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Abstract
In this paper, we propose a feedforward neural networks-based robust predictive controller for a class of multi-input–multi-output non-linear systems.

Using the structured uncertainties of the output layer’s weights of the neural networks model, the non-linear model of the real system is determined at

each operating point. The control law is formulated as a minimax problem, which is solved online. The non-convex optimization is developed by mini-

mizing the worst case of the objective cost function, taking into account the uncertainties of the non-linear model and the input control signal con-

straints. The efficiency of the proposed neural predictive controller is illustrated, in simulation, with a multivariable system example.
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Introduction

Most industrial processes are multivariable systems with a

high interrelationship between their input–output variables.

Nowadays, industrial systems require controllers with a high

degree of complexity, and the implementation of conven-

tional techniques of control for such a class of systems are

not capable of achieving the desired control (Behera and Kar,

2010). Model predictive control (MPC) is one of the most

advanced strategies that can be used to control non-linear

systems. Due to MPC’s ability to deal with constraints in the

control problem imposed on process inputs and outputs, it

has been considered a successful tool for the control of indus-

trial processes. MPC is based on the use of a process model

in order to predict future outputs over a certain horizon

(Lawrynzuk and Tatjewski, 2010). The success of this tech-

nique is related to the precision of the system model to be

controlled. Several studies have investigated providing the

solutions of control problems associated with the MPC tech-

nique for single-input–single-output non-linear systems

(Morari, 2009). The stabilization formulations of this class of

method have been studied in the literature (Lu et al., 2010).

In Holkar and Waghmare (2010), the authors provided

details of most control design methods based on MPC con-

cepts that have been implemented in industrial processes.

Subsequently, the MPC technique can be easily extended to

deal with multivariable systems.
Model-based controllers that are tested with linear models

have been successfully used in industrial processes. However,

as most industrial processes are characterized by non-linearity

and complexity, this technique is not often adopted for cases

where the real time control needs model changes and different

operating points (Ho et al., 2012). In fact, it is necessary to

use a non-linear model to describe the unknown non-linear

dynamics of a real system. Several types of non-linear models

have been used in the literature, such as the polynomial

model (Hernandez and Arkun, 1993), Volterra model

(M’Salhi et al., 2001) and neural networks model (Narendra

and Parthasarathy, 1990).
Most of the research has used neural networks for model-

ling non-linear systems, because of their inherent ability to

learn and to approximate any non-linear function, since the

establishment of the universal approximator properties

(Hornik et al., 1989). Feedforward neural networks (FNNs)

are used effectively for identification of multi-input–multi-

output (MIMO) non-linear systems. It has been proved that

the FNN can approximate any continuous non-linear func-

tion (Wang et al., 2012; Zhang et al., 2012). The successful

application of a predictive controller based on a neural net-

work model for non-linear systems has appeared in an accu-

rate non-linear model and an efficient control algorithm (Fei

et al., 2006; Mnasser et al., 2013; Pan and Wang, 2012). In
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MPC, the process model is used to compute the output pre-

diction sequence over the prediction horizon. In presence of a

non-linear model, the predictor is then a non-linear function

relative to the control sequences. Consequently, the optimiza-

tion problem is non-convex.
Kotta et al. (2006) have presented the realizability of the

FNNs based on an input–output model to control non-

linear systems. An adaptive learning algorithm is used to

identify the unknown parameters in the neural network

model (Cheng et al., 2007). For decades, robust optimal

control problems have appeared in various research studies.

