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Efficient image selection for concept learning
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Abstract: In semantic-based image classification, learning concepts from features is an ongoing
challenge for researchers and practitioners in different communities such as pattern recognition,
machine learning and image analysis, among others. Concepts are used to add knowledge to the
image descriptions linking high- and low-level numerical interpretation of the image content.
Augmented descriptions are useful to perform more ‘intelligent’ processing on large-scale image
databases. The semantic component casts the classification into the supervised or learning-
from-examples paradigm, in which the classifier obtains knowledge by generalising specific
facts presented in a number of design samples (or training patterns). Consequently, selection of
suitable samples becomes a critical design step. The introduced framework exploits the capability
of support vector classifiers to learn from relatively small number of patterns. Classifiers make
decisions based on low-level descriptions containing only some image content information (e.g.
colour, texture, shape). Therefore there is a clear drawback in collecting image samples by just
using random visual observation and ignoring any low-level feature similarity. Moreover, this sort
of approach set-up could lead to sub-optimal training data sets. The presented framework uses un-
supervised learning to organise images based on low-level similarity, in effort to assist a professional
annotator in picking positive and negative samples for a given concept. Active learning to refine the
classifier model follows this initial design step. The framework shows promising results as an
efficient approach in selecting design samples for semantic image description and classification.

1 Introduction

The rapid growth in consumer-oriented electronic technol-
ogies, for example, digital cameras, camcorders and
mobile phones, along with the expansion in networking is
facilitating production and consumption of striking
amounts of digital information. It is also bringing a
change in the way people process such information.
The challenge is in incorporating mechanisms in multi-

media systems to resemble the way humans make decisions
on the basis of how they interpret what they perceive. Those
interpretations are subjective because of the different phys-
iological and psychological responses of each beholder to
visual stimuli. It has captured the attention of researchers
in computer vision, pattern recognition and other related
fields in the last decades. These efforts are focused on the
task of adding knowledge to the image content in order to
enable more ‘intelligent’ processing.
Although the semantic component casts the systems

into the supervised or learning-from-examples paradigm,

methods applied on low-level primitives could allow a
reduction of systems’ dependency on the designer.

Traditionally, proposed methods in machine learning and
pattern recognition (e.g. clustering analysis) are used to des-
ignate a passage from visual features to human understand-
ing of the image content in order to provide a way that a
computer can execute the recognition process [1].

Designers use patterns in the form of labelled content to
train the system. In such an approach, the learning process
is based on basic visual interpretation of the image content
indicating observed elements in the scene, for example, land-
scape, cityscape [2–4]. In this way, visual features can be
linked to linguistic concepts at the highest level of abstraction.

This bottom-up approach from low-level to semantic
meaning, used in most image content retrieval systems,
relies completely on matching procedures at the lowest
level of content interpretation. It is well known that two
objects can be similar in their visual primitives, but seman-
tically different to a human observer. Therefore substantial
noise could be introduced in propagating interpretations
using only low-level similarity.

From the other perspective, propagation based only on
high-level similarity (top-down approach) puts a heavy
burden on the designer and has undesirable effects in
system performance, being stalled at a certain point for
lack of information in decision making without the necess-
ary human factor.

Combined approaches that go from the bottom to the top
and in the opposite way are the foundation of the critical
paradigm of ‘bridging the semantic gap’ [5].

With this in mind and thinking on the feasibility of
learning from human subjectivity, a framework to assist
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concept learning from examples in semantic-based image
classification is presented.
The framework exploits the capability of support vector

classifiers (SVCs) to learn from a relatively small number
of samples [6]. These samples can be chosen using
random selection of images, which does not guarantee
quality or good representation of the concept. However,
manual searching has some drawbacks. One of them is
the definition itself of ‘a good’ sample, which involves sub-
jectivity and varies from one designer to another. This sort
of manual search could imply the need to traverse the entire
database in an effort to obtain higher efficiency.
Consequently, selection of suitable examples becomes a
critical design step.
This framework uses unsupervised learning as first step in

