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Abstract: Verification effectiveness in open-set, text-independent speaker identification is the
authors’ primary subject of concern. The study includes an analysis of the characteristics of this
mode of speaker recognition and the potential causes of errors. The use of well-known score nor-
malisation techniques for the purpose of enhancing the reliability of the process is described and
their relative effectiveness is experimentally investigated. The experiments are based on the
dataset proposed for the 1-speaker detection task of the NIST Speaker Recognition Evaluation
2003. On the basis of experimental results, it is demonstrated that significant benefits are achieved
by using score normalisation in open-set identification, and that the level of this depends highly on
the type of approach adopted. The results also show that better performance can be achieved by
using the cohort normalisation methods. In particular, the unconstrained cohort method with a
relatively small cohort size appears to outperform all other approaches.

1 Introduction

Speaker identification is a main subclass of automatic
speaker recognition, defined as determining the correct
speaker of a given test utterance from a registered popu-
lation. When the process includes the option of declaring
that the test utterance does not belong to any of the
known (registered) speakers, then it is referred to as
open-set speaker identification (OS-SI). A second subclass
of speaker recognition is speaker verification (SV). This
process involves determining whether a speaker is who
(s)he claims to be. In this case, according to the degree of
closeness of the test utterance to the target speaker model,
a decision is made as to whether to accept or reject the
claimant.
Given a set of registered speakers and a sample test utter-

ance, the OS-SI process can be divided into two successive
stages of identification and verification. Firstly, this is
because it is required to identify the speaker model in the
set that best matches the test utterance. Secondly, it must
be determined (verified) whether the test utterance has actu-
ally been produced by the speaker associated with the best-
matched model or by some unknown speaker outside the
registered set. The difficulty in this problem is exacerbated
if speakers are not required to provide utterances of specific
texts during identification trials. In this case, the process is
referred to as open-set, text-independent speaker identifi-
cation (OSTI-SI). This is the most challenging class of
speaker recognition. It has a wide range of applications in

such areas as document indexation, surveillance, and
authorisation control in smart environments.

A factor influencing the complexity of OSTI-SI is the size
of the population of registered speakers. As this population
grows, the confusion in discriminating among the registered
speaker voices increases. In addition, the growth in the said
population also increases the difficulty in confidently
declaring a test utterance as belonging to or not belonging
to the initially nominated registered speaker.

The problem of OSTI-SI is further complicated by unde-
sired variations in speech characteristics. These variations
can have different causes ranging from environmental
noise to uncharacteristic sounds generated by the speaker.
The resultant variations in speech cause a mismatch
between the corresponding test and pre-stored voice pat-
terns from the same speaker. Such intra-speaker variations
have been the subject of extensive study in recent years,
mainly in the field of SV. The general problem in SV is
that of minimising the overlapping between the score distri-
butions for true speakers and impostors, so that it would be
possible to verify or reject a claimed identity to a high
degree of confidence using a preset threshold. The said mis-
match between the testing and training material, however,
has undesired effects on the score distribution parameters
(i.e. variance and mean) for the true speaker. This can, in
turn, lead to further overlapping of the score distributions
for a true speaker and the impostors targeting that particular
speaker. In practice, it is not possible to gather accurate
information on the existence, level and nature of speech
variations. In such cases, the most effective way to deal
with this problem is score normalisation [1–7]. To date, a
number of normalisation techniques have been developed,
mainly with the aim of tackling the problem in the
context of SV. In general, these techniques are based on
either the Bayesian approach or the standardisation of the
score distributions.

The problem in the second stage of OS-SI, however, is
somewhat more challenging than that in the standard SV.
This, which is further highlighted in Section 2, is due to
the initial nomination of the speakers of the test utterances
based on the best match-scores obtained in the first stage of
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the process. As a result, for example, each out-of-set
speaker will have to be discriminated from the registered
speaker who is its closest pair in the set. Because of the
extended challenge in open-set identification and because
of the differences in the characteristics of various score nor-
malisation methods (Section 3), it may not be possible to
foresee the effectiveness of the score normalisation
methods in OS-SI from that obtained for SV. This is the
focus of the investigations presented in this paper. It
should be pointed out that there have previously been
some studies on the use of score normalisation in speaker
identification [8–11]. Some of these studies [8, 9] were con-
cerned with the use of score normalisation at the sub-
utterance (segmental/frame) level, which is not the
subject of work in this paper. Moreover, in all the previous
studies, only certain individual normalisation methods have
been used for the benefit of closed-set identification. To
date, the literature lacks a thorough evaluation of the rela-
tive effectiveness of various methods in the second stage
of open-set identification.

