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Abstract: The common approach to radial distortion is by the means of polynomial approxi-
mation, which introduces distortion-specific parameters into the camera model and requires esti-
mation of these distortion parameters. The task of estimating radial distortion is to find a radial
distortion model that allows easy undistortion as well as satisfactory accuracy. This article pre-
sents a new piecewise radial distortion model with easy analytical undistortion formula. The
motivation for seeking a piecewise radial distortion model is that, when a camera is resulted in
a low quality during manufacturing, the nonlinear radial distortion can be complex. Using low
order polynomials to approximate the radial distortion might not be precise enough. In contrast,
higher order polynomials suffer from the inverse problem. With the new piecewise radial distor-
tion function, more flexibility is obtained and the radial undistortion can be performed analyti-
cally. Experimental results are presented to show that with this new piecewise radial distortion
model, better performance can be achieved than using the single function. Further, a comparable
performance with the conventional polynomial model using two coefficients can also be
accomplished.

1 Introduction

Cameras are widely used in many engineering automation
processes from visual monitoring and visual metrology to
real-time visual servoing or visual following. We will
focus on a new camera distortion model that uses a piece-
wise radial distortion function yet having an analytical
undistortion formula, that is, no numerical iteration is
required for undistortion.

Camera calibration is to estimate a set of parameters that
describes the camera’s imaging process. Assuming that
radial distortion occurs along the radial direction from
the centre of distortion (which is further assumed to be
the same as the principal point), the imaging process can
be illustrated by
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where x ¼ Xc/Zc, y ¼ Yc/Zc and [Xc, Yc, Zc]T denotes a
point in the camera frame; matrix A fully depends on the
camera’s five intrinsic parameters (a, g, b, u0, v0), with
(a, b) being two scalars in the two image axes, (u0, v0)
the coordinates of the principal point and g describing the
skewness of the two image axes; (u, v) and (ud, vd) are
the distortion-free and distorted image points on the
image plane, respectively; (x, y) and (xd, yd) are the distor-
tion-free and distorted points in the camera frame, respect-
ively; function f (r) models the radial distortion that is in
terms of radius r only with r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
.

Virtually, all imaging devices introduce certain amount
of nonlinear distortions, among which the radial distortion
is the most severe part [1, 2]. The removal or alleviation
of the radial distortion is commonly performed by first
applying a parametric radial distortion model, estimating
the distortion coefficients and then correcting the distortion.
The radial distortion is suggested to be governed by the
following polynomial equation [3–6]

rd ¼ rf ðrÞ ¼ rð1þ k1r2 þ k2r4 þ k3r6 þ � � �Þ ð1Þ

where k1, k2, k3, . . . are the distortion coefficients. When
using two coefficients, the relationship between the
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distorted and the undistorted radial distances becomes [3]

rd ¼ rð1þ k1r2 þ k2r4Þ ð2Þ

Until recently, the most commonly used radial distortion
model had been in the polynomial form of (2), although
other models, such as the division model [7] and the fish-
eye radial distortion models (the fish-eye transform [1]
and the field-of-view [8]), are available in the literature.
The inverse of the polynomial function in (2) is difficult
to perform analytically. Modelling the radial distortion pre-
cisely with an analytical inverse function is the focus of this
article.

The relationship between rd and r can also be modelled
as [9]

rd ¼ rf ðrÞ ¼ rð1þ k1r þ k2r2 þ k3r3 þ � � �Þ ð3Þ

To overcome the inversion problem, the above model with
two coefficients is studied in the works of Ma et al. [10, p. 3,
11], which is

f ðrÞ ¼ 1þ k1r þ k2r2 ð4Þ

whose appealing feature lies in its satisfactory accuracy as
well as in the the existence of an easy analytical undistor-
tion formula [11]. The polynomial radial distortion model
in (4), together with the commonly used model (2), acts
as the benchmark for evaluating the performance of the
piecewise radial distortion model proposed in Section 2.

