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Abstract: A novel adaptive discriminative vector quantisation technique for speaker identification
(ADVQSI) is introduced. In the training mode of ADVQSI, for each speaker, the speech feature
vector space is divided into a number of subspaces. The feature space segmentation is based on
the difference between the probability distribution of the speech feature vectors from each
speaker and that from all speakers in the speaker identification (SI) group. Then, an optimal dis-
criminative weight, which represents the subspace’s role in SI, is calculated for each subspace
of each speaker by employing adaptive techniques. The largest template differences between
speakers in the SI group are achieved by using optimal discriminative weights. In the testing
mode of ADVQSI, discriminative weighted average vector quantisation (VQ) distortions are
used for SI decisions. The performance of ADVQSI is analysed and tested experimentally. The
experimental results confirm the performance improvement employing the proposed technique
in comparison with existing VQ techniques for SI and recently reported discriminative VQ
techniques for SI (DVQSI).

1 Introduction

Speaker recognition refers to the capability of recognising a
person based on his or her voice [1–7]. Speaker recognition
can be divided into two categories, namely, speaker identi-
fication and speaker verification. Speaker identification is
achieved by distinguishing a speaker from a group of speak-
ers, whereas in speaker verification, by setting a threshold, a
decision is made about whether the speaker is who he/she
claims to be. Speaker recognition can be text-dependent
or text-independent. The former requires the speaker to
issue an utterance on some predefined text, whereas the
latter does not rely on a specific text being spoken [8–10].

The most popular SI methods include vector quantisation
for speaker identification (VQSI) [8, 11], dynamic time-
warping (DTW) [12], hidden Markov models (HMMs)
[13, 14], and neural networks (NNs) [2, 15]. The Gaussian
mixture models (GMMs) Based approach [16] is a special
case of the HMMs-based approach. DTW is used exclu-
sively for text-dependent applications, whereas vector
quantisation (VQ), HMMs and NNs deal with both text-
dependent and text-independent speaker identification (SI).

In the training mode of the DTW approach, the speaker
templates, which are the sequences of feature vectors
obtained from the text-dependent speech waveforms, are
created. In the testing mode, matching scores are produced
by using DTW to align and measure the similarities
between the test waveform and the speaker templates [8, 12].

In the VQSI approach, in the training mode, a codebook
for each speaker is obtained as a reference template for the
speaker. In the testing mode, SI is usually performed by

finding the codebook and its corresponding speaker that
gives the smallest average VQ distortion to represent the
unknown speaker’s waveform [11, 17]. The average VQ
distortion here shows the similarity between the unknown
speaker’s speech and the reference template. The smaller
the average VQ distortion, the better the match between
the testing speech and the reference template. The lack of
time warping in the VQ approach greatly simplifies the
system. However, some speaker-dependent temporal infor-
mation, which is present in the waveforms, is neglected in
VQSI [8].

In the HMMs approach, the sequences of feature vectors,
which are extracted from the speech waveforms, are
assumed to be a Markov process and can be modelled
with an HMM. During the training mode, HMMs’ par-
ameters are estimated from the speech waveforms. In the
testing mode, the likelihood of the test feature sequence is
computed based on the speaker’s HMMs [14]. It is reported
that the performance of the continuous HMMs is about the
same as that of the VQ method and is much higher than that
of the discrete HMMs [10, 18].

In the neural networks-based method, each speaker has a
personalised neural network that is trained to be activated
only by that speaker’s utterances. The testing waveforms
are tested by the speakers’ personalised neural networks
to make SI decisions. It has been found that if the architec-
ture of the neural network is suitable and the number of the
training utterances is enough, the performance of the neural
network approach is comparable to that of the VQSI
approach [2, 15].

When the same type of the speech feature is used, all the
speakers in the SI group share the same speech feature
vector space. For two different speaker groups (the group
may contain only one speaker), the probability distributions
of their speech feature vector sets in a certain subspace are
different. In this work, this difference is called the inter-
speaker variation between these two speaker groups in the
subspace. If the subspace equals the whole speech feature
vector space, this difference is called the interspeaker
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variation between these two speaker groups. The larger
the interspeaker variation, the larger the speech template
difference between these two speaker groups.