2 Open-set speaker identification

Speaker identification involves representing a set of regis-
tered speakers using their corresponding statistical model
descriptions, that is l1, l2, . . . , lN, where N is the
number of speakers in the set. Each model description is
developed using the short-term spectral features extracted
from the utterances produced by the registering speaker.
On the basis of such speaker modelling, the process of
speaker identification in the open-set mode can be stated as

max
1�n�N

f pðOjlnÞg _ u

! O [
li; i ¼ arg max1�n�N f pðOjlnÞg

unknown speaker model

�
ð1Þ

where O denotes the feature vector sequence extracted from
the test utterance and u is a pre-determined threshold. In
other words, O is assigned to the speaker model that
yields the maximum likelihood over all other speaker
models in the set, if this maximum likelihood score is
greater than the threshold u. Otherwise, it is declared as
originated from an unknown speaker. On the basis of the
above description, for a given u, three types of errors are
possible:

† O, belonging to lm, not yielding the maximum likelihood
for lm,
† assigning O to one of the models in the set when it does
not belong to any of them and
† declaring O that belongs to lm and yields the maximum
likelihood for it, as originated from an unknown speaker.

In this paper, these error types are referred to as OSI-E,
OSI-FA and OSI-FR, respectively (where OSI, E, FA
and FR stand for open-set identification, error, false accep-
tance and false rejection, respectively). Evidently, the first
stage is responsible for generating OSI-E, whereas both
OSI-FA and OSI-FR are the consequences of the decision
made in the second stage.
It should be noted that an OSI-E in the first stage would

always lead to an error regardless of the decision in the
second stage. As the concern of this study is the second
stage, the efforts should be on evaluating the verification
reliability in the absence of any such identification errors
in the first stage. In the experimental sense, this assumption
involves discarding the false speaker nominations received

from the first stage, when the actual speakers are within the
registered set. Without such an assumption, a correct
speaker rejection decision in the second stage would
record a false rejection as far as the whole process is
concerned.

In an OS-SI scenario, the universal speaker set is divided
into two subsets of known (registered) speakers and
unknown speakers. An important point to note is that each
member of the unknown speakers can be falsely hypoth-
esised as one of the registered speakers only (against
whose model the unknown speaker achieves the highest
score). In other words, for a fixed number of registered
speakers, there are always a corresponding number of dis-
joint subsets of the unknown speakers. Each of these
subsets contains the non-clients who all achieve their
highest match-scores against one particular registered
speaker. Any changes in the registered (known) speaker
subset will result in corresponding changes in the number
and membership of these non-client subsets. In practice,
because of intersession variations, the membership of the
said non-client subsets may not be entirely rigid, that is,
an unknown speaker achieving its highest score against a
particular model on one occasion, and against another regis-
tered model on a different occasion due, for example, to
variation in his(her) speaking style.

To highlight the extent of difficulty in the second stage of
open-set identification, the problem can be re-expressed as a
special (but unlikely) scenario in the standard SV in which
each impostor targets the speaker model in the system for
which (s)he can achieve the highest score. This point is
further illustrated in Fig. 1 which shows typical score distri-
butions associated with these two forms of speaker recog-
nition under the same experimental conditions. It should
be pointed out that in the case of OS-SI, the client and non-
client speakers are referred to as known and unknown
speakers, respectively. In the case of SV, these are termed
true and impostor speakers. As observed in this figure, the
overlapping between the score distributions for unknown
and known speakers in OS-SI is considerably greater than
that between the score distributions for impostors and true
speakers in SV. This is due to the selection of the best-
matched models in the first stage of OS-SI, which has
forced the score distribution mean for unknown speakers
to be very close to that for the known speakers. It is also
interesting to note that, for the same reason, the distribution
variance for unknown speakers appears to be smaller than
that for impostors in the case of SV.

Fig. 1 Score distributions associated with SV and the second
stage of OSTI-SI

It should be stated that the slight difference between the known and
true speaker distributions is due to the fact that, in the case of
OSTI-SI, the scores (associated with known speaker utterances) yield-
ing an OSI-E are not included in the estimation of the known speaker
distribution
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3 Score normalisation

The main purpose of score normalisation is to help the sep-
aration between the score distributions for known and
unknown speakers. In practice, this is particularly important
because of the expected variations in speech characteristics.
The effective reduction in the overlapping of the said distri-
butions can lead to a reduction in OSI-FA and OSI-FR
for a preset threshold. The following describes various
methods in the two main categories of score normalisation
highlighted earlier.

