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Abstract At the intersection of nonlinear and combinatorial optimization, quadratic
programming has attracted significant interest over the past several decades. A vari-
ety of relaxations for quadratically constrained quadratic programming (QCQP) can
be formulated as semidefinite programs (SDPs). The primary purpose of this paper
is to present a systematic comparison of SDP relaxations for QCQP. Using theoreti-
cal analysis, it is shown that the recently developed doubly nonnegative relaxation is
equivalent to the Shor relaxation, when the latter is enhanced with a partial first-order
relaxation-linearization technique. These two relaxations are shown to theoretically
dominate six other SDP relaxations. A computational comparison reveals that the two
dominant relaxations require three orders of magnitude more computational time than
the weaker relaxations, while providing relaxation gaps averaging 3% as opposed to
gaps of up to 19% for weaker relaxations, on 700 randomly generated problems with
up to 60 variables. An SDP relaxation derived from Lagrangian relaxation, after the
addition of redundant nonlinear constraints to the primal, achieves gaps averaging
13% in a few CPU seconds.
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130 X. Bao et al.

1 Introduction

The general quadratically constrained quadratic programming problem can be
formulated as:

(QCQP) f ∗ = minx xT Q0x + (c0)
T

x

s.t. xT Qk x + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

l ≤ x ≤ u,

where m denotes the number of quadratic constraints and is at least one, Qk (k =
0, . . . , m) are generally indefinite real n × n matrices, ck (k = 0, . . . , m) and a p

(p = 1, . . . , q) are vectors in R
n, bk (k = 1, . . . , m) and d p (p = 1, . . . , q) are real

numbers. Without loss of generality, the matrices Qk (k = 0, . . . , m) are assumed
to be symmetric. The set

∏n
i=1[li , ui ] is assumed to be nonempty and bounded, i.e.,

for all i, −∞ < li ≤ ui < +∞. In this case, any QCQP with x ∈ [l, u]n can be
transformed to an equivalent QCQP with x ′ ∈ [0, 1]n by defining xi = (ui − li )x ′

i + li .
For convenience, we assume li = 0 and ui = 1 for i = 1, . . . , n.

QCQPs arise in many applications, including facility location, production planning,
multiperiod tankage quality problems in refinery processes, circle packing problems,
and the max-cut problem [1,21,23–27,41,49]. As general quadratic programming
problems are NP-hard [44], the development of suitable relaxations is required for
exact solution algorithms. Semidefinite programming (SDP) techniques have received
a great deal of attention in the optimization literature recently [48] and many SDP
relaxations have been proposed for QCQP [6,7,13,14,20,22,30,38].

For global optimization of general QCQP problems, an immediate question is which
relaxation is most appropriate in practice in terms of tightness and computational trac-
tability. In this paper, we present a collection of SDP-based relaxations for QCQP
problems, including known relaxations from the literature as well as new relaxations,
and investigate the theoretical strength and computational efficiency of these relax-
ations. The main theoretical comparisons presented in this paper show that, under mild
technical conditions, the following hold (see Theorem 1 and Proposition 10):

vLG = vShor = vDShor ≤ vSD ≤ vSC ≤ vS RLT = vDN N ≤ f ∗,

and

vDShor ≤ vDLG1 ≤ vS RLT ,

where

– vLG is the value of a standard Lagrangian relaxation of QCQP [45],
– vShor is the value of the Shor relaxation [39],
– vDShor is the value of the dual of the Shor relaxation [39],
– vSD is the value of the Shor relaxation [39] enhanced with convex/concave enve-

lopes for diagonal elements of the matrix variables,
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Semidefinite relaxations for quadratically constrained quadratic programming 131

– vSC is the value of Shor relaxation [39] enhanced with convex/concave envelopes
for all matrix variables,

– vS RLT is the value of the Shor relaxation [39] enhanced with a partial first-order
RLT [37],

– vDN N is the value of the doubly nonnegative relaxation [18],
– f ∗ is the optimal solution value of the nonconvex QCQP, and
– vDLG1 is an SDP relaxation of QCQP derived from Lagrangian relaxation, after

the addition of redundant nonlinear constraints to the primal [32,40,45].

In our computations, we find many instances where vDLG1 yields a tighter bound
than vSC . Further, it is easy to construct instances where vSD dominates vDLG1. One
such example is minx {−3x2 + 2x | 0 ≤ x ≤ 1}. Therefore, vDLG1 and vSD do not
dominate each other.

In Sect. 2, we discuss fundamental polyhedral and Lagrangian relaxations that can
be used to construct more complex relaxations. In Sect. 3, we present and analyze the
doubly nonnegative relaxation and then use optimality conditions to derive additional
relaxations in Sect. 4. Section 5 is devoted to theoretical comparisons of relaxations,
including the proofs of Theorem 1 and Proposition 10. Computational comparisons
of relaxations for general QCQPs are presented in Sect. 6. Finally, the special case of
bilinear programs is addressed in Sect. 7, where a new SDP relaxation is proposed.

1.1 Notation

The following notation is used throughout the paper. The n-dimensional Euclidean
space is denoted by R

n . We use e ∈ R
n to represent a vector of ones and ei to rep-

resent the i-th unit vector. R
n×n refers to the set of real, n × n matrices. The inner

product of two matrices A and B is defined as A • B = ∑
i
∑

j Ai j Bi j . For a set
S, conv S denotes the convex hull of S. For a vector x, diag(x) denotes a diagonal
matrix whose i-th diagonal element equals xi . For a matrix M, diag(M) denotes the
vector composed of the diagonal of M , while Mi• and M•i , respectively, denote the
i-th row and the i-th column of M . Finally, we use P and N to represent the cones of
completely positive and doubly nonnegative matrices, respectively, that are defined as:

P =
{

A ∈ R
n×n | A =

m∑

k=1

xk(xk)T , m ≥ 1, xk ∈ R
n+, k = 1, . . . , m

}

,

N = {A ∈ R
n×n | A � 0, A ≥ 0}.

2 Fundamental polyhedral and Lagrangian relaxations

2.1 Reformulation-linearization technique and McCormick inequalities

Two commonly used approaches to linearize quadratic programming problems are the
Reformulation Linearization Technique (RLT) and the convex and concave envelopes
of the bilinear terms. The resulting linear relaxations can be used to tighten SDP
relaxations.