Among the camera calibration algorithms, a planar-based
calibration method described in the work of Zhang [3] is
used in this article, in which detailed procedures can be
summarised as: (i) estimation of intrinsic parameters; (ii)
estimation of extrinsic parameters; (iii) estimation of distor-
tion coefficients and (iv) full-scale nonlinear optimisation.
In the full-scale nonlinear optimisation, the following
objective function J [3]

J ¼
XNim

i¼1

Xn

j¼1

kmij � m̂ðA; k;Ri; ti;MjÞk
2 ð5Þ

is used, where Mj is the jth 3D point in the world frame with
Zw ¼ 0; m̂ (A, k, Ri, ti, Mj) is the projection of point Mj in
the ith image using the estimated parameters; k denotes
the distortion coefficients; n is the number of feature
points in the coplanar calibration object and Nim is the
number of images taken for calibration [3, 11].

2 Piecewise radial distortion model

A two-segment radial distortion function is proposed and
illustrated in Fig. 1, in which each segment is a function

of the form

f1ðrÞ ¼ a0 þ a1r þ a2r2; for r [ ½0; r1�

f2ðrÞ ¼ b0 þ b1r þ b2r2; for r [ ðr1; r2�
ð6Þ

with r1 ¼ r2/2. Each segment in (6) is motivated from the
polynomial function (4) that has been studied in the work
of Ma et al. [10, p. 3]. We are interested in estimating the
coefficients (a0, a1, a2) and (b0, b1, b2) such that the two
polynomials are continuous and smooth at the interior
knot r ¼ r1. The reason for choosing a distortion function
in (4) for each segment is that the radial undistortion can
be performed using the analytical procedures described in
Ma et al. [11] with no iterations.

To ensure that the overall function (6) is continuous and
smooth across the interior knot (Besides the requirement of
continuity and smoothness at the interior knot r1, the
estimated f (r) curve has to be monotonous to ensure the
uniqueness in the rd$ r relationship in the context of
lens distortion modelling. However, this additional con-
straint is not necessary because it is inherent in the physical
lens to be modelled.), the following six constraints can be
applied

f1ð0Þ ¼ 1

a0 þ a1r1 þ a2r2
1 ¼ f1

a1 þ 2a2r1 ¼ d1

b0 þ b1r1 þ b2r2
1 ¼ f1

b1 þ 2b2r1 ¼ d1

b0 þ b1r2 þ b2r2
2 ¼ f2

ð7Þ

where f1 ¼ f1(r1) ¼ f2(r1), f2 ¼ f2(r2) and d1 ¼ ḟ1(r1) ¼
ḟ2(r1). By enforcing that the two segments have the same
value and derivative at the interior knot r1, the resultant
single function is guaranteed to be continuous and smooth
over the whole range [0, r2]. As each interior knot provides
four constraints to make the resultant single function
smooth, in order to estimate the coefficients (a0, a1, a2)
and (b0, b1, b2) uniquely, we need another two constraints,
which are chosen to be f1(0) and f2(r2) in (7).

As the coefficients (a0, a1, a2) and (b0, b1, b2) in (7) can
be calculated uniquely from ( f1, d1, f2) by

a0 ¼ 1

a1 ¼
ð�2� r1d1 þ 2f1Þ

r1

a2 ¼
ð1þ r1d1 � f1Þ

r2
1

b2 ¼
ð f2 � f1 þ r1d1 � r2d1Þ

ðr1 � r2Þ
2

b1 ¼ d1 � 2b2r1

b0 ¼ f1 � d1r1 þ b2r2
1

ð8Þ

the radial distortion coefficients that are used in the non-
linear optimisation for the piecewise radial distortion
model can be chosen to be ( f1, d1, f2) with the initial
values (1, 0, 1), which has only one extra coefficient com-
pared with the single model (4). During the nonlinear
optimisation process, the coefficients (a0, a1, a2) and (b0,
b1, b2) are calculated from (8) in each iteration.

The purpose of this work is to show that the proposed
piecewise radial distortion model achieves:Fig. 1 Smooth piecewise function (two-segment)
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1. Given rd and the distortion coefficients, the solution of r
from rd has closed-form solution.
2. It approximates the commonly used distortion model (2)
with higher accuracy than the single function (4).

