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Abstract: A robust version of the multiple signal classification (MUSIC) bearing estimation
algorithm based on robust statistics is developed for a direct sequence-code division multiple
access impulsive noise channel. The proposed subspace algorithm is computed by using the
antenna array covariance matrix, which is derived from the robust maximum likelihood estimator
of location. Each element of the robust covariance matrix is computed as the sample myriad of a
window of the received observations. The MUSIC antenna array scheme is jointly used to mitigate
the effects of multipath and impulsive noise. Simulation results demonstrate that the proposed
scheme significantly outperforms the other linear and nonlinear schemes.

1 Introduction

Spatial signal processing has received considerable interest
during the last two decades, as a technique that has proven
very useful. Antenna array together with spatial signal pro-
cessing have become very important tool in increasing the
system capacity and in mitigating the multipath effects.
An essential technique in array signal processing is

estimating the direction-of-arrival (DOA) of the signals
impinging the array. DOA estimation techniques can be
classified into two main categories: spectral-based method
and parametric (maximum likelihood (ML)) method.
Spectral-based method has two different approaches,
which can be sub-divided into conventional techniques
and subspace-based techniques. Conventional techniques
are based on classical beamforming and require a large
number of elements to achieve a high resolution.
Subspace-based approaches are sub-optimal techniques
that exploit the eigenstructure of the received signal corre-
lation matrix and result in higher resolution [1]. One of the
most widely used subspace-based methods is the multiple
signal classification (MUSIC) algorithm proposed by
Schmidt [2].
In direct sequence-code division multiple access

(DS-CDMA) system, MUSIC bearing estimation begins
first by despreading the received signal collected from all
antenna elements with the desired user’s spreading code.
These collected snapshots are then used to form the covari-
ance matrix that is used in turn by the MUSIC algorithm to
estimate the bearings.
The majority of antenna array techniques assume that the

antenna array operate in additive white Gaussian noise, that
is, Gaussian distribution, which is the favourite noise model
commonly employed in wireless communication mainly
because it often leads to tractable solution. However,

noise sources in communication environments are decid-
edly non-Gaussian and impulsive in nature. These sources
range from naturally occurring sources such as ice cracking
in the arctic region and lightening to man-made such as
multiuser interference, car ignition and switching transit
[3–5]. The main feature of impulsive noise is that it con-
tains large amplitude pulses called outliers that results in
heavy tail distribution (non-Gaussian). The main disadvan-
tage of non-Gaussian distributions is that they have infinite
variance. Hence all of the processing techniques that are
based on the second order moments, which exhibits finite
variance, will fail to operate properly in the case of
non-Gaussian processes and will give misleading results.
Many statistical and empirical noise models have been pro-
posed to model impulsive noise. Among the various models,
the family of alpha stable distributions [5] arises under very
general assumptions and describes a broad class of impul-
sive noise. Alpha stable is preferred over other impulsive
noise models as it is a physical model, which takes the
underlying physical properties of the noise into consider-
ation and is defined only by four parameters. In addition,
it satisfies the generalised central limit theorem and obeys
the stability property [5, 6].

In the context of subspace-based DOA techniques, a good
estimation of the covariance matrix is required in order to
obtain a reliable performance. In the presence of impulsive
noise, the conventional covariance matrix employing
second order statistics is not optimal and its performance
degrades dramatically under impulsive noise. This high-
lights the essential need to derive other nonlinear and
robust subspace-based techniques. Many nonlinear sub-
space DOA finding methods are proposed in this literature.
Algorithms based on ML estimators (M-estimators) have
been proposed in Yardimci et al. [7] and Ollila and
Koivunen [8] in which M-estimators are used to estimate
the noise and signal subspace matrix. Arce and Li [9] pro-
posed a robust subspace technique, which is based on
median correlation and is optimised for Laplacian distri-
bution. Methods based on fractional lower order moments
(FLOM) have been proposed [10–13]. Among these
methods is the robust covariation-based MUSIC
(ROC-MUSIC) developed by Taskalides and Nikias [10]
and is found to provide robust performance under impulsive
noise. ROC-MUSIC is developed from the covariation
matrix, which is derived from the FLOM where the
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covariation coefficients function of X and Y are are com-
puted [10] as