123



132 X. Bao et al.

A recent overview of RLT can be found in [37]. RLT can generate both linear
and nonlinear reformulations and relaxations for quadratic programming problems.
A complete application of first-level RLT would involve the pairwise multiplication
of all, including the quadratic, constraints of (QCQP). We limit attention to a partial
first-level RLT that involves the generation of quadratic constraints by pairwise mul-
tiplication of only bound constraints and linear constraints of QCQP, followed by
linearization of the quadratic constraints by substitution of all quadratic terms with
additional variables.

The convex and concave envelopes of a bilinear function over a box, also known
as McCormick or Al-Khayyal and Falk inequalities [3,28], have been used to derive
linear relaxations for general bilinear programming problems [2], and later used in
nonconvex quadratically constrained quadratic programs [4]. In both settings, the
envelopes were used to bound individual bilinear terms. This approach has become
commonplace for relaxing bilinear terms in global optimization practice [42].

Let X ∈ R
n×n be a symmetric matrix. The following linear relaxations can be

obtained by both RLT for bound factors (x ≥ 0, e − x ≥ 0) and McCormick
inequalities:

⎧
⎨

⎩

Xi j ≥ 0, i, j = 1, . . . , n
Xi j − x j − xi ≥ −1, i, j = 1, . . . , n
Xi j − xi ≤ 0, i, j = 1, . . . , n

For quadratic programming problems with no linear constraints, i.e., q = 0, such as
box-constrained quadratic programs, the relaxation obtained by partial first-level RLT
is equivalent to that obtained by the McCormick inequalities. However, for general
QCQP, the partial first-level RLT invoked here contains additional constraints obtained
by products of linear constraints other than bound factors:

(RLT1) vRLT 1 = minx,X Q0 X + (c0)
T

x

s.t. Qk X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

Xa p = d px, p = 1, . . . , q

X ≥ 0

eeT − exT − xeT + X ≥ 0

xeT − X ≥ 0.

2.2 Shor relaxation and Lagrangian relaxations

Lagrangian duality is an important technique for constrained optimization prob-
lems and has been shown to be powerful for obtaining and analyzing semidefinite
relaxations for quadratic programming problems [32,38,39,45–47]. For integer qua-
dratic programming with linear constraints, [32] provides a comprehensive review for
constructing SDP relaxations by Lagrangian duality. Some of the results remain valid
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Semidefinite relaxations for quadratically constrained quadratic programming 133

for general QCQP. The Shor relaxation [38,39] is one of the most popular relaxations
for quadratic problems. In the sequel, we describe the Shor and Lagrangian relaxations
for the general QCQP, and review some important theoretical results.

The general form of the Lagrangian function is:

L(x, λ, υ, ω,μ) = xT Q0x + c0T
x +

m∑

k=1

λk

(
xT Qk x + (ck)

T
x − bk

)

+
q∑

p=1

υp

(
(a p)

T x − d p
)

+ ωT x + μT (x − e)

= xT

(

Q0 +
m∑

k=1

λk Qk

)

x +
⎛

⎝c0 +
m∑

k=1

λkck +
q∑

p=1

υpa p

+ω + μ)T x −
⎛

⎝
m∑

k=1

λkbk +
q∑

p=1

υpd p + μT e

⎞

⎠ ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where λ ∈ R
m+, υ ∈ R

q , ω ∈ R
n−, and μ ∈ R

n+ are Lagrange multipliers. The
Lagrangian dual problem of QCQP is:

vLG = maxλ,υ,ω,μ min
x∈Rn

L(x, λ, υ, ω,μ)

s.t. λ ≥ 0, ω ≤ 0, μ ≥ 0.

By weak duality, we always have vLG ≤ f ∗. Furthermore, any feasible solution
(λ̄, ῡ, ω̄, μ̄) yields a lower bound for f ∗. In addition, the minx∈Rn L(x, λ, υ, ω,μ)

goes to negative infinity unless Q0+∑m
k=1 λk Qk � 0. The latter, is therefore a “hidden

constraint.”
Strong duality holds if the problem is convex (i.e., if Qi � 0, i = 0, 1, . . . , m)

or there is only one quadratic constraint which means m = 1, q = 0 and no explicit
bounds. The former condition is a special case of the classical Lagrangian duality theo-
rem for convex programming, cf. [35]. The latter condition is known as the S-Lemma,
which was recently surveyed in [31].

A reformulation of the Lagrangian dual is

vLG = maxξ,λ,υ,ω,μ ξ

s.t. L(x, λ, υ, ω,μ) − ξ ≥ 0, ∀x ∈ R
n

λ ≥ 0, ω ≤ 0, μ ≥ 0.

After defining a symmetric matrix A(ξ, λ, υ, ω,μ) ∈ R
(n+1)×(n+1) to be

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−
⎛

⎝
m∑

k=1

λkbk +
q∑

p=1

υpd p + μT e + ξ

⎞

⎠ 1
2

⎛

⎝c0 +
m∑

k=1

λkck +
q∑

p=1

υpa p + ω + μ

⎞

⎠

T

. . . Q0 +
m∑

k=1

λk Qk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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134 X. Bao et al.

we obtain

L(x, λ, υ, ω,μ) − ξ =
(

1
x

)T

A(ξ, λ, υ, ω,μ)

(
1
x

)

.

The Lagrangian dual can then be rewritten as the SDP problem

vDShor = maxξ,λ,υ,ω,μ ξ

s.t. A(ξ, λ, υ, ω,μ) � 0

λ ≥ 0, ω ≤ 0, μ ≥ 0,

whose dual is equivalent to the Shor relaxation [39]:

(Shor) vShor = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e

X � xxT .

This relaxation can also be obtained directly by lifting the QCQP problem into the
matrix space (x, X), and relaxing X = xxT to a semidefinite constraint by ignoring
the rank one restriction on X . Based on the above derivation and weak duality, we
have:

Proposition 1

vDShor = vLG ≤ vShor ≤ f ∗.