3 Experimental results and validations

A series of experiments are performed in this section to vali-
date the proposed piecewise radial distortion model. First,
using the three distortion models (2), (4) and (6), the final
values of the objective function J of three groups of
testing images are given in Section 3.1. The model selection
problem among the three models is further discussed using
geometric akaike information criterion (AIC) and geometric
minimum description length (MDL) criteria [12, 13] in
Section 3.2. Then, we simulate the whole imaging process
by constructing a virtual camera with known camera par-
ameters and distortion model in Section 3.3. We generate
images with the noise of a planar calibration target.
Secondly, we test whether the distortion coefficients are
accurately estimated by the idea ‘straight lines have to be
straight’. Simulation is further presented in Section 3.4 to
show how a more accurately modelled radial distortion
affects the application of computer vision in vision-based
feedback control, in which the seemingly insignificant
advantage of a more accurate distortion model manifests
noticeable difference in the control performance.

3.1 Initial model comparison

In this section, comparisons are made among the two-
segment piecewise distortion model (6), the single model
(4) and the commonly used model (2) on the basis of final
value of the objective function J in (5) after nonlinear
optimisation by the Matlab function fminunc, as
common approach to camera calibration is to perform a
full-scale nonlinear optimisation for all parameters. Using
the public domain-testing images of dimension 640 � 480
[14], the desktop camera images (320 � 240) (a colour
camera in our Center for Self-Organizing and Intellegent
Systems, CSOIS) and the omindirectional inspection
system (ODIS) camera images (320 � 240) [11] (the
camera on ODIS robot built in our CSOIS), the final
values of J, the estimated distortion coefficients and the
five estimated intrinsic parameters (a, b, g, u0, v0) are sum-
marised in Table 1 in which the listed distortion coefficients
are (k1, k2) for the single models (2) and (4) and ( f1, d1, f2)
for the piecewise. The extracted corners for the model plane
of the desktop and the ODIS cameras have been presented
in Ma et al. [11].

From Table 1, it can be observed that the values of J
using the piecewise model for the three groups of testing

images are always less than those using the single function
(4). Further, the fitting residuals are closer to those of model
(2). For the ODIS images, the value of J of the piecewise
model is even smaller than that of model (2). The compari-
son between model (6) with models (2) and (4) might not be
fair because the new piecewise model has one more coeffi-
cient. Hence, more simulations and discussions are pre-
sented in Sections 3.2 and 3.3 for the validation of the
proposed piecewise model regarding its accuracy improve-
ment and stability. Our main point is to emphasise that
by applying the piecewise idea, higher accuracy can be
achieved without sacrificing the property of having
analytical undistortion function.

In performing the comparisons of the distortion models
using the three groups of test images, we first use the cali-
bration procedures described in Zhang [3] to calibrate the
camera’s intrinsic and extrinsic parameters, which serve
as the initial guesses in the nonlinear optimisation step.
By using (1, 0, 1) as the initial guess for ( f1, d1, f2), the
whole set of camera parameters are determined after
performing a full-scale nonlinear optimisation.

One issue in the implementation of the nonlinear
optimisation is how to decide r2, which is related to the esti-
mated extrinsic parameters that are changing from iteration
to iteration during the nonlinear optimisation process. In our
implementation, for each camera, five images are taken
where there are 64�4 feature points on each image. r2 is
chosen to be the maximum r of all the extracted feature
points on the five images for each iteration.

3.2 Distortion model selection

Classical criteria that are used in the computer vision to
assess the accuracy of calibration include the radial distor-
tion as one part inherently [15]. However, the idea to
choose among candidate models the one that gives the smal-
lest residual does not work, because a model with more
degrees of freedom (DOFs) might always be chosen, as it
is more likely to yield a smaller residual. To compare the
distortion models fairly, the over-fit caused by more
DOFs in the distortion model needs to be compensated.
Hence, a comparison that is solely based on the fitting
residual of the full-scale nonlinear optimisation (5), as per-
formed in Section 3.1, is not enough [11].