The proposed adaptive discriminative VQSI (ADVQSI)
technique exploits the interspeaker variation between each
speaker and all speakers in the SI group in order to
enlarge the speakers’ template differences. For each
speaker, its speech feature vector space is divided into
subspaces. Different discriminative weights are given to
different subspaces. Subspaces with larger discriminative
weights play a more important role in the SI decision.
However, in the existing VQSI technique, all regions of
the speech feature vector space are given equal weights
[8, 11].

The ADVQSI technique has two modes, namely, the
training mode and the testing mode. In the training
mode, a VQ codebook is constructed for each speaker in
the SI group, and a general VQ codebook is constructed
for the entire group of speakers. Then, for each speaker,
the feature vector space is segmented into a number of
subspaces on the basis of interspeaker variation between
this speaker and all speakers in the SI group. Next, a discri-
minative weight is determined for each subspace of each
speaker by employing adaptive techniques. The adaptively
trained discriminative weights are used to represent the
optimal roles of subspaces for SI. The VQ codebook for
each speaker together with the feature space segmentation
and discriminative weights for each speaker represent the
template of that speaker. In the testing mode, for each
input waveform, discriminative weighted average VQ
distortions are calculated as matching scores between
speakers’ templates and the testing waveform. The testing
waveform is identified to the speaker that leads to the
highest matching score.

Recently reported DVQSI approaches also consider the
interspeaker variation [19–21]. Although both DVQSI
and ADVQSI employ interspeaker variation, their tech-
niques for the speech feature vector space segmentation,
the discriminative weights determination, and the SI
decision in the testing mode are different. The DVQSI
approach is based on each speaker pair in the SI group
and discriminative weights are obtained by trial and error,
whereas the ADVQSI technique is based on each speaker
in the SI group and discriminative weights are calculated
by adaptive techniques. The computational burden of the
proposed ADVQSI is proportional to the number of speak-
ers in the SI group, whereas the computational burden of the
previously reported DVQSI increases with the square of the
number of speakers in the SI group [19–21].

2 Adaptive discriminative vector quantisation
for speaker identification

In the training mode of ADVQSI, the training speech wave-
forms for each speaker in the SI group are available. First,
each speaker’s training speech feature vector set is created
from this speaker’s training waveforms using feature-
extraction techniques. After feature extraction, a VQ code-
book for each speaker and a VQ codebook for all speakers
are constructed. Then, for each speaker, its feature vector
space is segmented into a number of subspaces based on
the interspeaker variation between this speaker and all
speakers in the SI group. Finally, a discriminative weight
for each subspace of each speaker is calculated by employ-
ing adaptive techniques. In the ADVQSI testing mode,
speech waveforms of the unknown speakers are presented
to identify speakers. A testing feature vector set is created

for each testing waveform in this mode. Instead of equally
weighted average VQ distortions, discriminative weighted
average VQ distortions are used as similarity scores
between the speakers’ templates and the testing waveform
for SI decisions.

2.1 The training mode

In the training mode, training speech waveforms for each
speaker in the SI group are available. Through feature
extraction, the training speech feature vector set T(k) is
extracted from the training waveforms of each speaker
k [ L [13], where L ¼ fspeaker 1, speaker 2, . . . ,
speaker hg is the closed set of speakers in the SI group.
The training speech feature vector set T(k) for each
speaker k shares the same speech feature vector space but
has a different probability distribution.

A VQ codebook C(k) for speaker k is constructed by
employing T(k) of speaker k for the codebook training
[22, 23]. Meanwhile, a general codebook C g is constructed
for all the speakers in the SI group by using T g as the train-
ing set for the codebook construction [22, 23], where T g¼
fT(1), T(2), . . . , T(h)g is the set of all training speech
feature vectors for all speakers.

After the codebooks have been constructed, for each
speaker, the speech feature vector space is segmented into
a number of subspaces on the basis of the interspeaker vari-
ation between this speaker and all speakers in the SI group.
The speech feature vector space is first segmented into two
subspaces. Then, the process is repeated to segment each
subspace into two parts until the desired number of the sub-
spaces is obtained. The desired number of subspaces for the
space segmentation is denoted by m. The space segmenta-
tion procedure for m ¼ 4 is given in Fig. 1 as an example.
The process, which segments the space or the subspace
into two parts, can be divided into two stages. In the first
stage, the space-segmentation problem is converted into a
pattern-classification problem by defining two pattern-
classification training categories. Then, in the second
stage, a decision surface is created by linear discriminant
function techniques to divide the feature space or subspace
into two subspaces [24].