Consider now the following condition:

Condition 1 The SDPs (Shor) and (Dshor) are feasible, and the set

{
(x, X) | Qk • X + (ck)

T
x < bk, k = 1, . . . , m,

(a p)
T x = d p, p = 1, . . . , q, 0 < x < e, X 
 xxT

}

is nonempty.

Then, from conic duality (Theorem 2.4.1 in [9]), we have:

Proposition 2

vDShor = vLG = vShor ≤ f ∗.

From now on, we assume Condition 1 is satisfied.
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Semidefinite relaxations for quadratically constrained quadratic programming 135

An alternative approach to relate the Shor relaxation to the Lagrangian relaxation
is presented in [22].

Since the Lagrangian dual essentially ignores linear constraints, applying Lagrang-
ian duality to primal problems that contain explicit linear equality constraints and
bound constraints usually leads to weak relaxations. An alternative approach is to dual-
ize only the nonlinear constraints as in [43]. The resulting Lagrangian dual problem
of QCQP is:

vLG
0 = maxλ min

x∈F
L(x, λ, 0, 0, 0)

s.t. λ ≥ 0

where F = {x ∈ R
n | (a p)T x = d p, p = 1, . . . , q, 0 ≤ x ≤ e}. It is clear that:

Proposition 3

vLG ≤ vLG
0 ≤ f ∗.

In addition, any λ̄ ≥ 0 yields a lower bound for f ∗. This Lagrangian dual prob-
lem may provide tighter bounds for QCQP problems than LG. However, the dual
subproblem

min
x∈F

L(x, λ, 0, 0, 0),

which is a linearly constrained quadratic programming problem, while more tractable
compared to general QCQP is still not easily solvable.

Another alternative is to reformulate the primal problem before constructing the
Lagrangian dual. For instance, one can add redundant constraints or replace constraints
with equivalent ones [32,45,46]. To illustrate one of the many possible reformula-
tions, we replace the linear constraints by squared norm constraints as suggested by
[32,40,45]. This approach is straightforward to apply to general QCQP problems and
leads to medium size SDP relaxations. In particular, we replace the linear constraints
(a p)T x = d p by their squared version xT a p(a p)T x − 2d p(a p)T x + (d p)2 = 0, p =
1, . . . , q and add redundant quadratic constraints xT ei eT

i x ≤ 1 obtained from the box
constraints x ≤ e. Following the same steps as before, the dual of the Lagrangian dual
is an SDP relaxation:

(DLG1) vDLG1 = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

a p(a p)T • X − 2d p(a p)T x+(d p)2 = 0, p=1, . . . , q

diag X ≤ e

0 ≤ x ≤ e

X � xxT .
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136 X. Bao et al.

Proposition 4

vShor ≤ vDLG1 ≤ f ∗.

Proof The second inequality is obvious. To show the first inequality, assume (x, X)

is a feasible solution to (DLG1). We need to show (x, X) is also feasible to the Shor
relaxation. Since X � xxT , we have 0 = a p(a p)T • X − 2d p(a p)T x + (d p)2 ≥
((a p)T x − d p)2 ≥ 0. Thus (a p)T x = d p and (x, X) is feasible to (Shor). ��

As long as the resulting Lagrangian dual problem can be formulated as an SDP
problem, the dual of the Lagrangian dual provides an SDP relaxation of the original
problem. On the other hand, all semidefinite relaxations can be regarded as Lagrangian
relaxations obtained from certain reformulations of the primal problem. In this sense,
Lagrangian relaxation can be thought of as the best possible SDP relaxation of QCQP
as argued in [45]. However, it is not clear which particular reformulation should be
used to reduce or even close the duality gap, in general.

2.3 Strengthened Shor relaxations

Even though all the original variables have finite bounds, the Shor relaxation may be
unbounded since X may not be sufficiently bounded. In practice, additional constraints
are often combined with SDP relaxations in order to avoid unboundedness. In [6], it is
shown that the combination of SDP and RLT relaxations leads to significantly better
bounds than using either technique alone. However, since SDPs with a large number
of linear constraints may be computationally expensive, a compromise may be nec-
essary between tightness and tractability of the relaxation. In this section, we present
several SDP relaxations for QCQP; these relaxations involve different numbers of
constraints.

The following is the Shor relaxation with the addition of convex/concave envelopes
for the diagonal components of X :

(SD) vSD = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

x ≤ e

x − diag X ≥ 0

e − 2x + diag X ≥ 0

X � xxT .

Constraints x ≤ e and e − 2x + diag X ≥ 0 can be easily shown to be redundant in
this formulation because of X � xxT .

The following is the Shor relaxation after the addition of convex/concave envelopes
for the complete matrix X :
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Semidefinite relaxations for quadratically constrained quadratic programming 137

(SC) vSC = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

eeT − xeT − exT + X ≥ 0

X ≥ 0

xeT − X ≥ 0

X � xxT .

Finally, the following is the Shor relaxation with partial first-level RLT:

(SRLT) vS RLT = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

Xa p = d px, p = 1, . . . , q

X ≥ 0

eeT − xeT − exT + X ≥ 0

xeT − X ≥ 0

X � xxT .

3 Copositive and doubly nonnegative relaxations

Copositive programming relaxations of QCQP have been obtained by replacing the
cone of semidefinite matrices by the cone of completely positive matrices, the dual of
which is the cone of copositive matrices [11,12,33]. This approach can provide signif-
icantly stronger convex relaxations than linear and semidefinite relaxations for general
quadratic programming problems [33], and serve as an exact reformulation of the stan-
dard quadratic programming problem [12]. Although optimization over the copositive
cone is still an NP-hard problem, the approximation of the copositive cone by the cone
of doubly nonnegative matrices can yield a more tractable SDP bound for QCQP. In this
section, we describe copositive and doubly nonnegative relaxations for QCQP derived
from copositive representations by slightly generalizing results from [18] and [5].

Lifting the QCQP into matrix space, we obtain:

(QCQP) minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

X = xxT , x ∈ F ,

where, as before, F = {x ∈ R
n|(a p)T x = d p, p = 1, . . . , q, x ∈ [0, 1]n}. Let

L =
{(

1 xT

x X

)

| Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

}
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138 X. Bao et al.

and

C =
{(

1
x

) (
1
x

)T

|x ∈ F

}

.