3.1 Bayesian solution

Under the Bayesian framework, the score required for
making the decision in the second stage of open-set identi-
fication can be expressed as follows [5]

LðOÞ ¼ log pðOjlML
Þ � log pðOjlU

Þ ð2Þ

where lML ¼ li, i ¼ arg max1�n�N fp(Ojln)g, and lU is
the model representing the subset of unknown speakers
that can falsely be hypothesised (in the first stage) as
the speaker of lML. In order to deploy (2), p(OjlU) has
to be determined accurately. However, in practice lU is
unavailable. Therefore the best option is to determine an
appropriate replacement for p(OjlU). For this purpose,
the following three techniques can be adopted from the
field of SV [1–7].

3.1.1 World model normalisation: This technique
involves approximating p(OjlU) with p(OjlWM), where
lWM is a model generated using utterances from a very
large population of speakers (such a model is commonly
referred to as the world model (WM) [7] or the universal
background model [6]).
It can be argued that the role of this normalisation method

in OS-SI is to enhance the score for a known speaker when
the test utterance is degraded. The assumption here is that
both the reference model for the known speaker and the
WM are free from all possible degradations (because of
the use of clean training utterances or averaging-out the
effects of contaminations in speech in the case of the
WM). With such an assumption, it is not difficult to see
that the existence of degradations in the test utterance will
result in the scores against the known speaker model and
the WM to be influenced in the same way (unfavourably).
Consequently, the normalised score obtained using (2)
should remain relatively unaffected.
The technique, however, does not aim to suppress

the unknown speaker scores in relation to the scores for
the corresponding known speakers. The reason is that the
scores achieved by known and unknown speakers against
a phonetically rich WM are, in general, very similar and
any variations in these scores are not due to, or influenced
by, the identity of the speakers.

3.1.2 Cohort normalisation: In this method, the model
generated for each registered speaker is associated with a
cohort of speaker models that are most competitive with it
[2]. Here, the competitiveness of any two models is deter-
mined in terms of how close they are in the speaker
space. The entire cohort selection is carried-out prior to
the test phase, and log p(OjlU) in (2) is approximated by

rCNðO;lML;KÞ ¼
1

K

XK
k¼1

log pðOjlf ðlML;kÞÞ ð3Þ

where f (lML, i) = f (lML, j) if i = j and lf (lML,1),
lf (lML,2), . . . , lf (lML,K ) are the cohort of speaker models
associated with lML.

When the hypothesised speaker is a valid known speaker,
the effect of score normalisation with this method should be
similar in nature to that in the case of word model normal-
isation (WMN). In this respect, the approach in cohort nor-
malisation (CN) may be viewed as deploying the most
competitive subset of the WM speakers for each known
speaker. As such, CN should be more effective than
WMN in dealing with contamination in test utterances.
This is because the cohort of models that are selected to
be highly competitive with lML should provide a better
replication of the way p(OjlML) is degraded by distortion
in O, than is possible with WM that is relatively diluted
in terms of competitiveness. However, it should be
pointed out that the dilution in normalisation factor obtained
with WM is inherently limited. This is due to the fact that, in
the generation of p(OjlWM), there are relatively more sig-
nificant contributions by WM subsets that are the closest
to the observation O, and therefore significantly more com-
petitive with lML when O is produced by the true speaker.

In the use of CN in SV, it has already been found that, when
the cohort size is very small, the normalisation procedure
might potentially lead to the enhancement of impostor
scores [5]. Considering a cohort size of one as an extreme
case, it can be argued that the impostors, who score poorly
against a target model, may be falsely accepted because of
their scores against the single competing model being simi-
larly low. In other words, the technique results in the enhance-
ment of impostor scores relative to the true speaker scores. It
has been shown that the above adverse effect of CN drops
sharply as the cohort size is increased [5].

A similar behaviour of CN should be expected in OS-SI,
with the exception that here the scores achieved by exclu-
sive non-clients are normally relatively high (rather than
low) against both their respective best matched-models
and the corresponding competing models. As this is also
the case when the hypothesised speakers are known-
speakers, it appears that CN is not capable of unfavourably
influencing the scores for unknown speakers relative to
those for known speakers.