Some formulations of robust predictive controllers consider

additive uncertainty (Bemporad et al., 2003; Raimondo

et al., 2009) or structured uncertainty (Bouzouita et al.,

2007; Yan and Wang, 2014). Kheriji et al. (2011) proposed

a robust predictive controller for a class of constrained

MIMO systems based on a linear model with parametric

uncertainty. Yan and Wang (2014) presented a neural

networks approach based on predictive control design for

non-linear systems. In fact, an unknown non-linear dynami-

cal system is decomposed by means of Jacobian lineariza-

tion. Researchers have used recurrent neural networks

not only for modelling systems via supervised learning, but

also for optimizing the quadratic programming problem

control.
The aim of this work consists of the development of a

MIMO robust predictive controller based on a non-linear

model having uncertain parameters. FNNs are used to

approximate the behaviour of the plant. Taking into account

that the neural model will not always assume an exact repre-

sentation of the non-linear system being controlled, para-

metric uncertainties of connection weights of the output layer

of the neural model are introduced. The predictive controller

design procedure is implemented to highly non-linear MIMO

systems based on only one neural network model. The pro-

posed model consists of the connection weights of the output

layer of the neural network, which are bounded uncertainties,

whereas the connection weights from inputs to hidden neu-

rons are fixed. The neural network structure can be used to

model a wide class of non-linear systems with a reduced num-

ber of unknown parameters. The values of the control signals

are determined at each time instant by the minimization of

the worst-case quadratic cost in taking into account bounded

parameters of connection weights of the output layer of the

neural model and the control signals constraints. Therefore,

the minimax optimization problem, which is non-convex rela-

tive to the unknown parameters, will be solved online (Magni

et al., 2009). As a result, the proposed controller based on a

single neural networks model assumes good closed-loop per-

formances at all system operating points.
The outline of the paper is organized as follows. A prob-

lem formulation and preliminaries on model predictive con-

trol strategy and the structure of the FNNs are given in the

next section. In the third section, a robust predictive control-

ler design based on neural networks is described. In the fourth

section, an example to illustrate the performance of the pro-

posed approach is illustrated. Finally, the last section is dedi-

cated to conclusions.

Problem formulation and control design

An introduction to the properties of the model predictive con-

trol and the FNNs is given in this section. Consider a MIMO

non-linear system that has p inputs denoted

u1(k), . . . , up(k)
� �

and m outputs denoted y1(k), . . . , ym(k)½ �
in which p�m.

Control law

MPC is an optimal control strategy that uses an explicit pro-

cess model to predict the behaviour of the plant. The control

design based on FNNs model for multivariable system is

depicted in Figure 1. As shown in Figure 1, the non-linear

model is used to compute the predictor sequences. The con-

trol law is calculated by the minimization of the cost function

J (Dun), for n=1, ., p, which is given by the following

problem:

min
Dun

J (Dun) ð1Þ

The cost function is defined as a quadratic objective function,

which is given by:

J (Dun)=
Xm

i= 1

XN2

h= 1

yri(k + h)� ŷi(k + h)ð Þ2

+l
Xp

n= 1

XNu

h= 1

Dun(k + h� 1)ð Þ2
ð2Þ

where m and p represent, respectively, the number of outputs

and inputs of the system. N2 represents the prediction hori-

zon. yri(k) and ŷi(k + h) are, respectively, the reference trajec-

tory and the h-step ahead predictor corresponding to the ith

output of the system. The Dun(k + h� 1) denotes the control

increment corresponding to pth input, which is given by:

Dun(k + h� 1)= un(k + h� 1)� un(k + h� 2) ð3Þ

u1(k)

ˆ ( )my k

up(k)

M

MMM

1ˆ ( )y k

( )my k
1( )y k

yrm(k)

yr1(k)
optimization 
procedure

Neural 
Neworks
Model

Process

z-1

Figure 1. Multi-input–multi-output (MIMO) controller based on a

feedforward neural network (FNN) model.
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DUn = Dun(k), . . . , Dun(k +Nu � 1)½ �T 2 IRpNu is the vector
of the optimization variables, l is the control input weighting

factor. The control signal is manipulated only within the con-
trol horizon (Nu) and remains constant afterwards, i.e.