The feasible region of (QCQP) is L ∩C . A convex relaxation for the QCQP problem
is:

(CV) vCV = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m
(

1 xT

x X

)

∈ conv C .

Since L ∩ C ⊆ conv(L ∩ C ) ⊆ conv L ∩ conv C = L ∩ conv C , we have:

Proposition 5

vCV ≤ f ∗.

When QCQP has only linear constraints (i.e., m = 0), we have L = R
(n+1)×(n+1)

and vCV = f ∗ because conv(L ∩ C ) = conv(C ) = L ∩ conv C and the objective

function is linear in the matrix space

(
1 xT

x X

)

, as pointed out in [18]. For problems

with general quadratic constraints, this equality holds for some special cases. In [18],
this is shown for a single quadratic equality constraint. The following addresses the
general QCQP problem:

Proposition 6 The convex relaxation CV for the QCQP problem is exact, in other
words

vCV = f ∗

if

xT Qk x + (ck)
T

x ≤ ( or ≥)bk, ∀k = 1, . . . , m, ∀x ∈ F .

Proof If xT Qk x + (ck)
T

x ≤ bk for all k = 1, . . . , m and x ∈ F , the quadratic

constraints in (QCQP) are redundant. The constraints Qk • X + (ck)
T

x ≤ bk are also
redundant in (CV) because each point in C satisfies these constraints. Therefore, the
constraints being linear, are valid for conv C . The problem then reduces to the linearly
constrained case addressed in [18].

If xT Qk x + (ck)
T

x ≥ bk for all k = 1, . . . , m, and x ∈ F , any point

(
1 xT

x X

)

in L ∩ conv C can be expressed as a convex combination of points in C that satisfy

the quadratic constraints as equalities and are, therefore, in C ∩L . Then,

(
1 xT

x X

)

∈
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Semidefinite relaxations for quadratically constrained quadratic programming 139

conv(L ∩ C ). In other words, conv(L ∩ C ) ⊇ L ∩ conv C . Since the objec-
tive function of (CV) and (QCQP) is the same linear function in matrix space and
conv(L ∩ C ) ⊆ L ∩ conv C , we have vCV = f ∗. ��

Now, we consider the convex hull of C . Let s ∈ R
n+ be the slacks for the inequality

x ≤ 1. Rewrite all constraints in F as equalities and lift the set C to a higher space:

C + =

⎧
⎪⎨

⎪⎩

⎛

⎝
1
x
s

⎞

⎠

⎛

⎝
1
x
s

⎞

⎠

T

| (a p)
T x = d p, p = 1, . . . , q, x + s = e,

(
x
s

)

≥ 0

⎫
⎪⎬

⎪⎭
.

Based on Proposition 2.1 in [18], we have:

conv C + =
⎧
⎨

⎩

⎛

⎝
1 xT sT

x X Z
s Z T S

⎞

⎠ ∈ P | (a p)
T x = d p, p = 1, . . . , q; x + s = e;

a p(a p)
T • X = (d p)

2; diag(X + 2Z + S) = e

⎫
⎬

⎭
,

where s = e − x, Z = xeT − X , and S = eeT − xeT − exT + X . After relaxing
conv C + in (x, X) space, we get:

conv C ⊆
{(

1 xT

x X

)

∈ P | (a p)
T x = d p, p = 1, . . . , q;

a p(a p)
T • X = (d p)

2; eeT − xeT − exT + X ≥ 0; xeT − X ≥ 0

}

.

Note that the bound constraint x ≤ e is dominated by the last two inequalities. Then,
the convex hull of C is outer-approximated by a copositive constraint, which makes
the convex relaxation (CV) a convex copositive programming problem. However, the
problem is still NP-hard. A natural approach is to further outer-approximate the cone
of completely positive matrices by computable convex cones.

It is known that P ⊆ N . A relaxation of conv C therefore is:

CR =
{ (

1 xT

x X

)

∈ N | (a p)
T x = d p, p = 1, . . . , q;

a p(a p)
T • X = (d p)

2; eeT − xeT − exT + X ≥ 0; xeT − X ≥ 0

}

.

The constraint Y =
(

1 xT

x X

)

∈N is a linear and semidefinite constraint Y �0, Y ≥0.

Since conv C ⊆ CR , we have an SDP relaxation, known as the doubly nonnegative
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140 X. Bao et al.

relaxation:

(DNN) vDN N = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

a p(a p)
T • X = (d p)

2

eeT − xeT − exT + X ≥ 0

xeT − X ≥ 0

X ≥ 0

X � xxT .

The inequalities eeT − xeT − exT + X ≥ 0, xeT − X ≥ 0 and X ≥ 0 are the
convex/concave envelopes of Xi j = xi x j over 0 ≤ x ≤ e. It is then clear that:

Proposition 7

vDN N ≤ vCV ≤ f ∗.
For low-dimensional problems, [5] proposed an exact doubly nonnegative repre-

sentation for C when F is a simplex and an exact positive semidefinite representation
for C when F is a two-dimensional box, based on the fact that P = N for sets of
dimension less than or equal to 4. Although conv C ⊂ CR for higher dimensions, the
result of [5] demonstrates the potential strength of approximating conv C by combin-
ing polyhedral and semidefinite programming relaxations to construct relaxations for
QCQP problems.

The doubly nonnegative relaxation (DNN) can also be obtained by Lagrangian
duality for QCQP with the following redundant constraints:

xT a p(a p)T x = (d p)2

xxT − xeT − exT + eeT ≥ 0

xeT − xxT ≥ 0

xxT ≥ 0.

4 Relaxations of KKT conditions

In this section, we discuss SDP relaxations for QCQP that incorporate the first order
Karush–Kuhn–Tucker (KKT) conditions. Previous studies that enforce KKT condi-
tions in SDP relaxations for quadratic programming problems can be found in [20]
for linearly constrained QP, and in [19] for box QP.