3.1.3 Unconstrained cohort normalisation: This
method is similar to the cohort approach with the exception
that the competing speaker models for each hypothesised
speaker are selected during the test trial. To be more
precise, log p(OjlU) in (2) is replaced with

rUCNðO;lML;KÞ ¼
1

K

XK
k¼1

log pðOjlfðkÞÞ ð4Þ

where f(i) = f( j) if i = j and lf (1), lf (2), . . . , lf (K )

are the models yielding the next K highest likelihood
scores after p(OjlML). Evidently, the method does not
require any additional processing such as model
generation/association prior to the test phase.

As indicated in (4), the competing speaker models are
selected on the basis of their closeness to the test token.
Therefore, in terms of enhancing a known speaker score,
the unconstrained cohort normalisation (UCN) performance
is at best similar to that of CN. This is because, due to the
similarity of competing speaker models to the test token,
the normalisation factor in this case is always greater than
or at least equal to that in the case of CN. For the same
reason, UCN provides a higher rate of suppression of
scores for unknown speakers compared with WMN and
CN. On the basis of (4), it is evident that the normalisation
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factor in UCN is inversely related to the cohort size
adopted. This gives rise to the question as to whether in
OSTI-SI, the UCN cohort size can be determined such
that it provides the best compensation when the test utter-
ance from a known speaker is degraded (i.e. matching the
CN performance), whereas still maintaining some effective-
ness in terms of suppressing the scores for unknown speak-
ers. Addressing this question is one of the aims of the
experimental investigations in this paper. Indeed, the exist-
ence of such an optimum cohort size could enable UCN to
outperform the other score normalisation procedures. On
the other hand, because of variations in operating con-
ditions, it might not be possible to determine one cohort
size that is optimum in all experimental setups. However,
the determination of some region of optimality could still
be beneficial in unseen operating conditions.

3.2 Standardisation of score distributions

This approach was originally proposed for SV [12] with the
aim of facilitating the use of a single threshold for all regis-
tered speakers. A major difficulty in setting a global
threshold in SV is that both impostor score distribution
and true speaker score distribution have different character-
istics for different registered speakers. An approach to tack-
ling this issue is that of fixing the characteristics of one of
the score distribution types for all registered speakers.
Currently, the common practice is to standardise the impos-
tor score distributions. The main reason for operating on the
impostor score distributions, rather than on the true speaker
score distributions, is the unavailability of sufficient data (in
the existing databases) for a reliable estimation of the stan-
dardisation parameters in the latter approach. As discussed
subsequently, there are different approaches to computing
the parameters for such a standardisation. In all cases,
however, the computed parameters (i.e. mean and variance)
are used for normalising the verification scores. The follow-
ing presents the descriptions of the two main approaches in
this category. The discussions are initially in the context
of SV with the assumption that the impostor score distri-
butions are Gaussian. This is then followed by a discussion
on the deployment of the methods for OS-SI.

3.2.1 Zero normalisation (Z-norm): This method
approaches the problem of score normalisation from the
perspective of the speaker models. While aiming to
standardise the impostor score distribution, the method
provides an alignment of the registered speaker models,
which are generated under different training conditions,
prior to the test phase. In general, for each registered
speaker model a single impostor distribution is obtained
using a set of development impostor utterances. The mean
and the standard deviation of the impostor distribution for
each speaker model are then used for score normalisation
as follows [7]

LSVðOÞ ¼
log pðlC

jOÞ � mzðl
C
Þ

szðl
CÞ

ð5Þ

where lC is the model associated with the claimed identity
(target speaker model), and mz (.) and sz(.), which are
specific to lC, represent the mean and standard deviation
of the impostor score distribution. It is important to note
that (5) involves a posteriori probability, suggesting that
zero normalisation (Z-norm) should be used in conjunction
with one of the score normalisation methods described in
Section 3.1 or test normalisation (T-norm) that is discussed
in Section 3.2.2. The reason is that, in order for this method

to tackle any misalignments in the speaker models cor-
rectly, the adopted development impostor utterances
should themselves be free from any misalignments. In prac-
tice, however, the development impostor utterances are mis-
aligned because of various forms of speech anomalies.
Therefore it is essential to enhance the alignment of these
impostor utterances using another type of normalisation
method before adopting them for Z-norm. In this case, (5)
can be re-expressed to also reflect the use of score normal-
isation for impostor utterance alignment. The normalisation
type adopted for this purpose must be consistent with that
used in the subsequent test phase.