The pattern classification problem in this work is to find a
suitable linear discriminant function, with which to classify
two linearly non-separable categories v1 and v2 based on
the mean square error (MSE) criterion.

A linear discriminant function that is a linear combi-
nation of the components of x (x [ Rd, x is from categories
v1 or v2) can be written as

gðxÞ ¼ a0y ð1Þ

where prime means transpose, y ¼ [1, x0]0 and a ¼ [w0, w]0

is the weight vector to be calculated.
The equation g(x) ¼ 0 defines a decision surface that

divides the d-dimension vector space into two subspaces.
Thus, the two-category linear classifier implements the fol-
lowing decision rule: x is from category v1 if g(x) . 0 and
from category v2 if g(x) , 0. If g(x) ¼ 0, x can ordinarily
be assigned to either class [24].

Then, the pattern-classification problem is converted into
finding a weight vector a that minimises the MSE criterion
function

JsðaÞ ¼ kYa� bk ¼
X

i

ða0yi � biÞ
2

where b ¼ [b1, b2, . . . , bn]0 is a column vector [24].
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If the matrix Y 0Y is non-singular [24], the solution is
given by

a ¼ ðY 0Y Þ�1Y 0b ð2Þ

Typically, bi ¼ 1 is selected for the vectors from one cat-
egory and bi ¼ 21 is assigned for the vectors from the
other category. It has been shown that, in this case, the
MSE solution approximates the Bayes discriminant func-
tion as the number of training vectors tends to infinity [24].

In the first stage of the space-segmentation process, for
each speaker k and each training feature vector v [ T(k)
of speaker k, the distortion d(v, k) of v quantised by
codebook C(k) of speaker k and the distortion d(v, g) of v
quantised by general codebook C g are calculated. Let
d(v) ¼ d(v, k)/d(v, g). Typically, when d(v) is lower, v is
located in the region of the feature space with a higher inter-
speaker variation between speaker k and all speakers, and
vice versa. Then, the training feature vector set T(k) of
speaker k is divided into two subsets, namely T1 and T2.
T1 contains the feature vector with larger d(v) while T2 con-
tains the remaining feature vectors. The numbers of feature
vectors in T1 and T2 are the same. As v with larger d(v) is
typically located in the region of the feature space with a
lower interspeaker variation, most feature vectors in T1

are located in the regions of the feature space with lower
interspeaker variations. In contrast, feature vectors in T2

are mainly located in the regions of the feature space with
higher interspeaker variations. The space-segmentation
problem is converted into a pattern-classification problem
by letting T1 and T2 be the two training categories of the
linear pattern-classification problem.

In the second stage of the space segmentation, a linear
discriminant function g(x) in (1) is constructed with its
weight vector a given by (2), where bi ¼ 1 for vectors
from T1 and bi ¼ 21 for vectors from T2. The correspond-
ing decision surface g(x) ¼ 0 divides the speech feature
vector space S into two subspaces S1 and S2. The subspace
for T1 has a lower interspeaker variation between speaker k1
and all speakers than the subspace for T2, as feature vectors
in T1 are typically located in regions of the feature space
with lower interspeaker variations than feature vectors in
T2. The feature space segmentation of ADVQSI is based
on the interspeaker variation between each speaker and all
speakers. Similar procedures are repeated to divide S1 and
S2, and their subspaces, until the desired number of sub-
spaces for ADVQSI is met. The feature space segmentation
for each speaker is decided by the linear discriminant
functions for this speaker.

In ADVQSI, each speaker’s template is represented by
this particular speaker’s codebook, discriminative weights
for subspaces, and feature space segmentation. In order to
obtain optimal discriminative weights for all speakers by
adaptive techniques, an initial positive discriminative
weight is assigned to each subspace of each speaker. Then
the differences for templates of various speakers are
measured on the basis of the initial discriminative weights.

The average VQ distortion dkj(k1, k2) of Tj(k1, k2) quan-
tised by C(k2) is calculated for each speaker k1 and each
subspace j of speaker k2, where Tj(k1, k2) is the set of all
speech feature vectors of T(k1) located in subspace j of
speaker k2; speaker k1 [ L and speaker k2 [ L; and
j ¼ 1, 2, . . . , m is the subspace index. Similarly, the
average VQ distortion of Tj(k1, k2) quantised by C g is
obtained and denoted by dgj(k1, k2). Let dj(k1, k2) ¼
dgj(k1, k2) 2 dkj(k1, k2).

