters is usually not spherical, we
employ the Mahalanobis distance rather than the classical
Euclidean distance.
Figs. 4 and 5 present the dependence between the

percentage of well-categorised data items and the number
of pairwise constraints considered, for each of the two
data sets. The graphs for CA and for K-means (both
ignoring the constraints) are shown for reference.
The correct number of classes was directly provided to

K-means and PCKmeans. CA and PCCA were initialised
with a significantly larger number of classes and found
the appropriate number (i.e. the one in the ground truth)
by themselves.
For the fuzzy algorithms (CA and PCCA) every data item

is assigned to the cluster to which its membership value is
the highest. For each number of constraints, 100 exper-
iments were performed with different random selections
of the pairs of data items for which constraints are provided
(from the ground truth). This resulted in error bars for
PCCA and for PCKmeans.
The significant difference between the graphs for the

unsupervised clustering and the semi-supervised clustering
algorithms clearly shows that by providing a simple form of
semantic information (the pairwise constraints) the quality
of the resulting categories can be significantly improved. It
can also be seen that the number of pairwise constraints
required for reaching such an improvement is relatively low
with respect to the number of items in the data sets.
With a similar number of constraints, PCCA performs

significantly better than PCKmeans by making better use
of the available constraints. The signed constraint terms in

(10) let the fuzzy clustering process directly take into
account the pairwise constraints.

The error bars given for PCCA and PCKmeans in Figs. 4
and 5 show that, with a given number of constraints, there is
a significant variance in the quality of the final clustering
results. Performance clearly depends not only on the
number of constraints but also on the specific constraints
employed. It is then useful to study criteria for finding the
constraints that are potentially the most informative for
the clustering algorithm.

6 Conclusion

We have shown that the provision of a limited amount of
simple semantic information – pairwise constraints –
brings the results obtained for the categorisation of the
images in a database closer to user’s expectations. We put
forward a new semi-supervised clustering algorithm,
PCCA, on the basis of a fuzzy cost function that directly
takes pairwise constraints into account.

Experimental evaluation on the Iris data set and on a
ground truth image database shows that PCCA performs
considerably better than the CA, the unsupervised algorithm
that PCCA is based upon, and than the PCKmeans, an exist-
ing semi-supervised clustering algorithm. By making better
use of the constraints, PCCA allows the number of con-
straints to remain sufficiently low for this semi-supervised
approach to be an interesting alternative in the categoris-
ation of image databases. Also, the computational complex-
ity of PCCA is linear in the number of data vectors and in
the number of clusters, making this algorithm suitable for
real-world clustering applications.

We have found experimentally that performance also
depends on the specific constraints selected. In an attempt
to diminish the number of constraints required in a scenario,
where constraints are provided interactively by the user, we
currently explore active mechanisms for the selection of
pairs of candidate items. We are also working towards a
further reduction in the computational complexity in order
to be able to quickly categorise very large image databases.
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9 Appendix

To minimise (3) with respect to V and U under the con-
straints (2), we introduce the Lagrange multipliers li,
i [ f1, . . . , Ng and have

J LðV ;UÞ

¼
XC
k¼1

XN
i¼1

u2ikd
2ðxi;mkÞ

þ a
X

ðxi;xjÞ[M

XC
k¼1

XC
l¼1;l=k

uik ujl þ
X

ðxi;xjÞ[C

XC
k¼1

uik ujk

0
@

1
A

� b
XC
k¼1

XN
i¼1

uik

 !2

�
XN
i¼1

li
XC
k¼1

uik � 1

 !
ð15Þ

The cluster prototypes and the memberships that produce
extreme values for J (V, U) under the constraints (2)
must satisfy

@J L

@msj

ðV ;UÞ ¼ 0 and
@J L

@urs
ðV ;UÞ ¼ 0 ð16Þ

for s [ f1, . . . , Cg, r [ f1, . . . , Ng, where msj is the jth com-
ponent of cluster prototype ms. When computing the partial
derivatives, we ignore the dependencies through a and b.
Then, the first condition directly produces the expression
(4) for updating the prototypes. The second condition in

(16) becomes

@J L

@urs
¼ 2ursd

2ðxr;msÞ � 2b
XN
i¼1

uis � lr

þ a
X

ðxr;xjÞ[M

XC
l¼1;l=s

ujl þ
X

ðxr;xjÞ[C

ujs

0
@

1
A ¼ 0 ð17Þ

for s [ f1, . . . , Cg, r [ f1, . . . , Ng, to be solved together
with (2).

To obtain the updating equation for the memberships, we
assume that the cardinality of the clusters (Ns ¼

P
i¼1
N uis

for cluster s, s [ f1, . . . , Cg) does not change significantly
from one iteration to the next, so we can use the values
obtained in the previous iteration. With this assumption,
(17) becomes

urs ¼
2bNs þ lr

2d2ðxr;msÞ

� a

P
ðxr;xjÞ[M

PC
l¼1;l=s ujl þ

P
ðxr;xjÞ[C ujs

2d2ðxr;msÞ
ð18Þ

From (18) and (2), we obtain

XC
k¼1

2bNk þ lr

2d2ðxr;mkÞ

� a
XC
k¼1

P
ðxr;xjÞ[M
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As a consequence
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Substituting (20) in (17), we obtain the final update equation
for the membership of the data item xr to the cluster ms
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