designing the classifier. By applying clustering, it organises
images based on low-level similarity in order to assist a
designer in picking positive and negative samples for a
given concept. Basically, clustering outcomes are used to
identify sensitive points that can define the hyperplane
between groups of images associated with certain concept.
The component of low-level feature similarity, although

effective, presents shortcomings in terms of efficiency due
to unavoidable introduction of misleading information
relying only on machine’s interpretation of the content.
Here is where active learning starts to play an important
role in allowing a posteriori training mode and facilitating
system’s adaptation. Therefore in order to refine the classifier
model, the initial design step is followed by active learning
(AL). It is to say, after clustering the space of image descrip-
tors positive samples are selected from feature vectors
situated in the well-populated regions surrounding cluster
prototypes relevant to the chosen concept. Negative
samples are selected from feature vectors placed in regions
surrounding concept contradictory cluster prototypes and in
regions where two or more clusters overlap. Afterwards, it
captures hints from the professional annotator (designer)
regarding to classification outcomes of image representations
observed from the clustering results capturing the underlying
low-level similarity of image patterns.
Experimental results show that within the proposed

framework, the SVC exploiting both low-level and semantic
information achieves higher accuracy than using either
random selection of samples or only AL.

2 Problem of learning concepts

Although the problem of learning concepts has been studied
for decades, it is still an open issue. Focusing on the
problem, Saitta and Bergadano [7] presented an interesting
comparative analysis of results from pattern recognition and
theoretical machine learning. In their continuing work,
Bhanu and Dong [8] proposed a framework for learning
concepts based on retrieval experience, which combines
partially supervised clustering and probabilistic relevance
feedback. The challenge of finding suitable samples is
also observed in training strategies as the one presented
by Boutell et al. [9].
There are also several interactive approaches that have

been proposed to enable long-term learning and system’s
adaptation [8, 10] as well as methods achieving some
improvement in performance by introducing group-oriented
search of sample images [11, 12]. Tong and Chang [13]
proposed the use of a support vector machine (SVM) AL
algorithm for conducting effective relevance feedback for
image retrieval. It produces a learner that is particularly
well suited to the query refinement task in image retrieval,
which outperforms a number of traditional query refinement

schemes. Smith and coworkers [14] used SVMs and AL in a
very similar way to Zhang and Chen [15]. Essentially, it is
an extension of the method proposed by Tong and Chang
[13]. The important difference to our approach is that all
of these solutions are focused on content-based image
retrieval.

In our approach, the problem of learning concepts is
addressed in the context of semantic-based image classifi-
cation. The concepts are used to add knowledge to the
image descriptions linking human and low-level numerical
interpretation of the image content.

Semantic-based classifiers perform the task of using
content-based descriptions (feature vectors) to assign
certain objects to a given concept (semantic class or
category). The inductive training process in learning-
from-examples is carried out by presenting declarative
knowledge through a number of labelled objects.
Specifically, the two types of information supplied here
are images that positively exemplify the concept and hints
that tell the classifier (learner) whether or not the concept
can be attached to the images [16]. In this way, these learn-
ing protocols are applied in semantic image classification to
introduce concept-wise human subjectivity.

In order to refine the classifier model the initial design
step is followed by AL. Nguyen and Smeulders [17] pro-
posed a similar strategy, but limited to two-class AL.

An image is considered to be either a positive (ascribed
to) or negative (not related to) sample of a given concept,
if it satisfies a criterion defined by a professional annotator.
For instance, a picture is a positive sample of a ‘city view
image’ if it depicts a scene containing buildings within a
city skyline.

Normally, design samples are taken from a large-scale
database. Time periods required, relaxations in the selection
criteria, subjectivity of the beholder, poor quality of the
picture because of occlusion, shadows, rotation and
amount of available examples are some of the identified
drawbacks in collecting training patterns.