xX ;Y ¼
E½XY kp�1l

�

E½jY jp�
ð1Þ

where E[.] denotes statistical expectation, 0 , p � 2 and
the convention

jY jkpl ¼ jY jkp�1lY �
ð2Þ

with the superscript � denoting complex conjugate.
It is obvious that when p ¼ 2, the ROC-MUSIC algor-

ithm is equivalent to the linear MUSIC. However, when
p , 1 the performance of the algorithm is not robust and
often lead to unreliable result, because the pth order
moments for values of p , 1 are infinite [11, 12, 14].
In this paper, a robust DOA technique that is reliable and

consistent under a wide range of impulsiveness levels is
proposed for a DS-CDMA system. The proposed MUSIC
algorithm is computed using the sample myriad that can
be optimised for a wide range of stable processes ranging
from the Gaussian up to severely impulsive noise. The per-
formance of the proposed scheme is subsequently evaluated
and compared to the linear MUSIC and the nonlinear
ROC-MUSIC algorithms where the achieved performance
is very promising.

2 Myriad covariation matrix

ML estimators of location play a very important role in
statistical estimation theory [3, 4]. Important types of the
ML estimators are the sample mean and the sample
median, which are derived from sets of identically indepen-
dent distributed (i.i.d.) samples obeying Gaussian and
Laplacian distributions, respectively. Another robust esti-
mator that has been introduced recently by Gonzalez and
Arce [15] is the sample myriad, which is the ML estimator
of location of data following Cauchy distribution and is
given by the following

b
_
¼ argmin

b

YN
i¼1

½h2
þ ðxi � bÞ2� ð3Þ

where h is a nonlinearity parameter that controls the robust-
ness of the estimator, that is, the lesser the value h the more
is the resistance of the estimator to outliers.
In the case of independent but not identically distributed

observations, the sample mean, median and myriad can
be extended to a more general model. Let the sample set
x1, x2, . . . , xn be independent but not identically distributed,
that is, they follow the same distribution but with a different
variance. If the distribution is Gaussian, the ML estimator of
location in this case can be shown to the value b

_
[15] that

minimises the following expression

MGðbÞ ¼
Xn

i¼1

1

s 2
i

ðxi �
�bÞ2 ð4Þ

where s i
2 is the variance of the ith sample of the set and the

value b̄ that minimises (4) is the normalised weighted
average given by

�b ¼

Pn
i¼1 wixiPn
i¼1 wi

ð5Þ

where wi ¼ 1/si
2 . 0.

If we let wi ¼ yi then the estimate in (5) become

�b ¼

Pn
i¼1 yixiPn
i¼1 yi

ð6Þ

The solution in (6) can also be considered as the solution to
least weighted squares sum

�b ¼ argmin
b

XN

i¼1

yi � ðxi � bÞ2 ð7Þ

On the other hand, if the distribution is Cauchy the ML
estimator of location is the value of b

_
that minimises the

function

MCðbÞ ¼
Xn

i¼1

log½h2
þ wiðxi � bÞ2� ð8Þ

It is noted that the weights in (6)–(8) are constrained to take
positive values only as they are the inverse of the variance.
The constraint can be removed by following the same
approach introduced in Kalluri and Arce [16] in which the
samples (weights) can take on real values and by modifying
(7) such that the signs of the weights are coupled with the
samples x as follows

�b ¼ arg inf
b

Xn

i¼1

jwij � ðsignðwiÞxi � bÞ2 ð9Þ

In addition, the solution to the weighted least sum given by
(6) will be modified in the same way which leads to