Model selection is one of the central subjects of statistical
inference. In Kanatani [12], two widely adopted criteria for
statistical model selection, Akaike’s AIC and Rissanen’s
MDL, have been generalised as GAIC and GMDL for the
geometric fitting such that the GAIC and GMDL criteria
can be helpful for geometric problems considered in the
computer vision. The GAIC and GMDL of a model S are

Table 1: Comparison of radial distortion models using three groups of testing images

Images Model J Distortion coefficients Intrinsic parameters (a, g, u0, b, v0)

Public (2) 144.8802 20.2286 0.1905 – 832.4860 0.2042 303.9605 832.5157 206.5811

(4) 145.6592 20.0215 20.1566 – 833.6508 0.2075 303.9847 833.6866 206.5553

(6) 144.8874 0.9908 20.0936 0.9653 831.7068 0.2047 303.9738 831.7362 206.5670

Desktop (2) 778.9767 20.3435 0.1232 – 277.1449 20.5731 153.9882 270.5582 119.8105

(4) 803.3074 20.1067 20.1577 – 282.5642 20.6199 154.4913 275.9019 120.0924

(6) 782.5865 0.9387 20.2695 0.8066 277.4852 20.5757 154.0058 270.9052 119.7416

ODIS (2) 840.2650 20.3554 0.1633 – 260.7658 20.2741 140.0581 255.1489 113.1727

(4) 851.2619 20.1192 20.1365 – 266.0850 20.3677 139.9198 260.3133 113.2412

(6) 838.5678 0.9410 20.2563 0.8270 261.9485 20.2875 140.2521 256.3134 113.0856
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defined as [12, pp. 4, 7; 13, p. 4]

GAICðSÞ ¼ J ðSÞ þ 2ðdN þ pÞ12 ð9Þ
and

GMDLðSÞ ¼ J ðSÞ � ðdN þ pÞ12 log
1

L

� �2

ð10Þ

where J(S) is the fitting residual when data of size N are
fitted to the model S. p is the DOF of the model S.
d ¼ m 2 dc, with m the dimension of the observed data
and dc the co-dimension of the model. L is a reference
length, which is taken as the image width in El-Melegy
and Farag [13, p. 5]. 1 is the noise level in the data set.

In the context of lens distortion modelling, in order to
apply the GAIC and GMDL, the noise level 1 needs to be
known. An unbiased estimate of 1 can be obtained from
the most commonly used candidate model (2), denoted by
S0, as [12, p. 8; 13, p. 5]

1̂
2
¼

J ðS0Þ

dcN � p0
ð11Þ

where p0 is the DOF of model S0. In this experiment, both the
GAIC and GMDL are applied to validate the proposed model
relevance, and the results are shown in Table 2.

An observation from Table 2 shows that the lens model
selection generally favours model (6) better than (4), with
one exception, when using the GMDL for the public
images, where model (4) will be selected instead of (6).
In this case, a possible explanation is that the advantage
gained by the piecewise idea is not significant enough
to compensate the over-fitting because of the extra one
DOF in the model. It is also noticed that when using the
GAIC for the ODIS images, model (6) is even better than
the commonly used model (2). From these observations,
it can be concluded that the proposed piecewise model
can achieve higher accuracy than the single function (4)
and even comparable accuracy against the commonly
used model (2), especially when the distortion becomes
more severe.

3.3 Straight lines have to be straight

The GAIC- and GMDL-based model selection, as pre-
sented in Section 3.2, uses the fitting residual after the
nonlinear optimisation process, with the extra DOF in
the distortion model being compensated. In this section,
we imagine the measurements that only involve the
distortion on the basis of the idea that if the distortion
coefficients are accurately estimated, straight lines will
remain straight. As the true values of the intrinsic par-
ameters and the distortion coefficients are by no means
exactly known from manufactured cameras as used in
Sections 3.1 and 3.2, we construct a virtual camera via
simulation to test whether the undistorted straight lines
remain straight.