Choosing samples just on the basis of human perception
misses out on the fact that in the end, the classifier will
be using descriptions with limited domain knowledge,
and not the overall cognitive perception of the world
assumed by humans. Then, the problem can be stated as
follows: ‘How to assist designers in selecting samples to
train semantic-based image classifiers?’ Accordingly, the
following framework is proposed.

3 Framework to assist concept learning from
examples

3.1 General overview

By making use of feature vectors provided by the feature
extractor, a classifier is aiming to assign certain objects to
a category [18]. Low-level features are organised by com-
bining unsupervised (automatic) and partially supervised
(semi-automatic) pattern recognition training modes. The
objective is to find a classifier model that roughly resembles
the semantic categorisation of images.

Fig. 1 illustrates the proposed framework for training the
classifier. In a first step, clustering mechanisms are used to
assist the professional annotator in collecting image
samples to train the classifier.

An initial data set is built with the best-ranked images
(highest membership degree) in the clusters. These images
are associated with sensitive points of two types: positive
samples, high membership degree in a cluster associated
with the expected concept and negative samples, high
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membership degree in a cluster associated with a different
concept than the one expected for the corresponding
image. Focusing on these sensitive points facilitates the
definition of hyperplanes between clusters containing
images belonging to certain class (or concept). These
positive and negative samples constitute the candidates of
training patterns. Then, the annotator follows a sample
selection procedure to decide if the candidates are
suitable samples to obtain a basic classifier model. This
procedure is shown in Fig. 2.
The second step in the training process applies AL

(likewise relevance feedback) to refine the classifier
model. The classifier predicts positive examples for the
category from the unlabelled images, using the clusters as
search space. The professional annotator provides hints
indicating positive and negative images found among the
classification results. These annotator’s hints are collected
to update the training data set. Furthermore, both positive
and negative images are used to refine the classifier
design. The introduced knowledge accumulated during the
training interactions is used to increase the problem
domain knowledge and enable long-term learning. The
framework’s components are detailed subsequently.

3.2 Unsupervised clustering

Clustering methods help to organise low-level features into
groups, the interpretation of which may relate to some
description task pertaining to the image content. Thus, fea-
tures are clustered according to similarities among them
[19]. Such a similarity between patterns is quantified or
measured using a proximity metric. If the clusters are

described by an equivalence class

½vj�E _¼fxi : xi [ X ;Eðvj; xiÞ ¼ 1g ð1Þ

where vj (1 � j � c) is a cluster prototype and xi
(1 � j � N ) is a feature vector associated with the ith
image in the data set X. Then the set of equivalence classes

X

E
_¼f½vj�Eg ð2Þ

called a quotient set forms a partition of the feature space.
Consequently, the clustering outcome can be used as a pre-
processing classification procedure based on the map from
X onto X/E, which is defined by

f : X 7!
X

E
ð3Þ

The cluster assignment is inherently unsupervised as no
prior information about the data structure is utilised in the
algorithm. However, objective function-based clustering
methods can be used to determine the underlying structure
of the training data set. Thus, the clustering results
provide valuable information that can be exploited to
assist a professional annotator in establishing links
between the feature vectors and the concepts.

The nature of the problem demands an extension to deal
with the underneath subjectivity and fuzziness of the human
interpretation [20]. In the proposed framework, the cluster-
ing task is carried out using the standard Fuzzy C-Means
(FCM) presented by Bezdek [21]. FCM is an optimisation
technique based on minimisation of the objective function
that measures the desirability of partitions of the data
space. The objective (or criterion) function is a scalar
index that indicates the quality of the partition and has the
form

J ðX ;V ;UÞ ¼
XN
i¼1

Xc
j¼1

umij d
2ðxi; vjÞ ð4Þ

where X is a data space consisting of N p-dimension feature
vectors to cluster, V is a set of c (2 � c � N ) cluster proto-
types and U is a matrix belonging to the set of all possible
fuzzy partitions defined by