Using the Lagrangian function (1), any locally optimal solution x of QCQP must
satisfy the following two sets of first-order conditions for some λ ∈ R

m+, υ ∈ R
q , ω ∈

R
n−, and μ ∈ R

n+; stationarity:

2

(

Q0 +
m∑

k=1

λk Qk

)

x + c0 +
m∑

k=1

λkck +
q∑

p=1

υpa p + ω + μ = 0, (2)
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and complementary:

λk(xT Qk x + ck T
x − bk) = 0, k = 1, . . . , m (3)

ωi xi = 0, i = 1, . . . , n (4)

μi (xi − 1) = 0, i = 1, . . . , n. (5)

Proposition 8 Let (x, λ, υ, μ) satisfy the stationarity and complementarity condi-
tions. Then, we have

xT Q0x + (c0)
T

x = 1

2
(c0)

T
x + 1

2

m∑

k=1

λk(c
k)

T
x −

m∑

k=1

λkbk

−1

2

q∑

p=1

υpd p − 1

2

n∑

i=1

μi . (6)

This result follows by pre-multiplying (2) by xT and substituting (3), (4) and (5) in
the resulting equation.

The optimality conditions can be added to the original problem, thereby reducing
the feasible region while lifting the problem into a higher space that includes the
Lagrange multipliers as variables. After dropping the non-quadratic Eq. (3), Eqs. (2),
(4), (5), and (6) can be relaxed and formulated as semidefinite constraints and com-
bined with other SDP relaxations for QCQP. We lift the problem into matrix space by
considering

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
x
λ

υ

ω

μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
x
λ

υ

ω

μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

� 0

and substituting all quadratic terms by new variables

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 xT λT υT ωT μT

X XλT
Xυ T XωT XμT

S1 S2 S3 S4

S5 S6 S7

S8 S9

S10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

� 0.

For example, Eq. (5) can be represented by

diag(Xμ) − μ = 0.
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After defining matrices

C =
⎛

⎜
⎝

(c1)
T

...

(cm)T

⎞

⎟
⎠ ∈ R

m×n

and

Q′i =
⎛

⎜
⎝

Q1
i•
...

Qm
i•

⎞

⎟
⎠ ∈ R

m×n

for i = 1, . . . , n, we obtain the following set of semidefinite constraints according to
the KKT conditions of QCQP:

2(Q0
i•)

T
x + 2Q′i • Xλ + c0

i + ∑m
k=1 λkck

i + ∑q
p=1 υpa p

i

+ωi + μi = 0, i = 1, . . . , n

Q0 • X + 1
2 (c0)

T
x − 1

2 C • Xλ + ∑m
k=1 λkbk

+ 1
2

∑q
p=1 υpd p + 1

2

∑n
i=1 μi = 0

diag(Xω) = 0

diag(Xμ) − μ = 0

λ ≥ 0, ω ≤ 0, μ ≥ 0

Y11 = 1, Y � 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Most of the new variables defined for the quadratic terms in the matrix Y do not
appear in the equations. In order to reduce the dimension of matrix variables involved in
the semidefinite constraints, we drop all complementarity conditions and reformulate
the semidefinite constraints. Let

Y ′ =
⎛

⎝
1 xT λT

x X XλT

λ Xλ S

⎞

⎠ .

The reduced set of KKT constraints is:

2(Q0
i•)

T
x+ v2Q′i • Xλ+c0

i + ∑m
k=1 λkck

i +
∑q

p=1 υpa p
i +μi ≥ 0, i =1, . . . , n

Q0 • X + 1
2 (c0)

T
x − 1

2 C • Xλ + ∑m
k=1 λkbk + 1

2
∑q

p=1 υpd p + 1
2

∑n
i=1 μi = 0

λ ≥ 0, μ ≥ 0

Y ′ � 0.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)
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By derivation, any optimal solution of QCQP must satisfy the two sets of
semidefinite constraints (7) and (8), which can therefore be embedded in other SDP
relaxations. In [19], it was shown that, for box QP, incorporating the first and sec-
ond order optimality conditions in Shor’s relaxation with upper bounds for diagonal
elements of the matrix variables enhances the performance of branch-and-bound algo-
rithms despite the fact that it has been shown theoretically that adding the optimality
conditions does not tighten the relaxation at the root node. [20] also presents empiri-
cal evidence showing that addition of these optimality conditions tightens the feasible
region of SDP relaxations for linearly constrained QP in the context of branch-and-
bound. Consider the following SDP:

minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

x ≤ e

x − diag X ≥ 0

X � xxT .

We can use these KKT constraints to further tighten the strengthened Shor relax-
ations, such as (SD). One possibility is to add all KKT constraints to (SD):

(KKT1) vK K T 1 = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

x ≤ e

x − diag X ≥ 0

X � xxT

Constraints (7).

Another possibility is the relaxation (SD) with a reduced set of KKT constraints:

(KKT2) vK K T 2 = minx,X Q0 • X + (c0)
T

x

s.t. Qk • X + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

x ≤ e

x − diag X ≥ 0

X � xxT

Constraints (8).
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5 Equivalence and dominance of different SDP relaxations

Proposition 9 The Shor relaxation with RLT and the doubly nonnegative relaxation
are equivalent. In other words,

vS RLT = vDN N .

Proof Assume (x, X) is a feasible solution of the Shor relaxation with RLT. Since
(a p)T x = d p and Xa p = d px for any p = 1, . . . , q, we have

(a p)
T Xa p = d p(a p)

T x = (d p)
2
.

That is a p(a p)T • X = (d p)2. Thus (x, X) is also feasible to the doubly nonnegative
relaxation, and vS RLT ≥ vDN N .

On the other hand, assume that (x, X) is a feasible solution of the doubly nonnega-
tive relaxation. Since (a p)T x = d p and a p(a p)T • X = (d p)2 for any p = 1, . . . , q,
we have

(a p)
T
(X − xxT )a p = 0.

Since X − xxT � 0, there exists a symmetric matrix B such that X − xxT = B2.
That is (a p)T B2a p = 0. Then Ba p = 0 and

(X − xxT )a p = 0 = Xa p − d px .

Thus, (x, X) is also feasible to the SRLT relaxation, and vS RLT ≤ vDN N . ��
Proposition 1 in [17] also provides a result analogous to Proposition 9.

Proposition 10

vShor ≤ vDLG1 ≤ vS RLT .

Proof The first inequality was proved in Sect. 2.2. The second inequality holds because
(a p)T x = d p and a p(a p)T •X = (d p)2 imply a p(a p)T •X−2d p(a p)T x+(d p)2 = 0.