When constructing the virtual camera, we assume that the
camera has the following parameters

Intrinsic matrix A ¼

200 0:5 110

0 200 110

0 0 1

2
64

3
75

Distortion coefficients k ¼ ðk1; k2Þ ¼ ð�0:22; 0:19Þ

Distortion model f ðrÞ ¼ 1þ k1r2 þ k2r4

ð12Þ

To simulate the whole imaging and calibration process, the
extrinsic parameters of the camera during calibration are
taken as

RT ¼

�0:1 0:1 0:2 �10 �10 25

0:2 0:5236 0:1 �10 �10 28

0:1 �0:3927 0:01 �10 �10 28

0:4488 0:3142 �0:21 �10 �10 30

�0:2094 0:1 0:1 �10 �10 28

2
66664

3
77775
ð13Þ

where each row denotes the transformation between the
camera and the world coordinate system and the first
three elements in each row denote the ZYZ Euler angles
(ua, ub, uc) [11]. The remaining three elements denote
the translational vector. The above choice of the
camera parameters, including the intrinsic parameters,
extrinsic parameters and the distortion coefficients, is
without any preference. The distortion model selected in
the form of (2) is because of its common usage and
acceptance.

The simulated calibration process is performed eight
times and the calibration results, using the three different
distortion models, are shown in Tables 3, 4 and 5, respect-
ively, where the first to the eighth columns in the three

Table 2: Model selection using GAIC and GMDL

Images Criterion (2) (4) (6)

Public GAIC (103) 0.4355 0.4363 0.4357

GMDL (103) 2.3394 2.3402 2.3411

Desktop GAIC (103) 2.3418 2.3661 2.3466

GMDL (104) 1.0181 1.0205 1.0192

ODIS GAIC (103) 2.5261 2.5371 2.5257

GMDL (104) 1.0918 1.0929 1.0924

Table 3: Variation of the calibration results using the distortion model (2)

Trial Mean STD

1 2 3 4 5 6 7 8

a 202.9645 200.3229 199.9081 200.6867 200.3113 200.4332 200.0304 201.3989 200.7570 1.0022

g 0.5664 0.3196 0.3671 0.5393 0.3231 0.4299 0.5158 0.5693 0.4538 0.1072

u0 110.6417 109.1198 111.9734 109.9408 110.3896 110.3842 109.2275 108.2256 109.9878 1.1419

b 202.6473 200.5361 199.5521 200.8055 200.2543 200.2972 199.9590 201.5035 200.6944 0.9786

v0 110.1448 108.9201 109.4174 110.0071 108.7463 109.3735 110.8114 110.7411 109.7702 0.7816

k1 20.2400 20.2243 20.2277 20.2116 20.2050 20.2301 20.2189 20.2231 20.2226 0.0109

k2 0.2465 0.1896 0.2072 0.1612 0.1490 0.2072 0.1917 0.1924 0.1931 0.0298

RMS 0.8030 0.8170 0.8320 0.8062 0.8230 0.8301 0.8090 0.8158 0.8170 0.0108

Distortion coefficients (k1, k2) in the first column refer to model (2).
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tables display the calibration results of each trial. The last
row in each table, indicated by RMS, displays the root of
mean squared distances, in pixels, between the detected
image points and the projected ones. In each calibration,
five images of the calibration target are generated and cor-
rupted with the noise of normal distribution with zero
mean and standard deviation 1/2. It can be observed that
the sample derivations for all the parameters in the three
tables are quite small, showing that the applied calibration
procedure with the distortion models in comparison is stable.

So far, we have demonstrated the model relevance of the
proposed piecewise model via the simulated virtual camera,
using the RMS representation in Tables 3, 4 and 5. Next, we
want to evaluate the accuracy of the calibrated distortion
only. One way to evaluate the accuracy of the distortion
is to examine the resultant f (r)$ r curves. Though the
calibrated distortion coefficients associated with certain
model are achieved through the full-scale nonlinear
optimisation, a more accurate calibration should guarantee
the more closeness of the estimated distortions to its true
values. Another way to look at the distortion calibration
accuracy is to test whether straight lines, that have been
distorted by a ‘true’ model can be undistorted back properly
using the calibrated camera parameters, that is, whether
straight lines that have gone through the distortion–
undistortion process remain straight.

The resultant f (r)$ r curves when using the three
models are presented in Fig. 2. The corresponding
undistorted straight lines are shown in Fig. 3. In Fig. 3,
red is used for the true camera parameters assumed in
(12), green for the calibrated camera parameters using dis-
tortion model (4) and blue for (6). From Fig. 2, it can be
observed that the estimated f (r)$ r curves when using

the piecewise model are closer to their true values than
when using the single model (4). Fig. 3 manifests a
similar observation in which the undistorted green lines
using model (4) deviate from their true positions much
more significantly. In Fig. 3, because of this effect, the
plotted red, green, and blue lines coincide with each other
around the centre of distortion. As the radius increases,
lines of different colours begin to separate and their differ-
ence become noticeable.