=¼ U [<Nc 8
1�i�N
1� j�c

������ uij[½0;1�;
Xc
j¼1

uij ¼ 1;0,
XN
i¼1

uij ,N

8<
:

9=
;

ð5Þ

where uij is the degree of membership of vector xi in the
cluster j, vj is the p-dimension prototype of the cluster and
m (1 , m , 1) is a fuzzy exponent that determines the
degree of overlap of fuzzy clusters. Setting c ¼ 2 produces
the minimum partition, whereas c ¼ N is the data space
itself.

d2(.) is any distance norm expressing the similarity
between any feature vector and the prototype, formally
defined as

d2ij _¼kxi � vjk
2
A ¼ ðxi � vjÞ

TAðxi � vjÞ;

1 � i � N; 1 � j � c ð6Þ

where A is the identity matrix for Euclidean distance and
inverse of variance–covariance matrix of X for
Mahalanobis distance.

The minimisation of the fuzzy objective function is a
non-linear optimisation problem that can be solved using

Fig. 1 Framework for training a SVM classifier

First step uses clustering to assist the professional annotator in select-
ing image samples
Latter step applies AL to refine the classifier model

Fig. 2 Finding design samples for a first training round

Similarity at low-level is provided by clustering algorithm
Professional annotator indicates relevant images to the concept
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the Picard iteration with the kU(tþ1)2U(t)k , d criterion.
A deficiency is presented when after a number of iterations
the solution converges to local minima, which is not necess-
arily the optimal one. The solution is unique or optimal if
the prototypes of the clusters are always the same regardless
of the initial partition matrix U(0).
An illustrative example of using clustering as preproces-

sing mechanism to find suitable samples is presented in
Fig. 3. FCM provides the cluster prototypes as well as the
feature space partition. Membership degrees of patterns to
each cluster are used to collect candidate images of
design samples. The best-ranked images, it is to say the
nearest patterns to the prototypes, are organised into sets
following the cluster partitions. These sets are presented
to the annotator who selects images that positively and
negatively exemplify the concept as design samples to
train the classifier in a first round. A basic classifier model
is obtained using these samples.
As the number of classes in semantic-based image classi-

fication can be predetermined, the optimal number of clus-
ters to partition the data space can be equal to the class set
cardinality. Subsequently, validity functions [22, 23] such
as the fuzziness performance index [24] or the compactness
and separation [25, 26] can be used.

3.3 Binary classifier

With a choice of many options for binary classification that
could later lead to multi-class approaches, we have made
use of good performances of SVC. Although this group of
classifiers shows good performance for the generalisation
task over various pattern recognition and information retrie-
val problems [27] it can also achieve good results with small
training data sets [28], which makes it extremely appealing
for our framework. In this section, will introduce basic con-
cepts of SVCs and then we will explain the role they have in
our system.
The idea of supervised learning approach is incorporated

within this classifier, it tries to empirically model a system
that would classify or predict an accurate response of
unseen data set based on limited training patterns. The

idea of the SVC is based on structural risk minimisation
(SRM) principle, minimising not only empirical risk but
also the upper bound of the expected risk. Suppose we
have a training data set generated by an unknown
probability distribution and assuming only two classes
represented as

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yN Þ [ R p � f�1; þ1g ð7Þ

where (xi, yi) is a data sample and yi ¼ V(xi) ¼ 1 represents
the label if xi satisfies the designer-defined criterion regard-
ing to a given concept and yi ¼ V(xi) ¼ 21 when it does
not. N is the overall number of available training samples.
Here V(.) denotes the classifier that maps input patterns
into one of the classes

V : R p ! f�1; 1g ð8Þ

SRM principle is based on minimising the training error and
choosing a function class such that the upper bound of the
test error is minimised.

If a class of hyperplanes is considered in the following
form

ðw � xÞ þ b ¼ 0; w [ R p; b [ R ð9Þ

The corresponding decision function for the SVC classifier
is denoted as

f ðxÞ ¼ sgnððw � xÞ þ bÞ ð10Þ

And w, b represent the normal weight vector and a bias
of the hyperplane, respectively, that separates data
samples based on their position from the hyperplane in
the p-dimensional feature space.