Dun(k + h)= 0, forNu� h�N2: ð4Þ

Neural networks prediction

In order to predict the future system outputs, a non-linear
dynamic process model is employed. In fact, neural networks
are able to describe the system behaviour over the whole oper-
ating range. Using the available inputs and outputs data, a

neural network can be trained to approximate the unknown
non-linear function. Then, the model output is given by:

ŷi(k)=NN X (k)½ � ð5Þ

where the NN[.] is the neural network and
X (k)= U (k), Y (k)½ �T is the input vector of the NN model in
which U (k) and Y (k) are presented, respectively, by elements:

U (k)= u1(k � 1), . . . , u1(k � du), . . . , up(k � 1), . . . , up(k � du)
��

Y (k)= y1(k � 1), . . . , y1(k � dy), . . . ,
�

ym(k � 1), . . . , ym(k � dy)
�

dy and du represent, respectively, the known upper orders of
inputs and the outputs of the system. In the literature, FNNs
are considered a powerful tool for modelling non-linear sys-

tems. They are structured in successive layers of neurons,
from inputs to the output layer by the intermediate hidden
layers. Hornik et al. (1989) has proved that a single hidden
layer in the FNNs is sufficient for approximating any
unknown non-linear function. The number of neurons in the
hidden layer of the NN model is selected until an acceptable
testing error value is obtained.

The model output ŷi(k) is given by the following relation:

ŷi(k)=w
i0
+
XL

j= 1

wijsj(k), for i= 1, . . . , m ð6Þ

where L and m are, respectively, the number of nodes in the
hidden layer and the number of the output layer. ŷi(k) is the

output of the ith neuron in the output layer. sj(k) is the output
of the jth neuron of hidden layer. wij denotes the weight from
the jth neuron in the hidden layer to the ith neuron in the out-
put layer and the thresholds are denoted by wi0 for i=1, .,
m.

sj(k)= f (vj +
Xr

z= 1

vjzIz(k)) ð7Þ

where r represents the number of inputs to the network. vjz

and vj, for j=1, ., m, are the connection weights from inputs
to the hidden neurons and biases, respectively. f(.) represents
the non-linear activation function of the hidden layer, which
should be a continuous differentiable function. In this work,
the tangent hyperbolic function is used as a neural network
activation function in the hidden layer.

f (x)=
ex � e�x

ex + e�x
ð8Þ

I(k) is the input vector, which can be constructed by the
following elements:

I(k)= I1(k), . . . , Ir(k)�½ ð9Þ

Hence, the total number of the parameters in the neural net-
works model is equal to g = rL+L+Lm+m.

In order to estimate the parameters of the FNN model, the
quadratic error of the neural model to be optimized is given
by:

E=
1

2

XNm

k = 1

Xm

i= 1

(yi(k)� ŷi(k))
2 ð10Þ

where yi(k) and ŷi(k) are, respectively, the desired output and
the predicted output of the ith node in the output layer of the
neural networks model computed at time k and Nm is the total
number of measurements.

In order to handle a large class of non-linear discrete-time
systems, we suppose that the outputs layer’s weights belong to

some prespecified set O. The connection weights of the output
layer of the FNNs are modelled by the structured uncertain-
ties, which are given by the following relation:

wij 2 wij, �wij

h i
, for i= 1, . . . , m and j= 1, . . . , L ð11Þ

where wij and �wij are the upper and lower bounds values of
each connection weight of the output layer of the FNNs.
Then, each parameter has uncertain variations about its nom-
inal value. So, it can be represented by means of a median
value and an absolute value of the maximum deviation with
respect to its median value.

wij =w0
ij
+ eijdwij, eij

�� ��� 1 ð12Þ

for i= 1, . . . , m and j= 1, . . . , L

The feasible region O can be given by:

O= w0
ij
+ eijdwij, eij

�� ��� 1
n o

ð13Þ

The uncertainties are assumed to be bounded, and eijdw
ij
rep-

resents the uncertainty of coefficient wij.