The experimental results presented so far in Section 3.3
only validate the model relevance of the proposed piecewise
distortion model. That is, the camera calibration procedure
adopting the piecewise model remains stable, as can be seen
from Tables 3, 4 and 5, and straight lines remain almost
straight, as shown in Figs. 2 and 3. From this fact, no con-
clusion can be drawn regarding the ‘model selection’ or
‘model comparison’ because of the extra DOF in the piece-
wise model. Actually, whether a certain distortion model
best represents a lens distortion is indeed camera dependent.
Calculations of the GAIC and GMDL criteria of the virtual
camera as constructed in (12) and (13) do not show an
improvement of model (6) over (4). However, when
constructing a different virtual camera, using the following
parameters

A ¼

260 �0:2741 140:0581

0 255:1489 113:1727

0 0 1

2
64

3
75

k ¼ ðk1; k2Þ ¼ ð�0:3554; 0:1633Þ

f ðrÞ ¼ 1þ k1r2 þ k2r4

ð14Þ

Table 4: Variation of the calibration results using the distortion model (4)

Trial Mean STD

1 2 3 4 5 6 7 8

a 205.4840 202.2318 201.6399 201.9833 201.5445 202.3588 202.0539 202.9823 202.5348 1.2727

g 0.5585 0.3276 0.3669 0.5500 0.3235 0.4313 0.5126 0.5786 0.4561 0.1070

u0 110.4079 108.9229 111.6551 109.9089 110.1017 109.7364 108.7734 107.8958 109.6753 1.1491

b 205.1939 202.4805 201.3216 202.1274 201.5213 202.2779 202.0213 203.1322 202.5095 1.2201

v0 109.7839 108.8650 109.2199 109.9854 108.6129 109.2036 110.5840 110.6764 109.6164 0.7675

k1 20.1129 20.0913 20.0893 20.0703 20.0647 20.0910 20.0892 20.0811 20.0862 0.0147

k2 20.0028 20.0347 20.0341 20.0603 20.0650 20.0342 20.0320 20.0464 20.0387 0.0193

RMS 0.8031 0.8173 0.8344 0.8072 0.8242 0.8320 0.8093 0.8172 0.8181 0.0114

Distortion coefficients (k1, k2) in the first column refer to model (4).

Table 5: Variation of the calibration results using the piecewise distortion model (6)

Trial Mean STD

1 2 3 4 5 6 7 8

a 204.1263 201.3673 199.1406 200.8552 199.7450 200.1523 200.8830 201.4722 200.9678 1.5075

g 0.5654 0.3285 0.3690 0.5465 0.3305 0.4272 0.5167 0.5722 0.4570 0.1054

u0 110.6482 108.9809 111.9612 109.8845 110.3877 110.3090 109.0915 108.1452 109.9260 1.1824

b 203.8152 201.6002 198.7878 200.9840 199.6890 200.0209 200.8246 201.5868 200.9136 1.5200

v0 109.9494 108.9224 109.3269 110.0051 108.7831 109.2170 110.6859 110.6630 109.6941 0.7437

f1 0.9679 0.9687 0.9783 0.9751 0.9793 0.9757 0.9712 0.9750 0.9739 0.0042

d1 20.1279 20.1251 20.1383 20.1244 20.1291 20.1370 20.1227 20.1289 20.1292 0.0057

f2 0.9304 0.9254 0.9384 0.9309 0.9357 0.9347 0.9305 0.9330 0.9324 0.0040

RMS 0.8025 0.8170 0.8321 0.8067 0.8229 0.8303 0.8088 0.8163 0.8171 0.0108
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and

RT ¼

�1:89 2:83 �1:95 12:16 �12:64 �31:90

�1:26 2:94 �1:29 10:39 �16:31 �33:44

�1:51 2:78 �1:53 13:03 �12:09 �24:50

�1:46 2:81 �1:47 12:88 �13:07 �27:26

�0:80 2:59 �0:74 11:16 �11:69 �23:99

2
66664

3
77775
ð15Þ

which is close to the ODIS camera as shown in Table 1, an
improvement of model (6) over (4) is apparent, which is
shown in Table 6.