The separating hyperplane is optimal if it separates a set
of patterns without error and maximises the margin, the dis-
tance between feature vectors from each class that are
closest to the hyperplane.

The optimal solution for separating hyperplane can be
obtained by maximising the margin and having in mind
that the problem is often noisy. This corresponds to maxi-
mising the minimal distance between convex hulls of both

Fig. 3 Selection of sample images

Examples for training the classifier are chosen from nearest feature vectors to the clusters
The selection is based on similarity between vectors and cluster prototypes
In this case, feature vectors correspond to colour layout descriptions (58 bin histograms)
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classes equal to 2/kwk and introducing a slack variable to
relax the hard margin constraint

min
1

2
wk k2 þC

XN
i

ji ð11Þ

C is the balancing factor between minimisation of the
empirical risk and maximisation of the margin between
classes. The above expression is valid under the following
constraints

yiððw � xÞ þ bÞ � 1� ji; ji � 0; i ¼ 1; . . . ;N ð12Þ

A solution to the minimisation problem is introduced
through optimisation of (11) and (12), representing a quad-
ratic problem often solved by conversion to Wolfe dual
[29]. The later is easier to solve by minimising the
Lagrangian with respect to primal variables w, b and max-
imising with respect to dual variables ai, leading to the
following optimisation problem

max
a

XN
i¼1

ai �
1

2

XN
i¼1

XN
j¼1

aiaj yi yjðxi � xjÞ ð13Þ

XN
i¼1

ai yi ¼ 0; 0 � ai � C; i ¼ 1; . . . ;N ð14Þ

From the Kuhn–Tucker complementary conditions, we
have the following condition

ai � ½ yiððxi � wÞ þ bÞ � 1� ¼ 0; i ¼ 1; . . . ;N ð15Þ

On the basis of (15) only points with non-zero ai values can
be support vectors (SVs). They lie on the margin, define it
and are the only relevant samples from the training set.
In cases when the linear bound does not facilitate class

separation, a non-linear mapping of input space into a
higher dimensional vector feature space may enable a
linear separation boundary. The non-linear mapping is
denoted as

F : Rp ! = x ! Fx ð16Þ

The optimisation task of (13) and (14) is solved by using the
fact that only the inner product of training patterns is needed
to define the hyperplane. Therefore SVC uses a kernel func-
tion k(x, x0) instead of directly calculating the inner pro-
ducts. In the feature space =, the inner product is
represented as a kernel, with the similarity measure
between two input vectors being

kðx; x0Þ ¼ ðFðxÞ �Fðx0ÞÞ ð17Þ

If k is a continuous kernel of a positive integral over a
Hilbert space with each kernel function satisfying
Mercer’s condition [27], then the kernel k is a valid inner
product in the feature space.
Introducing some of the kernels that could be used, we

mention Gaussian radial basis function (RBF) kernel. This
is a universal kernel [30], meaning that a linear combination
of RFB kernel functions can approximate any continuous
function. The appropriate feature space is then of infinite
dimension and given any labelled data set, a linear hyper-
plane can be found, which separates classes in the
Gaussian feature space [30].
As for most machine learning processes for SVM based

approaches, there are also a number of parameters and
decisions that need to be made in order to generate a
classification model that would perform well on unseen

data (e.g. the upper bound for Lagrange multipliers C,
standard deviation in RBF kernel).

One of the frequently used kernel functions is RBF kernel
given by

KGaussianðx; yÞ ¼ exp �
kx� yk2

2s2

� �
ð18Þ

The goal is to find optimal parameters and weighting for the
kernel function used with respect to the scenarios.