The weighted average distortion ddis(k1, k2) is defined as

ddisðk1; k2Þ ¼
W ðk2Þ0 Nðk1; k2ÞDðk1; k2Þ

W ðk2Þ0 nðk1; k2Þ
ð3Þ

where

Dðk1; k2Þ ¼ ½d1ðk1; k2Þ; d2ðk1; k2Þ; . . . ; dmðk1; k2Þ�0

W ðk2Þ ¼ ½w1ðk2Þ;w2ðk2Þ; . . . ;wmðk2Þ�0

Nðk1; k2Þ ¼ diag½n1ðk1; k2Þ; n2ðk1; k2Þ; . . . ; nmðk1; k2Þ�

nðk1; k2Þ ¼ ½n1ðk1; k2Þ; n2ðk1; k2Þ; . . . ; nmðk1; k2Þ�0

wj(k2) is the discriminative weight for each subspace j of
each speaker k2 and nj(k1, k2) is the number of the
feature vectors of Tj(k1, k2).

ddis(k1, k2) is the measure of the similarity score between
the training set of speaker k1 and the template of speaker
k2 under current discriminative weights. ddis(k1, k1) is
always larger than ddis(k1, k2) (k = k2) for any positive dis-
criminative weights, as the training set always best matches
the speaker’s template that is created from this training set.

Let hdis(k1, k2) ¼ ddis(k1, k1) 2 ddis(k1, k2). hdis(k1, k2)
is the measure of the template difference between the
speaker k1 and k2 under current discriminative weights.
hdis(k1, k2) equals zero when k1 ¼ k2, and hdis(k1, k2) is
larger than zero for k1 = k2. The larger the hdis(k1, k2),
the larger the template difference between speaker k1
and k2.

Fig. 1 Speech feature vector space segmentation procedure for the number of subspaces m ¼ 4

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006756



The cost function to obtain optimal discriminative
weights is given by

J ¼
XN

k1¼1

XN ;k1=k2

k2¼1

f ðhdisðk1; k2ÞÞ ð4Þ

where

f ðxÞ ¼ e�axþb

a . 0 and b are scalars.
To increase the SI accuracy, hdis(k1, k2) and the corre-

sponding template difference between speaker k1 and k2
are required to be as large as possible, thus the cost function
(4) needs to be minimised. It is desired to find discrimina-
tive weights that minimise the cost function J, so that the
template differences between different speakers are maxi-
mised. The selection of f (x) in (4) will be explained in
detail later.

The gradient vector rJ(W(k2)) is given by

rJ ðW ðk2ÞÞ ¼
@J

@½W ðk2Þ�

¼
XN

k1¼1

d½ f ðhdisðk1; k2ÞÞ�

d½hdisðk1; k2Þ�

@½hdisðk1; k2Þ�

@½W ðk2Þ�

þ
XN

k1¼1

d½ f ðhdisðk2; k1ÞÞ�

d½hdisðk2; k1Þ�

@½hdisðk2; k1Þ�

@½wðk2Þ�
ð5Þ

where

d½ f ðxÞ�

d½x�
¼ �ae�axþb

@½hdisðk1; k2Þ�

@½W ðk2Þ�
¼ �

d½ddisðk1; k2Þ�

d½W ðk2Þ�

@½hdisðk2; k1Þ�

@½W ðk2Þ�
¼

d½ddisðk2; k2Þ�

d½W ðk2Þ�

d½ddisðk1; k2Þ�

d½W ðk2Þ�
¼

Nðk1; k2ÞDðk1; k2Þ

W ðk2Þ0nðk1; k2Þ

�
nðk1; k2ÞðW ðk2Þ0Nðk1; k2ÞDðk1; k2ÞÞ

ðW ðk2Þ0nðk1; k2ÞÞ2

d½ddisðk2; k2Þ�

d½W ðk2Þ�
¼

Nðk2; k2ÞDðk2; k2Þ

W ðk2Þ0nðk2; k2Þ

�
nðk2; k2ÞðW ðk2Þ0Nðk2; k2ÞDðk2; k2ÞÞ

ðW ðk2Þ0nðk2; k2ÞÞ2

ð6Þ

The updating function for discriminative weights is
expressed as

W ¼ W � G� r J ðW Þ ð7Þ

where

W ¼ ½W ð1Þ;W ð2Þ; . . . ;W ðhÞ�

r J ðW Þ ¼ ½r J ðW ð1ÞÞ;r J ðW ð2ÞÞ; . . . ;r J ðW ðhÞÞ�

and scalar G is the convergence factor.
hdis(k1, k2) represents the template difference between