3.2.2 Test normalisation (T-norm): In this method, the
required normalisation parameters are determined dynami-
cally in the test phase using a set of example impostor
models. The score normalisation in this case is based on
the following equation [7]

LSVðOÞ ¼
log pðOjlC

Þ � mT ðOÞ

sT ðOÞ
ð6Þ

where mT (O) and sT (O) are the mean and standard
deviation of log p(Ojl1

EI), log p(Ojl2
EI), . . . , log p(OjlJ

EI)
and l j

EI is the jth example impostor model.

3.2.3 Deployment of Z-norm and T-norm in
OSTI-SI: The direct adaptation of Z-norm and T-norm
for open-set identification would result in the following
two formulas

LðOÞ ¼
log pðlML

jOÞ � mZðl
ML

Þ

sZðl
MLÞ

ð7Þ

LðOÞ ¼
log pðOjlML

Þ � mT ðOÞ

sT ðOÞ
ð8Þ

where all the symbols have the same meanings as before
except mT(O) and sT(O) that are the mean and standard
deviation of flog p(Ojl1), log p(Ojl2), . . . , log p(OjlL)g,
with l1, l2, . . . , lL being the statistical models for L appro-
priately selected speakers. Ideally, ll, l ¼ 1, 2, . . . , L,
should be taken from a particular subset in the universal
speaker set, whose members are the exclusive non-clients
for lML. In practice, it is not possible to follow this
criterion. In fact, to avoid unnecessary computational
costs, the registered speaker models are used for this
purpose instead. A requirement in this case is that the set
of registered speakers should be adequately large.

It is important to note that the above adapted versions of
Z-norm and T-norm cannot lead to the standardisation of
the score distribution for either any known speaker or any
specific set of exclusive non-client speakers. In fact, what
each of these methods attempts to achieve in OS-SI is to
standardise the distribution of the general cross-speaker
scores. This point is illustrated through the example pre-
sented in Fig. 2 for T-norm. It should be noted that
similar processes in SV lead to the standardisation of the
impostor score distribution.

4 Experimental investigations

4.1 Speaker representation

In all the experimental investigations, the speaker represen-
tation is based on Gaussian mixture models (GMM) [11].
The GMM topologies used to represent each enrolled
speaker model and the WM are 32m and 2048m, respect-
ively, where Nm implies N Gaussian mixture densities
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each parameterised with a mean vector and diagonal matrix.
The parameters of each GMM are estimated using a form of
the expectation-maximisation algorithm [13].
The speech data adopted for the study is based on a

scheme developed for the purpose of evaluating OSTI-SI
[14]. It consists of speech utterances extracted from the
1-speaker detection task of the NIST Speaker Recognition
Evaluation 2003. The dataset includes 142 known speakers
and 141 unknown speakers. The training data for each
known speaker model consists of 2 min of speech and
each test token from either population contains between 3
and 60 s of speech. These amount to a total of 5415 test
tokens (2563 for known speakers and 2852 for unknown
speakers). Achieving this number of test tokens is based
on a data rotation approach, which is described in detail
by Fortuna et al. [14]. The WM training is based on all
the speech material from 100 speakers (about 8 h of
speech). In the dataset, there are also 505 development
utterances from 33 speakers that are used for the purpose
of Z-norm.
In this study, the parametric representation of speech is as

follows. Each speech frame of 20 ms duration is subjected
to a pre-emphasis and is represented by a 16th-order
linear predictive coding-derived cepstral vector extracted
at a rate of 10 ms. The first derivative parameters are calcu-
lated over a span of seven frames and appended to the static
features. The full vector is subsequently subjected to cepstral
mean normalisation.