�b ¼

Pn
i¼1 jyij � signðyiÞxiPn

i¼1 jyij
¼

Pn
i¼1 yi � xiPn

i¼1 jyij
ð10Þ

The same approach can be adopted in deriving the same
expression for the sample myriad such that the ML estimate
model given by (8) is modified to an expression that admits
negative weights as follows

b
_
¼ arg inf

b

Xn

i¼1

log½h2
þ jwij � ðsignðwiÞxi � bÞ2� ð11Þ

¼ Myrðjwij–signðwiÞxij
n
i¼1Þ ð12Þ

It is well known that second order correlation has
provided the foundation of statistical signal modelling and
processing. Given a set of observation pairs f(x1, y1),
(x2, y2), . . . , (xN, yN)g drawn from the joint random
variables x and y, the sample correlation [11] is given by
the following

Rxy ¼
1

N

XN

i¼1

xiyi ð13Þ

Comparing (13) and (6), we can conclude that the corre-
lation estimate given in (13) is proportional to b̄ as

Rxy ¼ �ya
�b ð14Þ

where the scaling factor ȳa in (14) is the average magnitude
of yi.

Replacing the fixed set of weights wi in (11) by the cor-
relating sample yi, we obtain

b
_
¼ arg inf

b

Xn

i¼1

log½h2
þ jyij � ðsignðyiÞxi � bÞ2� ð15Þ
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As in (13), the cross-correlation estimate is found by scaling
b
_
as

Rxy ¼ �ya b
_

ð16Þ

leading to the following definition:

Definition 1 (sample myriad covariation): Given a pair of
observations fxi, yig that are drawn from two jointly
random variables that are following Cauchy distribution,
the sample myriad correlation matrix can be given by

Rxy ¼
1

N

XN

i¼1

jyij

 !
Myr jyij–signðyiÞxij

N
i¼1

� �
ð17Þ

¼ �yi �Myr jyij–signðyiÞxij
N
i¼1

� �
ð18Þ

As the distribution is Cauchy, the average magnitude term ȳ
in the above equation will give a misleading result. To
obtain a consistent estimate, the average magnitude term ȳ
will be replaced with the sample myriad and is given by:

Rxy ¼ Myr jyik
N
i¼1

� �
Myr jyij–signðyiÞxij

N
i¼1

� �
ð19Þ

Equation (19) is referred to as the myriad covariation and is
more robust estimator than (17).

3 Nonlinear music array

A coherent synchronous DS-CDMA system is considered
providing wireless access to K simultaneous users each
user k [ f1, . . . , Kg is assigned a different discrete signa-
ture waveform that has unit energy and is modulated by
binary phase-shift keying with a power level that remains
constant over a symbol period. At the receiver, a uniform
linear array (ULA) of M elements is employed. We
assume a narrow band model, that is, the propagation
delay between antenna elements is assumed to be small,
relative to the inverse of the transmission bandwidth, so
that the received signal at the M baseband array output
are identical within a complex constant. The continue-time
received signal at the antenna array can be modelled as

r ¼
X

i

XK

k¼1

aðukÞAkbkðiÞskðt � iT Þ þ nðtÞ ð20Þ

Where T is the symbol period. With respect to the kth user,
a(uk) ¼ [a1,k, . . . , aM,k], Ak, bk(i) [ f+1g, fsk(t); 0 , t � Tg
denote, the array response vector of a broadside signal
vector of uk, the received amplitude, ith information bit
and normalised signature waveform, respectively. The com-
ponent of the array response vector am,k is the complex gain
of the kth user to themth sensor. A ULAwith half-wavelength
spacing is assumed, the array response is given by

am;k ¼ exp jðm � 1Þp sinðukÞ
� �

ð21Þ

The direct sequence spread spectrum signature waveform is
defined as

skðtÞ ¼
XN

j¼1

fk
j pðt � jT Þ; t [ ½0; T � ð22Þ

Where N is the processing gain, fj
k [ f+1g is a signature

sequence assigned to the kth user and p(t) is a rectangular
waveform of duration T. n(t) ¼ [n1(t), . . . ,nM(t)]

T is a
vector of the spatio-temporal noise, which is usually
assumed to be an i.i.d. random variable with zero-mean.
In this paper the noise is modelled with the commonly

used symmetric a sable that has a characteristics function
of the form

fðtÞ ¼ exp �gjtja
� �

ð23Þ

where 0 , a � 2 is the characteristics exponent that con-
trols the impulsiveness level of the distribution and g . 0
is the dispersion.