Neural networks-based robust predictive controller
design

The main contribution is devoted to the robust MPC control-
ler design for non-linear MIMO systems based on uncertain
FNNs. So, the basic idea is to control the multivariable sys-
tem for each sample time by using a FNN having parametric
uncertainty output layer weights. The control law represents
the best solution for the worst case defined by the set of
uncertain models (Alessio and Bemporad, 2009; Ben-Tal et
al., 2009; Lofberg, 2003; Magni et al., 2009; Raimondo and
Magni, 2006). Robust model predictive control (RMPC)
involves online optimization of a minimax objective problem.
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The control law is computed by solving the minimax
optimization.

The optimization problem is expressed as:

min
Dun

max
W2O

J (Dun,W ), for n= 1, . . . , p ð14Þ

Subject to constraints:

unmin� un(k + h� 1)� unmax, h= 1, . . . , Nu

Dunmin�Dun(k + h� 1)�Dunmax, h= 1, . . . , Nu

Wmin�W �Wmax

where Wmin and Wmax are, respectively, the lower and upper

bounded vectors of the connection weights of the output layer
of the neural model. unmin and unmax are the minimum and
maximum values of the nth manipulated input, respectively.
Dunmin and Dunmax represent the upper and lower bounds val-
ues of the increments control. J (Dun,W ) denotes the desired
performance criterion that can be defined by the quadratic
function (2) in which

W = w11, . . . ,w1L, . . . ,wm1, . . . ,wmL½ �T 2 IRmL

is the vector of the connection weights of the output layer of
the neural networks model.

For the sake of brevity, we consider the following vectors:

U (k)= U1(k) . . . Up(k)½ �T 2 IRpNu

Un(k)= un(k), . . . , un(k +Nu � 1)½ �T 2 IRNu

Umin(k) and Umax(k) are the minimum and maximum vectors
of the input control, respectively.

Umin(k)= U1min(k) � � � Upmin(k)½ �T 2 IRpNu

Umax(k)= U1max(k) � � � Upmax(k)½ �T 2 IRpNu

Unmin(k)= unmin(k) � � � unmin(k +Nu � 1)½ �T 2 IRNu

Unmax(k)= unmax(k) � � � unmax(k +Nu � 1)½ �T 2 IRNu

for n=1, ., p, where unmin(k) and unmax(k) are the minimum
and maximum values of the nth control input, respectively.

Wmin = w11, . . . ,w1L, . . . ,wm1, . . . ,wmL½ �T 2 IRmL

Wmax = �w11, . . . , �w1L, . . . , �wm1, . . . , �wmL½ �T 2 IRmL

wij and �wij are, respectively, the lower and upper limits
weights of each neurons in the output layer of the neural net-
work model.

DUmin(k) and DUmax(k) represent, respectively, the upper
and lower bounded vectors of the increments control.

DUmin(k)= DU1min(k) . . . DUpmin(k)½ �T 2 IRpNu

DUmax(k)= DU1max(k) . . . DUpmax(k)½ �T 2 IRpNu

DUnmin(k)= Dunmin(k) . . . Dunmin(k +Nu � 1)½ �T 2 IRNu

DUnmax(k)= Dunmax(k) . . . Dunmax(k +Nu � 1)½ �T 2 IRNu

for n=1, ., p, Dunmin(k) and Dunmax(k) represent, respec-

tively, the upper and lower bounds values of the nth control
increments.

Then, the optimization problem is formulated as:

DU (k)= min
DU (k)

max
W2O

J (DU (k),W ) ð15Þ

Subject to constraints:

Umin(k)�U (k)�Umax(k)

DUmin(k)�DU (k)�DUmax(k)

Wmin�W �Wmax

DU (k)= DU1(k), . . . , DUp(k)
� �T 2 IRpNu

denotes the variables vector of the control increments, where:

DUn(k)= Dun(k), . . . , Dun(k +Nu � 1)½ �T 2 IRNu

for n=1, ., p. To apply the minimax problem, let us unifies

the inequalities constraints in a matrix form.
By using (3), the nth control signal can be expressed as:

un(k)= un(k � 1)+Dun(k)

..