4.2 Experimental results and discussions

Fig. 3 presents the equal error rates (EERs) in the second
stage of OS-SI, obtained using different score normalisation
methods. The figure also gives the EER without any score
normalisation as the baseline. As observed, for the benefit
of CN and UCN, these results are illustrated as a function
of the cohort size. For the purpose of comparison, Fig. 4
presents the corresponding EERs obtained in SV exper-
iments. An observation of these two figures clearing indi-
cates the added difficulty in the case of OS-SI. This is
reflected in the baseline EERs and is also observed in the
results for various normalisation methods. Another immedi-
ate observation is the effectiveness of score normalisation
methods in reducing EERs in both modes of speaker
recognition.
Fig. 3 shows that the use of Z-norm in OS-SI results in the

reduction of minimum achievable EER with all the normal-
isation methods except UCN (with relatively small cohort
sizes). On the other hand, it is interesting to observe that

the combination of Z-norm with UCN works well in SV
(Fig. 4). This difference in effectiveness is believed to be
due to the lack of availability of sufficient development
data for computing the Z-norm parameters for every regis-
tered speaker model in OS-SI. To be more precise, in order
for the combined Z-norm/UCN to have its maximum effec-
tiveness, the UCN scenario in aligning the development
utterances should match that in the case of test utterances
from impostors/unknown speakers in the test phase. This
is exactly the case in SV where the combined Z-norm/
UCN works better than the UCN alone. It should be noted
that in the test phase of SV, for each considered registered
model, the impostor utterances achieve their highest scores
mostly against other registered models in the set. This is
highly similar to that happening when using the develop-
ment utterances (from non-registered speakers) in extract-
ing UCN-based Z-norm parameters. In contrast, in the test
phase of open-set identification each registered model is tar-
geted only by utterances from its own exclusive non-clients.
Therefore by definition, the scores achieved by non-clients
are always higher against the models they target than
against any other registered models. This problem of scen-
ario mismatch in OS-SI may be tackled by adopting a large
development set representing enough varieties of unknown
speaker utterances. In other words, for each registered

Fig. 2 Typical plots of score distributions before and after
applying T-norm

Fig. 3 Comparison of the effectiveness of various normalisation
methods in OSTI-SI in terms of EER

Fig. 4 Comparison of the effectiveness of various normalisation
methods in SV in terms of EER
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model, there should be an adequately large subset of the
development data that can effectively be used as the utter-
ances from exclusive non-clients (i.e. achieve their
highest score against that particular registered model).
Achieving this in practice is extremely difficult, especially
when dealing with a large set of registered models.
Therefore it may be best to avoid the use of combined
Z-norm/UCN with such a realisation of OS-SI. Finally, it
is also worth noting that according to Fig. 4, the effects of
the said scenario mismatch fades away for large cohort
sizes (i.e. UCNZ performs better than UCN). It is also
observed that, for such cohort sizes, the EERs obtained
with each of UCN and UCNZ become very similar to
those for CN and CNZ, respectively. These are due to the
fact that, for adequately large cohort sizes, UCN loses its
unique property that differentiates it from CN, and is also
the cause of the scenario mismatch in Z-norm.
As expected from the descriptions given in Section 3.1,

CN performs rather poorly for small cohort sizes. It is
also observed that (similar to the case in SV) the CN effec-
tiveness in OS-SI improves sharply as the cohort size is
increased.
The results in Fig. 3 show the UCN method as the best

performer in OS-SI. In addition, it is observed that the
minimum EER obtained with UCN is with cohort sizes of
around 5–7. As suggested in Section 3.1, this appears to
be the region of optimum cohort size for UCN. In other
words, for cohort sizes in this region, UCN is effective in
providing compensation when the test utterance from a
known speaker is degraded while still maintaining capa-
bility in terms of suppressing the scores for unknown
speakers.
Using the best cohort size for each of CN and UCN,

Fig. 5 presents the experimental results in the second
stage of OS-SI using the detection error trade-off (DET)
curves. The plots clearly indicate the superior performance
of cohort methods and, especially, UCN in open-set identi-
fication. Again, for the purpose of comparison, the corre-
sponding DET curves obtained in SV experiments are
illustrated in Fig. 6. A comparison of the results in these
two figures (and also in Figs. 3 and 4) shows that T-norm,
which is one of the best performers in SV (with and
without Z-norm), provides the worst performance in OS-SI.

Similar to the case in SV, the WMN performance in
OS-SI does not match that of UCN, or CN with an appropri-
ately large cohort size. It is interesting to note that this
difference in performance appears to be even wider in
OS-SI. On the basis of the discussions in Section 3.1, the
effectiveness of WMN relative to that of CN/UCN was
not unexpected.

The best EERs obtained for individual score normalisa-
tion methods in OS-SI and SV are summarised in Table 1.
The table also shows the relative improvement (RI) achieved
using the normalisation methods over the baseline. The
second and fourth columns in this table reiterate the fact
that the EERs in OS-SI are, in general, larger than those in
SV. It is also interesting to note that, moving from SV to
OS-SI, there is a considerable drop in RI with every normal-
isation method (columns three and five in Table 1). Another
immediate observation is that the incorporation of Z-norm
always enhances the RI for the considered normalisation
methods except in the case of UCNZ in OS-SI.