The received signal is passed through a matched filter
bank where each filter is matched to a specific user,
which is then sampled at a sampling rate 1/T to yield a dis-
crete signal model at the ith symbol that is given by

ykðiÞ ¼

ððiþ1ÞT

iT

rðtÞskðtÞ dðtÞ k ¼ 1; . . . ;K ð24Þ

This can be defined in vector form as

ykðiÞ ¼ ½y1;kðiÞ; . . . ; yM;kðiÞ�
T

ð25Þ

The myriad covariation matrix will be used to robustify
the linear MUSIC algorithm. In this section we will
propose a robust nonlinear version of the linear MUSIC
algorithm that is derived using the myriad covariation
matrix.

The proposed nonlinear algorithm is called
myradi-MUSIC (MYR-MUSIC) and it can be summarised
into the following steps

1. Collect q sample vectors y, which is given by (25), where
q is the window size and yiþ1 is one sample delayed version
of yi.
2. Calculate the myriad covariation between the q sample
vectors

Rp;i ¼ Myr jyik
q
i¼1

� �
�Myr jyi;jj–signðyi;jÞyp;jj

q
i¼1

� �
;

i; j; p ¼ 1; 2; . . . ;M ð26Þ

Where each element in this matrix is the myriad of two
vectors of length q ¼ M and yi,j is the jth sample of
vector yi.
3. Construct a Toeplitz matrix by performing the operation

Ri�1 ¼
ðR1;i þ Ri;1Þ

2
; i ¼ 0; 1; . . . ; q � 1 ð27Þ

4. Perform the eigendecomposition on R such that

R ¼ U
_

sL
_

sU
_H

s þU
_

nr
_

nU
_H

n ð28Þ

where U
_

s is the signal eigenvector andU
_

n is the noise eigen-
vector that is orthogonal to the array steering vectors A.
5. The directions of signals are found by selecting the steer-
ing vectors that are orthogonal to the noise sub-space by
using the following expression

PðuÞ ¼
a�ðuÞaðuÞ

a�ðuÞU
_

nU
_

H
n aðuÞ

ð29Þ

The orthogonality between a(u) and U
_

n will minimise the
denominator and hence the estimates of the DOA are
given by the positions of the spectral peaks where the K
largest peaks in the spectrum correspond to the DOAs of
signals impinging the array.
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4 Simulation results

The performance of the robust MYR-MUSIC is compared
to the linear MUSIC and the nonlinear ROC-MUSIC algor-
ithms. A CDMA system serving five users is considered,
each user is employing 31-chip Gold code spreading
sequences. All of users are being served by a base station
that incorporate antenna array of eight elements (M ¼ 8)
and each user has a single path. The DOAs of all users
are b1208, 258, 658, 1058, 758c where the first user is the
desired one. The myriad linearity parameter is computed
using this formula: h ¼

p
(a/(22 a))g1/a [15].

4.1 Beampattern analysis

Figs. 1 and 2 illustrate a performance comparison between
the MYR-MUSIC, linear MUSIC and the ROC-MUSIC. As
expected all of the MUSIC arrays perform well under
Gaussian noise channel as it can be seen from Fig. 1 that
the beampattern of all of the MUSIC arrays are very close
and steered towards the DOA of the impinging signal. In
the case of impulsive noise (a ¼ 1.5), Fig. 2 shows the
spectral plot of the beampatterns of the different arrays
where the MYR-MUSIC algorithm exhibits the best per-
formance and provided the most significant gain, where
the linear MUSIC failed to steer towards the DOA, mean-
while the ROC-MUSIC provided a robust performance.