the speaker k1 and k2 under current discriminative
weights. When two speakers have large hdis(k1, k2) and a
corresponding larger template difference between them,
the testing waveforms from these speakers are less likely
to be misidentified to each other. Further increasing large

hdis(k1, k2) has little advantage for the SI accuracy improve-
ment. However, increasing smaller hdis(k1, k2) is more
likely to increase the SI accuracy. In order to increase
the SI accuracy, in the discriminative weights updating, it
is desirable to give priority to increasing the smaller
hdis(k1, k2) than larger ones.

In (5), 2@[hdis(k1, k2)]/@[W(k2)] is the direction in
which to increase only hdis(k1, k2). The term d[f (hdis(k1,
k2))]/d[hdis(k1, k2)] that appears in (5) is the multiplier
factor of 2@[hdis(k1, k2)]/@[W(k2)]. It is smaller for
larger hdis(k1, k2) and larger for smaller hdis(k1, k2).
Compared with the cost function, which is the direct sum-
mation of hdis(k1, k2), the effect of smaller hdis(k1, k2) for
the discriminative weight updating in (7) has been enlarged
by introducing f(x) ¼ e2ax þ b in (4). Thus, smaller hdis(k1,
k2) has higher priority for increasing than larger hdis(k1, k2)
in the discriminative weight updating.

Similarly, hdis(k2, k1) also represents the template
difference between the speaker k2 and k1 under current
discriminative weights. Again, smaller hdis(k2, k1) has
higher priority for increasing than larger hdis(k2, k1) in the
discriminative weight updating.

The diagram of the training mode of ADVQSI is shown
in Fig. 2. Codebook C(k), discriminative weight W(k) and
space segmentation for speaker k represent the template of
speaker k. All the templates of speakers in the SI group
together with general codebook C g are used in the testing
mode of ADVQSI.

2.2 The testing mode

In the testing mode, testing waveforms from unknown
speakers in the SI group are presented for speaker identifi-
cation. For each testing waveform R, a testing speech
feature vector set T(R) is created from waveform R. In
this mode, for each testing waveform, discriminative
weighted average VQ distortions are calculated. Then, the
SI decision is made on the basis of these weighted
average VQ distortions.

For each testing waveform R, the discriminative
weighted average VQ distortion ddis(R, k) for speaker k is
given by

ddisðR;KÞ ¼
W ðkÞ0NðR; kÞDðR; kÞ

W ðkÞ0nðR; kÞ
ð8Þ

where

DðR; kÞ ¼ ½d1ðR; kÞ; d2ðR; kÞ; . . . ; dmðR; kÞ�0

djðR; kÞ ¼ dgiðR; kÞ � dkjðR; kÞ

NðR; kÞ ¼ diag½n1ðR; kÞ; n2ðR; kÞ; . . . ; nmðR; kÞ�

nðR; kÞ ¼ ½n1ðR; kÞ; n2ðR; kÞ; . . . ; nmðR; kÞ�0

nj(R, k) is the number of the feature vectors in Tj
R(k), dkj(R, k)

is the average VQ distortion of Tj(R, k) quantised by C(k),
dgj(R, k) is the average VQ distortion of Tj(R, k) quantised
by C g and Tj(R, k) is the set for all speech feature vectors of
T(R) located in subspace j of speaker k.

ddis(R, k) is the similarity matching score between the
testing waveform R and the template of speaker k. The
larger the ddis(R, k), the better the match. The definition
of ddis(R, k) is similar to the definition of ddis(k1, k2),
except the former uses the testing speech feature vector
set and the latter considers the training speech feature
vector set. The definitions of ddis(k1, k2) in the training
mode and ddis(R, k) in the testing mode are consistent.
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The SI decision rule is expressed as follows: the unknown
waveform R comes from speaker i, if ddis(R, i) ¼
maxk¼1, 2, . . . , h ddis(R, k). The testing waveform is classi-
fied to the speaker whose template most closely matches
the testing waveform.