��
Theorem 1

vLG = vShor = vDShor ≤ vSD ≤ vSC ≤ vS RLT = vDN N ≤ f ∗.

Proof The first two equalities are from Proposition 2. The next three inequalities are
based on the following facts:

1. x − diag X ≥ 0 and diag X ≥ 0 imply x ≥ 0.
2. X ≥ 0 and xeT − X ≥ 0 imply x ≥ 0.
3. xeT − X ≥ 0 and eeT − xeT − exT + X ≥ 0 imply x ≤ e.

The last equality in the statement of the theorem comes from Proposition 9. Finally,
the last inequality follows from the arguments given in Sect. 3. ��
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6 Computational comparison of relaxations

In this section, we supplement the above theoretical comparisons of relaxations with
computational comparisons. The primary motivation is that, even when a dominance
relationship has been established, the practical solvability of tight relaxations still
needs to be investigated. Although SDP problems can be solved in polynomial time,
the computational effort required for some SDP relaxations, especially those combin-
ing linear and semidefinite constraints, can be significantly large. In the computations,
we made no effort to identify the best possible way for implementing any particular
relaxation. For instance, we did not consider row generation schemes for relaxations
with a large number of constraints. Our primary objective has been to study the relative
strengths of relaxations and identify relaxations that are easy to solve with general-
purpose SDP codes.

The test problems used here were randomly generated. The variables x were
bounded in a unit box [0, 1]n , and the number of variables n was varied from 20
to 60. The vectors ck, a p, bk , and d p, and the matrices Qk were formed with compo-
nents randomly generated in the interval [−1, 1] from uniform distributions. The only
exception was the values for bk , which were generated similarly in the range [0, 100].

It is known that QCQPs with many quadratic constraints are much harder to solve
than those with only bounds or linear constraints. In addition, some SDP relaxations
essentially ignore linear constraints and lead to weak bounds for problems with many
linear constraints. For these reasons, we decided to construct test problems in which
the numbers of quadratic and linear constraints were varied according to the following
combinations:

1. QCQPs with m = 1, q = n/10.
2. QCQPs with m = 1, q = n/5.
3. QCQPs with m = n/2, q = n/10.
4. QCQPs with m = n, q = n/10.

We also decided to investigate whether the density and the fraction of negative
eigenvalues of matrices Qk affect the quality of bounds and performance of SDP
solvers used to solve the relaxations under study. For this purpose, we constructed
matrices Qk with density 25, 50 and 100%. For the fully dense problems, we gen-
erated matrices with 25, 50, 75, and 100% of negative eigenvalues. In all cases, the
matrices Qk were obtained as a product Zk Dk(Zk)t . Here, Zk is a random unitary
matrix, while the diagonal matrix Dk has all its negative and positive elements ran-
domly generated in [−1, 0] and [0, 1], respectively. The number of negative elements
of Dk was set to the desired number of negative eigenvalues for Qk . For each spec-
ification (the dimension, the density, and the percentage of negative eigenvalues of
Qk), we generated and solved five instances. Overall, we tested 700 instances with
each relaxation, with the exception of one relaxation for which additional problems
were required to obtain a clear sense of the results. As some of these problems are
still beyond the capabilities of exact solvers, in the calculation of relaxation gaps, we
used the best feasible solution obtained by BARON, MINOS, CONOPT, and SNOPT,
where each solver was executed with a time limit of 10,000 s under GAMS [16]. All
computational times are reported on Intel Xeon 1,700 Mhz processors.
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There are various software packages available for solving SDP, an overview of
which can be found in [29]. Among the state-of-the-art SDP solvers, we considered
three packages: SDPA 7.3.0 [50], CSDP 6.0.1 [15] and DSDP 5.8 [10], mainly because
they are available in subroutine libraries that can be easily embedded in larger appli-
cations, such as branch-and-bound algorithms. All solvers provide a primal as well as
dual solution value of the SDP under consideration and terminate when these values
are within a predefined tolerance. In all cases, the value of the dual solution provides
a valid lower bound for the QCQP and was used to report relaxation gaps. Hence,
the relaxation gaps presented in the sequel represent the sum of the actual gap of the
relaxation under study and the gap introduced by the SDP solver while solving the
SDP relaxation; the latter was no more than 1% unless otherwise stated below. Since
the actual gap of the SDP relaxations is much larger than 1% for most cases, our
computational results provide a meaningful basis of comparisons of SDP relaxations.

In the first experiment, SDPA, CSDP, and DSDP were used to solve (DNN), one
of the most difficult SDP relaxations considered, with default settings for problems
with up to 50 variables. Figure 1 shows the relative gap for (DNN) obtained by the
solvers and the computational time taken by the solvers as a function of problem size.
From the figure, it can be seen that SDPA requires higher computational effort and
provides more accurate solutions, while DSDP is faster but does not meet the 1%
optimality tolerance. CSDP achieves the same accuracy as SDPA with less compu-
tational time. Further comparisons between SDPA and CSDP with a 5% instead of
the default 1% tolerance led to average CPU time reductions of 25% for SDPA and
50% for CSDP. After this preliminary experimentation, we decided to use CSDP to
carry out detailed computational experiments with the relaxations under study, using
a relative termination tolerance of 1%.

The remainder of the experiments are devoted to the computational comparison
of seven different relaxations that were presented earlier in the paper. In Fig. 2, we
compare the tightness and computational effort required by these SDP relaxations
as a function of problem size. As expected, (DNN) and (SRLT) are equivalent and
provide the tightest lower bounds for QCQP problems. On average, the relative gap
of these relaxations is 3%, while the computational time required averaged about
400 s per problem. The strengthened Shor relaxation (SC), which is a relaxation of
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Fig. 1 Comparison of SDP solvers applied to (DNN) relaxation (from results with 480 problems)
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Fig. 2 Comparison of seven different relaxations (from results with 700 problems)

(DNN)/(SRLT), provides an average gap of 9% in an average of 359 s. Since the dimen-
sions of both (DNN) and (SC) grow fast with problem size, solving these relaxations
for larger QCQP problems is challenging for current SDP solvers.