. ð16Þ

un(k +Nu � 1)= un(k � 1)+Dun(k)

+ � � � +Dun(k +Nu � 2)+Dun(k +Nu � 1)

Denote:

P=

Ip 0 0 � � � 0

Ip Ip 0 � � � 0

..

. ..
. . .

.
..
.

0
Ip Ip � � � Ip Ip

2
6664

3
7775 2 IRpNu 3 pNu

where Ip and 0 denotes the identity and zero matrices of
appropriate dimension.

Therefore, the optimization problem (15) can be expressed

as a non-linear programming problem:

min
DU (k)

max
W2O

J (DU (k),W ) ð17Þ

Subject to

DUmin(k)�DU (k)�DUmax(k)

Umin(k)�U (k � 1)+PDU (k)�Umax(k)

Wmin�W �Wmax

The problem (17) becomes:

min
DU (k)

max
W2O

J (DU (k),W ) ð18Þ

Subject to
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a�s DU W½ �T �b

where

s=
IpNu

0

P

0

0

ImL

����
� �T

2 IR(2pNu +mL)3 (pNu +mL)

a= DUmin(k) Umin(k)� U (k � 1) Wminj½ �T

b= DUmax(k) Umax(k)� U (k � 1) Wmaxj½ �T

a 2 IR(2pNu +mL), b 2 IR(2pNu +mL)

The optimization problem (18) is formulated into two sub-
problems. In the first step, an initial input vector is used to
compute the maximum of the cost function for all the models
within the family of models described by the uncertainty set
O. So, the first problem is given by:

P1 = max
W2O

J (DU (k), W )

= �min
W2O
�J (DU (k), W )

ð19Þ

As a result, the values of the connection weights of the output
layer of the neural network are obtained. We will refer to W �,
the solution of the optimization problem (19). In the second
step, the unknown variables are the vector composed of (pNu)
future increment control signals. The optimization problem
(18) can equivalently be written as an optimization problem
of the form:

P2 = min
DU (k)

J (DU (k),W �) ð20Þ

The optimal control input increment vector is the solution of
the constrained minimization problem (20) that minimizes the
worst case of the objective function (2) at time instant k over
the prediction horizon N2.

The algorithm

Based on the non-linear function of the system model and the
non-linear relation between the connection weights of the
output layer of the neural network and the control values, the
optimization problem (19) is non-convex. The gradient
method is used to find the minimum solution of the optimiza-
tion problems. This method is an iterative optimization tech-
nique and attempts to find a constrained minimum of a
non-linear function. It is based on calculus of the derivative
of the objective function to be optimized. We will refer to

J(k) as the objective function and to f as the optimized
variables. Based on the gradient method, the optimal solu-
tion of the problem min

f
J (k) is computed by:

fj+ 1 =fj � b
∂J (k)

∂fj

ð21Þ

where j=1, ., Niter. Niter denotes the maximal number used
to smooth the optimal value. The gradient algorithm depends
on the rate of the steepest gradient b that aims to accelerate

the convergence to the optimal solution. In the optimization
toolbox of Matlab, we can use the predefined function ‘fmin-
con’ to solve the constrained optimization problem. The

scheme of the proposed controller based on uncertain non-
linear model is depicted in Figure 2.

The elimination of the steady-state error for the RMPC
can be obtained by applying the method presented in Jazayeri
et al. (2008). This method is based on the use of disturbance
model, which is an iterative learning to reduce the tracking

error. The disturbance model is trained by a gradient descent
method with adaptive weighting that distinguished external
disturbances and model mismatches.