3 Experimental Results

In this section, experiments are given to evaluate the effec-
tiveness of the proposed ADVQSI approach. Speech
records are obtained from CSLU (Center for Spoken
Language Understanding, Oregon Health & Science
University) Speaker Recognition V1.1 corpus. For each
speaker, the speech records collected on different collection
dates are packaged into different recording sessions. There
are mismatches between the speech utterances taken from
different speakers. Also, there are mismatches because of
different recording sessions of the same speaker. All the

speech files in the corpus were sampled at 8 kHz and
8-bits per sample.

Thirty-five speakers are used in the text-independent SI
experiments. Four spontaneous speeches for each speaker
are used in the training mode. Two other spontaneous
speeches, taken about one year after the training speech
waveform for each speaker, are used in the testing mode.
Each speech waveform lasts about 4 seconds.

Silenced and unvoiced segments are discarded based on
an energy threshold. The analysis Hamming window size
is 32 ms, 256 samples, with 24 ms overlapping [13]. The
feature vector used in the experiment is composed of 15
Mel frequency cepstral coefficients (MFCCs) [25].

The codebook sizes of VQSI, DVQSI and ADVQSI are
64. In this work, the speech feature vector space is
divided into four subspaces, that is, m ¼ 4. All the code-
books are constructed by the generalised Lloyd algorithm
[22, 23]. The initial values of codebooks are obtained by
using the splitting algorithm [22, 23]. The parameters for
the adaptive discriminative weight updating are a ¼ 0.3,
b ¼ 9 and G ¼ 0.05. The initial values for all discriminative
weights are 100.

The performance of SI using VQ, HMM, DTW and NN
techniques are compared in the literatures [2, 10, 15, 18].
The experimental results in Matsui and Furui [10] and
Yu et al. [18] show that VQ performs better than an equiv-
alent continuous HMM if a small amount of the training
data is provided, but is outperformed by continuous HMM
when the amount of the training data is large. VQ works
much better than discrete HMM [10]. In text-dependent
experiments, DTW outperforms VQ and continuous
HMM for small amounts of training data, but with more
data, these three methods are indistinguishable [18]. The
performances of NN are comparable with VQ [2, 15]. For
small model size, NN does better than VQ. However, as
the model size is increased, NN falls behind [15].

Table 1 shows the SI accuracy results employing VQSI,
DVQSI and ADVQSI. It is observed that ADVQSI and

Fig. 2 Diagram of the training mode of ADVQSI

Table 1: SI accuracy rates employing VQSI, DVQSI and
ADVQSI

Technique VQSI DVQSI ADVQSI

SI accuracy, % 62.9 71.4 71.4

Table 2: Number of operations in VQSI, DVQSI and
ADVQSI

VQSI DVQSI ADVQSI

Training mode

VQ codebook construction h h(h 2 1)k hþ 1

Speech feature vector space

segmentation

N/A h(h 2 1)k/2 h

Subspace average VQ

distortion calculation

N/A mh2k mh2

Adaptive discriminative

weights calculation

N/A N/A 1

Testing mode (for each input waveform)

Average VQ distortion

calculation

h 2(h 2 1) h

k is the number of trials and errors for DVQSI, h is the number of
speakers in the SI group and m is the number of subspaces.
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DVQSI result in higher SI accuracy than VQSI. The discus-
sions and simulation results of the parameters selection for
DVQSI are given in Zhou and Mikhael [19, 20] and Zhou
et al. [21]. Compared with VQSI, DVQSI and ADVQSI
exploit interspeaker variations between different speakers
(or speaker groups). The ADVQSI approach employs adap-
tive techniques to find optimal discriminative weights,
whereas the DVQSI approach obtains discriminative
weights by trial and error [19–21].

Numbers of all time-consuming operations in VQSI,
DVQSI and ADVQSI are given in Table 2. In the training
mode of DVQSI and ADVQSI, VQ codebook construction
takes most of the computational time. Typically, the number
of iterations for the adaptive discriminative weight calcu-
lation in ADVQSI is less than 300. Much less time is
needed for the adaptive discriminative weight calculation
than any other training mode operations listed in Table 2.
In the training mode, the computational burden of
ADVQSI is higher than VQSI, but much less than that of
DVQSI.