We have carried out a number of tests using a classical
RBF kernel given by (18). In this case, an on-line parameter
adaptation is very time demanding, as we do not know the
testing data set for AL in advance. In this effort, we have
also tested a modification of RBF kernel for SVM hoping
to adopt it to the non-linear behaviour of low-level feature
vectors used. The proposed modification uses SVM and
employs kernel-learning approaches to optimise the non-
linear mapping introduced with kernels for a better corre-
spondence to the chosen features.

In our tests, several image descriptors are combined in
order to improve the effectiveness of the classifier. This
raises the need of using appropriate distances for each
descriptor as norms within the RBF kernel. In our approach,
the kernel within SVM has the following form

KGaussianðx; yÞ ¼ exp
�dðx; yÞ

2s2

� �
ð19Þ

the distance d(x, y) is a linear combination of dynamically
weighted and normalised distances for each descriptors
used, on the basis of the MPEG-7 standard [31].

dðx; yÞ ¼
X
i

wi
�diðx; yÞ ð20Þ

Weights calculation relies on the assumption that a particu-
lar descriptor somehow resembling the user preferences
obtains higher weight. Thus, the weights for each descriptor
are determined as inverse of variance over all positive
examples given by the designer. There is no assurance
that the new kernel satisfies the Mercer’s condition, guaran-
teeing kernels to be real-inner products. Although it is
possible to still apply the SVM to such kernels, there is
no longer assurance that the optimal hyperplane maximises
the margin [32], but we have empirically observed higher
consistency and improvement in performance.

3.4 Active learning

As depicted in Fig. 1, the system captures hints of domain
knowledge, which relate to the classification problem.
During the second step of the training process, a pro-
fessional annotator provides hints indicating to the classifier

Fig. 4 The keyword-oriented classification is useful to index
more labels

Category names used in the experiments (e.g. outdoor and city view)
can be linked to more elaborated annotations (e.g. cities and regions,
buildings, clouds)
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whether or not its decisions were correct or not (positive or
negative hint).
The classifier uses those hints to adjust the boundaries

between patterns containing (or not) the concept. These
boundaries are defined by the hyperplane based on the SVs.
The idea of this supervised learning step is not to estimate

distributions of the known/unknown patterns, but to learn the
SVs. These vectors define the optimal non-linear decision
hyperplane and are determined from the known training set.

4 Experimental studies

4.1 Test conditions

Experiments were conveyed with images selected from
Corel stock gallery. Two groups consisting of 1035 and
1200 photographs, respectively, were organised into a
number of semantic categories. The first group was used
to classify indoor (kitchens and bathrooms, office interiors,
museums, etc.) and outdoor (contemporary buildings,
Rome, Chicago, architecture 1 and 2, etc.) images. The
second group was used to classify animals (dogs, tropical
sea life, etc.), city views (New York city, Ottawa, etc.),
landscapes (autumn, Yosemite, etc.) and vegetation (peren-
nial plants, American gardens, etc.) images.
As illustrated in Fig. 4, the category names were simplified

according to the objectives of the case studies. Professional
annotations of Corel images involve more information:
title, categories and keywords (fotosearch.com/corel). It is

worth to stress that keyword-oriented classification is useful
to describe images with a controlled vocabulary. The key-
words can also be used to search related annotations in
semantic ontology models.

The indoor/outdoor feature space was built with vectors
containing colour layout descriptions (58 bin histograms),
whereas the animal/city view/landscape/vegetation
feature space combines colour structure, edge histogram
and homogeneous texture descriptions (398 bin histo-
grams). Each of these MPEG-7 descriptors has a particular
syntax and semantics [31]. The matching procedures in the
experiments use the basic L2 norm.

Training data sets were randomly generated with 60% of
the images. The remaining images (40%) were used for
testing the classifier model.

4.2 Clustering analysis

Clustering results for the indoor/outdoor classification
problem indicate that colour is an appropriate descriptor
to create a separable feature space in this domain. The simi-
larity of best-ranked images in the five clusters, on the basis
of their membership degrees, resembles partially the
expected semantic grouping.