Thereby, the disturbance model is added to the main
neural network model. We will refer to w�ij as the optimal con-

nection weights of the output layer of the neural network by
solving the optimization problem (19). Hence, the output
model is given by the following equation:

ŷi(k)=NN(w�
ij
,X (k))+ d

i
(k), ð22Þ

for i=1, ., m and j=1, ., L, and d
i
(k) is the output of the

disturbance model, which is described by:

d
i
(k)= k1iei(k)+ k2i ð23Þ

where ei(k) is the difference between the output of the neural
model and the system output. k1i and k2i are disturbance
model weightings, which are adjusted at each sample time.

The rules to adapt the disturbance model parameters are

given by Jazayeri et al. (2008), which are based on the propor-
tional integral learning rule:

k1i(k)j+ 1=k1i(k)j+hei(k)+kp(ei(k)� ei(k � 1))

k2i(k)j+ 1 = k2i(k)j +hei(k)
2

ð24Þ

ˆ ( )my k

up(k)up(k)
M

yrm(k)

1ˆ ( )y k

M

M
M ( )my k

1( )y ku1(k)yr1(k)
Minimax 

optimization
(cost function

+
Constraints)

Uncertain
Neural 
Model

z-1

Nonlinear 
system

Figure 2. Block diagram of the multi-input–multi-output (MIMO)

model predictive control (MPC) controller based on a neural network

(NN) model.
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for j=1, ., Niter and h is the learning rate. Then, the algo-

rithm used to resolve the minimax optimization problem (18)
is summarized as follows:

Step 1. Let k=1. Set the values of the connection weights
from inputs to the hidden layer, the upper and lower
bounds weights vectors of the output layer (Wmin,Wmax) of
the NN model, the final control time T, the set point tra-
jectory yr1(k), ., yrm(k) the prediction and control hori-
zons N2, Nu, and the control weighting factor l.
Step 2. Find the connection weights of the output layer of
the neural network, which are the solution of the optimi-
zation problem (19).
Step 3. Use the solution of the optimization problem (19)
for computing the control sequence Dun, for n=1, ., p,

by solving the next optimization problem (20); then, the
first control of the calculated sequence is applied to the
system.
Step 4. If k\T, k=k+1, take the new measurements and
go to step 2, otherwise end.

Simulation results

The objective of this section is to examine the effectiveness of
the proposed robust controller for MIMO non-linear systems

based on uncertain FNNs. The process has two inputs and
two outputs and it is represented by the discrete equations
(25a) and (25b) (Petlenkov, 2007; Song and Li, 2006).

y1(k)=
a1y1(k � 1)y1(k � 2)

1+ a2y1(k � 1)2 + a3y2(k � 2)2

+ a4u1(k � 2)+ a5u1(k � 1)+ a6u2(k � 2)

ð25aÞ

y2(k)=
b1y2(k � 1)sin(y2(k � 2))

1+ b2y2(k � 1)2 + b3y1(k � 2)2

+ b4u2(k � 2)+ b5u2(k � 1)+ b6u1(k � 2)

ð25bÞ

Assume that the parameter variations of the system ai and bi
are known along of trajectory and three situations of the
dynamic behaviour of the full system are defined in Table 1
as follows.

Non-linear system modelling

In the modelling stage, we have considered three situations.
In the first one, the system behaviour is described by the nom-
inal values parameters. In the second and third situations, the
system’s behaviour will be changed and 10% and 20% level
variations about the nominal parameters values are intro-

duced, respectively. Various NN models with different sizes
are trained in order to find the best one with the minimum
value of the performance criterion.

The control inputs sequences u1 and u2 for the training of
the model are formed of pulses of positives random amplitude
in the interval [0; 1]. The finite length of the control inputs

sequences is Nm=300. So, the final structure of the neural
network model is formed by 10 neurons in the hidden layer
with tangent hyperbolic as activation function and two

neurons in the output layer. The input elements to the neural
network model are defined by the following vector:

X (k)= u1(k � 1), u1(k � 2), u2(k � 1), u2(k � 2),f
y1(k � 1), y1(k � 2), y2(k � 1), y2(k � 2), g

The back-propagation algorithm is used to estimate the
weights of the neural networks model and a reduced value of
sum square error E on the training sequences is assumed.