To calculate the average VQ distortion in the testing
mode of VQSI, each speech feature vector for testing is
compared with all the codewords in the codebook to
obtain the best match. However, for DVQSI and
ADVQSI, besides this process, each speech feature vector
needs to be classified into a certain subspace to obtain the
corresponding discriminative weight. Then, a small
amount of calculations that is proportional to log2 m is
added in DVQSI and ADVQSI. As m is always much
smaller than the number of codewords, the computational
burden of each average VQ distortion calculation in
DVQSI and ADVQSI is almost as much as that of VQSI.
Consequently, in the testing mode, the computational
burden of ADVQSI is slightly higher than that of VQSI,
and almost half of DVQSI.

For simplification, in ADVQSI, the subspaces are ranked
from the highest interspeaker variation to the lowest inter-
speaker variation for all speakers. Table 3 shows the
average values of d(v) for the speech feature vector space
segmentation of the first speaker. The average values of
d(v) for different subspaces are not equal in Table 3. This
means that different subspaces have various interspeaker
variations between speaker 1 and all speakers in the SI
group, that is, the lower the average value of d(v), the
higher is the interspeaker variation in the subspace.
The feature vector space of ADVQSI is segmented on the
basis of the interspeaker variation between each speaker
and all speakers in the SI group.

The mean value of the discriminative weights for all the
speakers in each subspace against the number of adaptive
iterations is presented in Fig. 3. From Fig. 3, it is seen
that the subspaces with the higher interspeaker variation
increase their discriminative weights as the adaptive algor-
ithm converges. In contrast, the adaptive algorithm reduces
discriminative weights of subspaces, which have lower
interspeaker variations. As a result, the subspaces with
higher interspeaker variations play more important roles
in the SI decision than the ones with lower interspeaker
variations by assigning different discriminative weights to
different subspaces. Although the mean values of the discri-
minative weights in different subspaces are different at the
end of the discriminative weight updating, all of them are
positive. This means that all the subspaces play positive
roles in SI.

The value of the cost function J in (4) against the number
of adaptive iterations is given in Fig. 4. The value of the cost
function decreases as the adaptive algorithm converges. The
average value of hdis(k1, k2) for all possible speaker pairs
against the adaptive iteration number is given in Fig. 5.
This value increases when the number of adaptive iterations

Table 3: Average d(v) for the first speaker in the speech feature vector space segmentation

For all the training

feature vectors

For feature vectors

in subspace 1

For feature vectors

in subspace 2

For feature vectors

in subspace 3

For feature vectors

in subspace 4

0.6763 0.4110 0.6420 0.7028 0.8862

Fig. 3 Average discriminative weights for different subspaces
against the number of adaptive iterations

Fig. 4 Value of the cost function J in (4) against the number of
adaptive iterations
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increases. The results confirm that the adaptive algorithm
converges successfully.

4 Conclusions

In this work, a new SI approach based on adaptive
discriminative VQ is developed and presented. The
ADVQSI technique takes advantage of the interspeaker vari-
ation between each individual speaker and all speakers in the
SI group. In the training mode of this technique, for each
speaker, the speech feature vector space is divided into a
number of subspaces on the basis of interspeaker variation
between this speaker and all speakers. Then, an optimal dis-
criminative weight is adaptively trained for each speaker and
each subspace in order to maximise the template differences
between different speakers for SI. In the test mode of
ADVQSI, discriminative weighted average VQ distortions
are used as similarity measurements between speakers’ tem-
plates and each testing waveform. The testing waveform is
classified to the speaker whose template leads to the
highest similarity score.

The effectiveness of the ADVQSI approach is demon-
strated experimentally. It is shown that the proposed tech-
nique yields better SI accuracy than the VQSI approaches.

Compared with the recently reported DVQSI approach,
AVDQSI determines discriminative weights by using adap-
tive techniques instead of trial and error. Because ADVQSI
considers each speaker instead of each speaker pair, the
computational requirement of ADVQSI is considerably
reduced relative to DVQSI, in which discriminative
weights are assigned for each speaker pair [19–21].

Although the ADVQSI technique is applied to SI,
this technique can be gainfully extended to other pattern
identification applications, such as handwritten character
identification and face identification.
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