The other four relaxations take considerably less computational time. (DLG1)
achieves the best lower bounds of these four relaxations, with a relative gap of 13%
on average. Relaxation (SD) provides a 19% relative gap on average. In fact, (DLG1)
provided at least as good bounds (SD) for all problems we solved. On the other hand,
even though (DLG1) was on average 4% tighter than (SC), there were many prob-
lems for which (SC) provided stronger bounds than (DLG1). Adding the constraint
diag(X) ≤ x to (DLG1) results in an insignificant improvement over (DLG1) as it
strengthens this relaxation by an average of only 0.16%.

Neither (KKT1) nor (KKT2) leads to better lower bounds than (SD), despite the fact
that they contain additional constraints and require more computational time than (SD).
Relaxation (SC) is second only to (DNN)/(SRLT) in terms of relaxation gap. However,
since the computational requirements of (SC) follow closely those of (DNN)/(SRLT),
the latter relaxations dominate (SC). Clearly, (DNN)/(SRLT) is the best approach for
obtaining tight bounds for general QCQP problems. On the other hand, (DLG1) is the
best relaxation amongst all others. It provides weaker bounds than (DNN)/(SRLT) but
at a small fraction of the computational requirements. Overall, all other relaxations are
dominated by (DNN)/(SRLT) and/or (DLG1), in terms of quality and/or efficiency of
solution. The remainder of this section presents more detailed results for the dominant
relaxations.

In Fig. 3, we show the effect of the number of quadratic constraints m and linear
constraints q on the SDP relaxations (DLG1) and (DNN)/(SRLT). It is known that
Lagrangian dual relaxations are, in general, weak for QCQP problems with many lin-
ear constraints. The Lagrangian relaxation (DLG1) does not suffer from this because it
includes a squared form of the linear constraints. From the figure, we see that increas-
ing the number of linear constraints has a more profound effect on (DLG1) than on
(DNN)/(SRLT). On the other hand, increasing the number of quadratic constraints has
a similar effect on both relaxations.

To investigate the effect of the density of matrices Qk on the relaxations, we plot
the relative gap and the computational time for problems with density of 25, 50, and
100% in Fig. 4. The figure shows that sparse and dense problems tend to be easier than
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Fig. 3 Effect of the constraint structures on (DLG1) (a, b) and (DNN)/(SRLT) (c, d) (from results with
700 problems)

problems with 50% density for smaller problems but no clear trend is observed, in
general. The effect of matrix density on the computational effort is also not significant.
The main reason could be that, even when the matrices in the SDP relaxations are rela-
tively sparse, the Schur complement, which is computed by SDP solvers implementing
interior point methods, is still dense except for extremely sparse problems.

Figure 5 presents the relaxation gap and computational time for relaxations (DLG1)
and (DNN)/(SRLT) for problems for which the fraction of negative eigenvalues was
0.25, 0.50, 0.75, and 1. In both cases, the relaxation gap increases as we move away
from the reverse convex case (100% negative eigenvalues) and then decreases again
as we approach the convex case (0% negative eigenvalues). This gap peaks between
50 and 75% negative eigenvalues for (DNN)/(SRLT) and around 10% for (DLG1).
The former is clear from Fig. 5c, while the latter is seen in Fig. 6, which provides
more detailed results for additional fractions of negative eigenvalues for (DLG1). The
performance of (SD), (SC), (KKT1) and (KKT2) was found to be similar to that for
(DLG1).

7 SDP relaxations for bilinear programming

Bilinear programming is a special case of general QCQP, where the matrices Qk, k =
0, 1, . . . , m have no nonzero diagonal elements. For this case, all quadratic expressions
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Fig. 4 Effect of matrix density (D) on (DLG1) (a, b) and (DNN)/(SRLT) (c, d) (from results with 300
problems)

in the optimization problem are bilinear functions. In this section, we propose an SDP
relaxation for this particular problem based on the convex envelope of bilinear func-
tions.

The convex envelope of bilinear and more general multilinear functions has been
studied extensively [8,34,36]. We first give the definition of a multilinear function.

Definition 1 A function M(x1, . . . , xn) is said to be a general multilinear function if,
for each i ∈ {1, . . . , n}, the function M(x0

1 , . . . , xi , . . . , x0
n ) depends linearly on the

vector xi , provided that all the remaining n − 1 vector arguments are fixed.

Let M(x) be a multilinear function over a hyper-rectangle P and let vert(P) = {π t }
denote the set of vertices of P . In [34], it was shown that the convex envelope of the
multilinear function over a hyper-rectangle is polyhedral, and is generated by restrict-
ing attention to the extreme points of the hyper-rectangle. The convex envelope of
M(x) over P can thus be expressed in a higher-dimensional space as follows:

conv
P

M(x) = min
ϕ

{
∑

t

ϕt M(π t ) | x =
∑

t

ϕtπ
t ,

∑

t

ϕt = 1, ϕt ≥ 0

}

. (9)
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Fig. 5 Effect of the fraction (E) of negative eigenvalues on (DLG1) (a, b) and (DNN)/(SRLT) (c, d) (from
results with 400 problems)
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We will show that the following is an SDP relaxation for bilinear programming
problems:

(BL) vBL = minx,X ′ Q0 • X ′ + (c0)
T

x

s.t. Qk • X ′ + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e

diag X ′ = x

X ′ � xxT .

Assume that the relative interior of the following set is nonempty:

{
(x, X) | Qk • X + (ck)

T
x < bk, k = 1, . . . , m, (a p)

T x = d p, p = 1, . . . , q,

0 < x < e, diag X = x, X � xxT
}

Proposition 11 Consider the QCQP problem with diag(Qk) = 0, k = 0, 1, . . . , m.
The SDP (BL) provides a lower bound for the QCQP problem. In other words,

vBL ≤ f ∗.

Thus (BL) is a valid relaxation for the general bilinear programming problem.
To prove Proposition 11, we need the following proposition.

Proposition 12 Consider the following linearly constrained bilinear programming
problem:

(LQP) f ∗
l = minx xT Qx + (c)T x

s.t. (a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e,

where diag(Q) = 0. The following SDP provides a lower bound for (LQP).

(LBL) vBL
l = minx,X ′ Q • X ′ + (c)T x

s.t. (a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e

diag X ′ = x

X ′ � xxT .