As depicted in Fig. 5, the first set (row 1) contains
samples of indoor images, except the fifth image that corre-
sponds to a building façade close-up. In the sequel, most of
the displayed images are good candidates of outdoor (sets 2
and 3) and indoor (sets 4 and 5). The sixth and tenth images

Fig. 5 Top-ten of ranked images by highest memberships in the clusters

Categories: indoor and outdoor
Low-level similarity based on colour features
Each row corresponds to a representative set of the cluster

Fig. 6 Sets satisfying criteria for the semantic categorisation: vegetation (row 1) and animal (row 2)
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in the fourth set (row 4) are negative examples of indoor
category, although their colour distribution is closer to the
prototype of this group. Using low-level similar images as
negative examples, helps the classifier in defining the
optimal non-linear decision hyperplane.

Following figures contain the best-ranked images in the
clusters for the classification problem of categories
animal, city view, landscape and vegetation. Low-level
similarity is based on colour and texture features. Feature
space was partitioned into ten clusters.

Fig. 7 Category overlapping

Row 1: landscape-city view; row 2: vegetation-city view; row 3: animal-vegetation; and row 4: city view-landscape

Fig. 8 Sample of sets whose content mixed objects from different categories

Sets 1 (row 1), 5 (row 2) and 6 (row 3) are exemplars of how low-level similarity can derived in semantically meaningless grouping

Fig. 10 Samples of images do not match clearly the semantic criteria

Fig. 9 Samples selection can be affected by images containing objects from another category
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Fig. 6 shows a sample of image sets satisfying criteria for
the semantic categorisation. It means that images found in
each set can be directly attached to a category as follows:
set from cluster 4 (row 1) to vegetation and set from
cluster 7 (row 2) to animal.
Fig. 7 gives a sample of image sets overlapping criteria

for the semantic categorization. The first two rows corre-
sponding to sets taken from clusters 8 and 9, respectively,
present a minimum overlap. The first set can be ascribed
as landscape except by the last image (tenth column),
which is a sample of city view; the second one satisfies cri-
teria of category vegetation except by the image in the
second column containing a city view scene. The third
and fourth rows show overlapping between categories
animal–vegetation and city view–landscape with strong
commonalities in their distributions of colour and texture
descriptions. This fact is reflected in the sets derived from
the clustering results.
As expected, some sets in the ranked images contain

objects from more than two categories. It shows why the
clusters cannot be attached to a single category.
Consequently, relying on low-level similarity derives in
semantically meaningless grouping (Fig. 8).
Fig. 9 displays some samples of images taken from

cluster 10. Most of the images are landscapes, although
there are some manmade objects or animals that could
mislead their categorisation.

One of the problems in selecting training samples is the
quality of the images. It can be regarded as definition
(pixel resolution, colour, etc.) as well as semantic content.
Fig. 10 shows images that do not match either completely
or clearly the high-level categorisation. These images intro-
duce noise in the learning process and subsequently affect
the classifier performance.

4.3 Framework assessment

In order to evaluate stability of the classifier model, a set of
experiments were carried out using random selection of
samples. Conversely, this approach skips the clustering pro-
cedure. As can be observed in Fig. 11, the classification
results lack of stability. It is because samples collection is

Fig. 11 Classification results using random selection of images

x-axis indicates the number of iteration in which the annotator provides new samples to the classifier
y-axis shows the resulting accuracy

Fig. 12 Mean accuracies achieved in the indoor/outdoor classi-
fication problem using the training approaches detailed in Table 1

Table 1: Training approaches used to assess
the classifier performance

Training approach Description

SVMþ FCM SVM classifier assisted with

hints provided by a

professional annotator

governed by clustering (FCM)

results during the training

phase. Samples are selected

from the nearest patterns (see

Figs. 5–9) to the cluster

prototypes

SVMþAL SVM classifier using only AL.