3.4 Simulation of application in vision feedback
control

In Sections 3.2 and 3.3, we have validated the proposed pie-
cewise radial distortion model via both qualitative and
quantitative criteria using both simulated virtual camera
and real manufactured cameras. In this section, we shall
briefly show, via one example, how the improvement in
the lens distortion modelling can be noticeable in vision-
based feedback control, which can be a real application of
the computer vision.

Consider a stationary camera observing a moving object
whose motion is governed by the following affine motion

_X ðtÞ
_Y ðtÞ
_ZðtÞ

2
4

3
5 ¼ a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 X ðtÞ

Y ðtÞ

ZðtÞ

2
4

3
5þ b1

b2

b3

2
4

3
5 ð16Þ

One problem, generally referred to as the range identifi-
cation problem of a perspective dynamic system, is to esti-
mate the depth of such an object, denoted by y3(t) ¼ 1/Z(t),
with an unknown initial condition from observations on the
image plane, where the motion parameters ai,j and bi in (16)
for i, j ¼ 1, 2, 3 are assumed to be known [16, 17, p. 1]. In a
range identification problem, it is always assumed that the
following information can be derived from the observations
on the image plane

y1ðtÞ ¼
X ðtÞ

ZðtÞ
; y2ðtÞ ¼

Y ðtÞ

ZðtÞ
ð17Þ

That is, the observed feature points on the image plane have
been undistorted and transformed to the camera frame at
Zc ¼ 1, where the focal length is assumed to be 1 without
loss of generality.

The range identification problem can be solved via non-
linear observers for the linear system (16) with the homo-
geneous output (17). In Fig. 4, the observer performance
is presented by applying the observer proposed in
Jankovic and Ghosh [16] with the same observer parameters
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for the simulated virtual camera in (12) and (13) under the
cases of: (i) ideal situation with no distortion; (ii) undis-
torted information using model (4) and (iii) undistorted
information using (6). (As this paper is mainly concerned
with the radial distortion modelling, parameters of the non-
linear observer are not presented. The reader is referred to
the work of Ma et al. [17, p. 5] for the detailed observer
information.) It can be observed that application of the
piecewise model helps to reduce the observer overshoot.

This phenomenon has been observed throughout our cali-
bration of the virtual cameras.

4 Concluding remarks

This article proposes a new piecewise polynomial radial
distortion model for camera calibration. The appealing
part of this piecewise model is that it preserves high accu-
racy and the property of having analytical undistortion
formula for each segment. Experimental results are pre-
sented to show that this new piecewise radial distortion
model can be quite accurate and performance improvement
is achieved compared with the corresponding single radial
distortion function. Further, a comparable performance
with the conventional polynomial radial distortion model
using two coefficients can also be accomplished.
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Table 6: Model comparison of the simulated camera in
(14) and (15)

Trial Criterion (2) (4) (6)

1 GAIC 1.1055 1.1137 1.1065

GMDL 5.0830 5.0912 5.0871

2 GAIC 1.1551 1.1609 1.1567

GMDL 5.2942 5.3000 5.2990

3 GAIC 1.1209 1.1309 1.1224

GMDL 5.1485 5.1585 5.1532

4 GAIC 1.0630 1.0678 1.0648

GMDL 4.9016 4.9064 4.9063

5 GAIC 1.1598 1.1638 1.1611

GMDL 5.3142 5.3182 5.3188

6 GAIC 1.1143 1.1231 1.1155

GMDL 5.1202 5.1291 5.1246

7 GAIC 1.1089 1.1162 1.1101

GMDL 5.0973 5.1047 5.1017

8 GAIC 1.0801 1.0868 1.0810

GMDL 4.9745 4.9812 4.9785

Mean GAIC 1.1135 1.1204 1.1148

GMDL 5.1167 5.1237 5.1211

Noise of zero mean and standard deviation 1/4 is added to the
extracted features on the image plane when constructing the
virtual camera in (14) and (15).
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