4.2 Root mean squared error analysis

Another performance criterion we have adopted is the root
mean squared error (RMSE) [17] to compare the perform-
ance of the different schemes

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i

ðu
_

kðiÞ � ukÞ
2

q

s
ð30Þ

where q is the number of the data symbols which is taken as
200 and u

_

k(i) (in degree) is the bearing estimate of the line-
of-sight (LOS) path of the first user at the ith symbol and uk

is the actual angle.
For a range of a geometric signal-to-noise (G-SNR) [18]

Figs. 3 and 4 demonstrate the RMSE difference between the
actual and the estimated DOA of all of the MUSIC schemes.
Fig. 3 shows that all of the array schemes exhibits similar

performance under Gaussian noise, as it can be seen from
Fig. 3 that the RMSE plot of all schemes almost overlapped
and the error between the actual and estimated angles is
very small. On the contrary, Fig. 4 illustrate the perform-
ance of the MUSIC arrays in terms of RMSE under
impulsive noise a ¼ 1.5. It can be seen from the plots in
Fig. 4 that the linear MUSIC exhibits the highest error
plot and the difference between the actual and the
estimated angle is high for the whole G-SNR range which
concludes that the performance of the linear MUSIC does
not improve much with the increase of G-SNR. On the
other hand, Fig. 4 shows that the MYR-MUSIC array has
provided the lowest RMSE plot. Fig. 4 shows that in the
case of MYR-MUSIC the difference between the actual
and the estimated angle is less than 18 for a G-SNR of
more than 5 dB, which infer that the performance of
the MYR-MUSIC is reliable and more robust for the
whole range of the G-SNR. In addition, MYR-MUSIC has
outperformed the ROC-MUSIC by a gain of more than
2 dB.

Further to the RMSE performance, we also included the
RMSE results in terms of the characteristics exponent.
Fig. 5 illustrates the performance of the MUSIC schemes

Fig. 1 Array beampattern for MUSIC, ROC-MUSIC and
MYR-MUSIC algorithms under Gaussian noise, a ¼ 2

Fig. 2 Array beampattern for MUSIC, ROC-MUSIC and
MYR-MUSIC algorithms under impulsive noise, a ¼ 1.5

Fig. 3 RMSE performance comparisons between MUSIC,
ROC-MUSIC and MYR-MUSIC under Gaussian channel noise,
a ¼ 2
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for a different values of the characteristic exponent that
range from a ¼ 1 to a ¼ 2. Comparing from the plots in
Fig. 5, we conclude that the MYR-MUSIC and
ROC-MUSIC arrays plots exhibit the smallest slope and
the plot of linear MUSIC is the highest. In other words
the figure shows that the performance degradation of the
MYR-MUSIC as the value of a decreases is less than that
of the ROC-MUSIC whiles the RMSE values obtained by
the linear MUSIC increases dramatically with the decrease
of a.
The achieved performance is obtained at the expenses of

an affordable increment in complexity. Comparing with the
linear scheme, O(9M2) operations have been added where
M is the number of antenna elements. While comparing
with the ROC-MUSIC, only O(4M2) operations have been
added.

5 Conclusion

In this a paper, a robust covariation matrix using the sample
myriad is derived from the ML location estimator under
stable process distribution. Myriad covariation matrix is
used to derive a nonlinear version of the well-known
MUSIC algorithm that is referred to as MYR-MUSIC.
The proposed scheme is inherently robust to impulsive
noise and its robustness is demonstrated through Monte
Carlo simulation where its performance in DS-CDMA
system is compared to the linear MUSIC and the nonlinear
ROC-MUSIC algorithms. The simulation results show that
the proposed algorithm performs more robustly than the
nonlinear ROC-MUSIC algorithm under impulsive noise
and very comparable to the linear MUSIC under Gaussian
noise. The achieved performance is obtained with moderate
increase in complexity that is readily within the capability
of modern processing.
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