The classifier is trained with

hints provided by a

professional annotator

SVMþ FCMþAL SVM classifier is trained

combining both clustering

results and AL
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based upon visual inspection along with subjective criteria
of the annotator without taking into account any low-level
similarity. In contrast, clustering mechanisms not only
assist in the sample selection, but also contribute to the
system’s stability (Fig. 12).
The three training approaches summarised in Table 1 are

used to assess the performance of the classifier within the
proposed framework.
Mean accuracies obtained in the experimental studies are

presented in Fig. 12. The lowest accuracy is obtained when
the SVC learns only from clustering outcomes; the classifier

behaves better when using AL; the accuracy is improved
selecting samples from clusters.

Accuracy in the first approach (SVMþ FCM) decreases
rapidly, although it is expected because of the sensible
reduction on the required supervision. The professional
annotator needs only to indicate the class label of each
cluster. This lightens the burden of annotation while intro-
ducing some noise at the same time.

The second approach (SVMþAL) depends entirely on
the images shown to the user. An inconvenience here is
the overall subjectivity because of the fact that selection
of sample relies completely on the images ignoring any
relationship (low-level similarity) between the image
descriptions.

The third approach (SVMþ FCMþAL), corresponding
to the proposed method, shows a higher performance. It also
has the advantage of taking into account the underlying
low-level structures (revealed by the clusters). It minimises
the required supervision and partially exploits the semantic
information provided from the professional annotator.

When it comes to the multi-class problem, several inter-
esting classification scenarios may arise, which in the sequel
lead to a certain quantification of the results obtained in this
manner. The two-class classifiers may produce the follow-
ing outcome: (1) only one classifier identifies the class,
(2) none of the classifiers identify a class; this is described
as lack of decision, (3) a few classifiers identified several
classes; this is described as lack of specificity of classifi-
cation. Under these circumstances, two situations may
occur. First, the correct class is within the set of
these classes. The result is correct but not specific.
Second, the correct class is not in these classes being
identified by the classifiers. In this case, the classification
result is neither correct nor specific. In the latter case, the
two-class classifier with higher probability defines the
class to be assigned. The probability of membership for

Table 2: Performance of two-class classifiers (%)

Animal City view Landscape Vegetation

74.38 87.29 74.18 87.29

Fig. 13 Two-class classification outcomes

Input patterns are organised along the x-axis
y-axis indicates the probability of membership to the corresponding
category

Fig. 14 Samples of images correctly classified

Probability is indicated below each image
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each image to a class is represented through training SVM
and fitting parameters of additional sigmoid function to pos-
terior probability of the classes [33]. It is illustrated in
Fig. 13. Input patterns are organised along the x-axis. The
y-axis corresponds to the obtained probability in the corre-
sponding two-class classifier. The boxes indicate the
expected category.
Table 2 presents accuracies achieved by the two-class

classifiers. Some samples of correctly classified and mis-
classified images are given in Fig. 14 and Fig. 15.

5 Conclusions

A framework to assist efficiently a professional annotator in
choosing image samples to train a semantic classifier was
presented. The approach uses clustering mechanisms to
reveal the underlying structure in training data in order to
shift low-level features toward high-level information.
The training process applies AL to capture hints from the

annotator. Problem domain knowledge is accumulated in
order to enable long-term learning. This learning mode
reduces the burden of collecting samples randomly as well
as improves the quality of the chosen ones taking into
account low-level similarity. The AL is also a practical way
to introduce system’s adaptation and can be extended onto
the generalisation stage in the form of relevance feedback.
The applied keyword-oriented classification is useful to

describe images with a controlled vocabulary. These key-
words can also be used to search related annotations in
semantic ontology models.
The real challenge in using classifiers with kernel

methods is in the scarce training data sets available and

necessity for real-time optimisation, which makes off-line
adaptation method very impractical. These training
methods generally relay on substantial data training sets
and sensitive parameter tuning. Relatively high precision
and accuracy is possible to achieve, but dependant on the
data samples used and therefore very random. Hence, learn-
ing kernel matrix from data samples without the need to set
any parameters is the initial idea for the presented kernel
manipulations and for future research.
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