In other words,

vBL
l ≤ f ∗

l .
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Proof Assume x is a feasible solution of (LQP). Let P = [0, 1]n, vert(P) = {π t } ∈
{0, 1}n . Since x ∈ P , there exist multipliers ϕt such that

x =
∑

t

ϕtπ
t ,

∑

t

ϕt = 1, ϕt ≥ 0. (10)

Since diag(Q) = 0, the quadratic expression xT Qx is a bilinear and, hence, multilin-
ear function. Using (9), there exist ϕt satisfying Eq. (10) and such that

xT Qx ≥
∑

t

ϕt (π
t )

T Qπ t .

Letting X ′ = ∑
t ϕt pi t (π t )

T , we have

xT Qx ≥ Q • X ′. (11)

Consider the matrix

(
1 xT

x X ′
)

. By Eq. (10), we have:

(
1 xT

x X ′
)

=
∑

t

ϕt

(
1 (π t )

T

π t π t (π t )
T

)

=
∑

t

ϕt

(
1
π t

)(
1
π t

)T

� 0.

In addition, diag X ′ = ∑
t ϕtπ

t = x . Then, we have

X ′ � xxT

diag X ′ = x .

It follows that (x, X ′) is feasible to the SDP (LBL). Furthermore, because of Eq. (11),
we have

xT Qx + (c)T x ≥ Q • X ′ + (c)T x .

Therefore vBL
l ≤ f ∗

l . ��

Then, we show Proposition 11 is valid.

Proof We start from the Lagrangian dual problem of QCQP vLG
0 in Sect. 2.2.

Since diag(Qk) = 0 for k = 0, 1, . . . , m, the dual subproblem vSLG
0 = minx∈χ

L(x, λ, 0, 0, 0) is a linearly constrained bilinear programming problem. Using
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Proposition 12, an SDP relaxation for the dual subproblem is:

(LBL0) vBL
l0 = minx,X ′

(

Q0 +
m∑

k=1

λk Qk

)

• X ′ +
(

c0 +
m∑

k=1

λkck

)T

x −
m∑

k=1

λkbk

s.t. (a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e

diag X ′ = x

X ′ � xxT .

The dual of (LBL0) is

(DLBL0) vDBL
l0 = maxυ,ω,μ,α −

q∑

p=1

υpd p − μT e

s.t. A(λ, υ, ω,μ, α) � 0

ω ≤ 0, μ ≥ 0,

where the symmetric matrix A(λ, υ, ω,μ, α) equals

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−
(

m∑

k=1

λkbk

)

1
2

⎛

⎝c0 +
m∑

k=1

λkck +
q∑

p=1

υpa p + ω + μ + α

⎞

⎠

T

. . . Q0 +
m∑

k=1

λk Qk − diag(α)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

By weak duality, we have

vDBL
l0 ≤ vBL

l0 ≤ vSLG
0 , ∀λ.

Thus, vDBL ≤ vLG
0 , where vDBL is as follows:

(DBL) vDBL = maxλ,υ,ω,μ,α −
q∑

p=1

υpd p − μT e

s.t. A(λ, υ, ω,μ, α) � 0

λ ≥ 0, ω ≤ 0, μ ≥ 0.
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The dual of (DBL) is:

(BL) vBL = minx,X ′ Q0 • X ′ + (c0)
T

x

s.t. Qk • X ′ + (ck)
T

x ≤ bk, k = 1, . . . , m

(a p)
T x = d p, p = 1, . . . , q

0 ≤ x ≤ e

diag X ′ = x

X ′ � xxT .

With the Slater Condition, we have vBL = vDBL . Therefore:

vBL ≤ vLG
0 ≤ f ∗.

��
The validation of this proposition can also be shown by the equivalence between

(BL) and (SD).

Proposition 13 For the QCQP problem with diag(Qk) = 0, k = 0, 1, . . . , m, the
SDP relaxation (BL) and the Shor relaxation with convex/concave envelopes for diag-
onal elements (SD) are equivalent. In other words,

vSD = vBL .

Proof Assume (x, X ′) is a feasible solution of (BL). Since diag X ′ = x and 0 ≤ x ≤ e,
we have

diag X ′ ≥ 0

diag X ′ ≤ x

diag X ′ ≥ 2x − e.

Thus (x, X ′) is also feasible to (SD), and vSD ≤ vBL . On the other hand, assume
(x, X) is a feasible solution of (SD). Since X � xxT , we have diag X ≥ 0. Therefore:

0 ≤ diag X ≤ x ≤ e.

If diag X = x , then (x, X) is also feasible to (BL), and vSD ≥ vBL . Otherwise, let
z = x − diag X ≥ 0 and X ′ = X + diag z. Since X � xxT , we have

diag X ′ = x,

X ′ − xxT = X − xxT + diag z � 0.

Since diag(Qk) = 0, k = 0, 1, . . . , m, (x, X ′) is feasible to (BL) and Q0 • X +
(c0)T x = Q0 • X ′ + (c0)T x . Thus, vSD ≥ vBL , which completes the proof. ��
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8 Conclusions

In this paper, we reviewed a number of existing and presented a number of new SDP
relaxations for general QCQP problems. It was shown that relaxations with bounds
on diagonal elements of the matrix variable X can provide fast approximations, while
complete bounding of all the components of X is necessary for tight relaxations.
Whereas much sharper than other relaxations, the (DNN)/(SRLT) relaxations are also
time consuming for current SDP solvers. In a recent work, Burer [17] is addressing the
development of a decomposition algorithm to solve bound-constrained (DNNs). When
extended to general constraints, this approach is likely to provide tight bounds for
QCQP problems at more realistic computing times compared to current SDP solvers.
Towards the same end, future research should also address the development of approx-
imate solution techniques for the dual of (DNN)/(SRLT). At the time of this writing
the computational results with (DLG1), an SDP relaxation derived from Lagrangian
relaxation after the addition of redundant nonlinear constraints to the primal, suggest
that this relaxation may achieve the best balance between gap quality and solvabil-
ity with current SDP solvers. Comparisons of these relaxations in the context of a
branch-and-bound algorithm should be addressed by future research.

Acknowledgments We are grateful to two anonymous referees whose comments and suggestions helped
us improve the presentation of this material considerably.
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