According to Table 1, T-norm exhibits the sharpest drop
(about 44%) in RI from SV to OS-SI. This result further
highlights the reduction in the effectiveness of T-norm in
OS-SI because of the inevitable compromise in its
implementation (Section 3.2.3). The RI with UCN, on the
other hand, is observed to sustain the lowest drop (about

Fig. 5 DET curves for various normalisation methods used in
OS-SI

The cohort sizes chosen for CN and UCN are those giving the best
performance

Fig. 6 DET curves for various normalisation methods used in SV

The cohort sizes chosen for CN and UCN are those giving the best
performance

Table 1: Results for the individual normalisation
methods in terms of EER and RI (relative improvement)

Normalisation

method

Best EER

OS-SI

(%)+CI95

RI (%)

OS-SI

Best

EER SV

(%)+ CI95

RI (%)

SV

Baseline 43.3+ 0.7 0 27.73+ 0.07 0

T-norm 34.5+ 0.6 20 9.92+ 0.05 64

T-normZ 29.0+ 0.6 33 9.24+ 0.05 67

WMN 28.8+ 0.6 34 11.57+ 0.05 58

WMNZ 25.5+ 0.6 41 10.20+ 0.05 63

CN 21.1+ 0.6 51 10.29+ 0.05 63

CNZ 20.9+ 0.6 52 8.65+ 0.04 69

UCN 18.8+ 0.5 57 9.96+ 0.05 64

UCNZ 21.1+ 0.6 51 8.66+ 0.04 69
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7%) from the corresponding value in SV. This, together
with the fact that UCN is the best performer in OS-SI,
further confirms the fact that the added challenge in this
mode of speaker recognition is one of dealing with the
high match-scores by exclusive non-clients.

5 Conclusions

An investigation into the effectiveness of the verification
process in the second stage of OS-SI has been presented.
The study has provided valuable insight into certain import-
ant characteristics of this class of speaker recognition as
well as into its performance features and limitations. It
has been shown that an added challenge in the second
stage of open-set identification, compared to standard SV,
is due to the relatively high match-scores by unknown
speakers. This problem is in addition to the difficulties
caused by the mismatch (e.g. because of the contamination
of speech) between the training and testing materials in
practice. To minimise the adverse effects of these, the use
of different score normalisation methods has been investi-
gated. The outcomes have shown that, with or without nor-
malisation techniques, the accuracy in the second stage of
OSTI-SI is consistently below that in the standard SV. In
addition, it has been found that in the case of OSTI-SI,
the cohort methods exhibit the best performance.
The study has also shown that, because of practical limit-

ations, the use of the standardisation methods in open-set
identification can only lead to the standardisation of the
general cross-speaker scores. However, as in OSTI-SI
each registered model is targeted only by its own exclusive
non-clients, it is concluded that (unlike in the case of SV)
the standardisation methods cannot facilitate the use of a
single decision threshold in this process.
An analysis of the performance of T-norm has shown

that, in practice, this approach cannot be as effective in
OSTI-SI as it is in SV. It has been found that, although
T-norm is one of the top performers in SV, it provides the
least relative improvement (about 20%) in OSTI-SI.
It has been shown that the use of Z-norm should be in

combination with some other form of score normalisation
to provide reliability in the model alignment process. The
experimental results have confirmed that, except for UCN,
the EERs obtainable with all other normalisation methods
reduce noticeably when these are combined with Z-norm.
The problem in the case of UCNZ has been found to be
due to the lack of availability of appropriately large var-
ieties of utterances in the development dataset to meet the
requirements in the OSTI-SI scenario. In addition, it has
been shown that, in terms of reducing the scores for
unknown speakers, UCN is less effective in OSTI-SI than
is in SV. This is due to the selection of the best-matched

model in the first stage of OSTI-SI, when the test material
is produced by an unknown speaker. Nevertheless, UCN
has been found to be the best performer in OSTI-SI, redu-
cing the baseline EER by about 57%. This superior per-
formance is believed to be in part because of the ability
of the technique to exhibit some effectiveness in suppres-
sing the scores for unknown speakers, while attempting to
compensate for the adverse effects of contamination in
test utterances from known speakers.
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