E =
1

2

X2
i= 1

X300

k = 1

(yi(k)� ŷi(k))= 2:67 10�2 ð26Þ

Thereby, the same size was adopted for the two other neural
models and we assume that the hidden layer weights are fixed
but only the parameters of the outputs layers are determined.
The MIMO neural network model is obtained for each situa-
tion of the multivariable system.

The real process can be characterized by a single neural
network model formed by a one hidden layer. The proposed

model is determined by the use of fixed weights in the hidden
layer and by structuring the uncertain connection weights of
the output layer. The validation of the NN models are cap-
tured by using a random control inputs sequences.

Non-linear system control

In order to control the non-linear system, which has known
parameter variations, an uncertain non-linear model is used
and the control design shown in Figure 2 can be implemen-
ted. The efficiency of the robust predictive control method is
related to the quality of the model, which is used to approxi-
mate the behaviour of the real system. The robustness of the

centralized MPC based on the FNN model is illustrated with
the simulated process. The set-point sequence consists of
pulses with amplitudes in the interval [0; 1.5]. The finite
length of the sequence is S=180. The system behaviour is
described by the nominal model for the 65 first sample times;
thereafter, the parameters of the nominal system’s behaviour
will be varied on the wide range of time, which are shown in
Table 1. Assume that the time of system behaviour change is

Table 1. Parameters values of the full system.

Parameter values Nominal Situation 1 (610%) Situation 2 (620%)

a1 0.7 0.77 0.56

a2 1 0.9 1.2

a3 1 1.1 0.8

a4 0.3 0.33 0.36

a5 1 0.9 1.2

a6 0.2 0.22 0.16

b1 0.5 0.55 0.4

b2 1 1.1 1.2

b3 1 0.9 1.2

b4 0.5 0.55 0.4

b5 1 1.1 0.8

b6 0.2 0.18 0.24
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unknown a priori. Assume that our information about the

weights of the output layer wij, for i=1, 2 and j=1, . 10, is

that these parameters are given in a compact set

W 2 Wmin, Wmax½ � 2 IR20, in which Wmin and Wmax are,

respectively, the lower and upper bounds of the connection

weights of the output layer wij of the NN.

In order to take this knowledge about the uncertainty W

into account, the robust predictive control is applied. Hence,

the optimal control signals u1(k) and u2(k) are computed by

minimizing the worst possible value of the objective function

J (Dun, W ) for n=1, 2. This kind of problem is bi-level: firstly,

the maximization problem with respect to the parameter

uncertainties weights of the output layer W is solved in order

to find the worst model parameters and secondly, the opti-

mum sequence of control signals u1(k) and u2(k) are com-

puted by solving the problem (20). The centralized predictive

controller parameter values used in the control system are

given by: N2 = 4, Nu = 1 and l= 1.
Figure 3 shows the reference trajectory and the closed-

loop responses obtained with the MIMO predictive con-

troller. We can observe that the output system tracks the

reference trajectory.
Figure 4 depicts the corresponding control signals u1 and

u2. It can be noted that we have improved the tracking

response of the closed-loop system and the proposed neural

controller satisfied good performances in controlling multi-

variable system. Figure 5 shows that by adjusting the weight-

ing of the disturbance model, we can overcome the steady

error tracking and the satisfactory output tracking subject to

an acceptable control action.
In addition, the ability of MPC to handle constraints on

controls is also tested in this example. Therefore, the con-

straints imposed on the control signals of the multivariable

systems are given by:

0:15� u1(k)� 0:42
0� u2(k)� 1

�
for k\65 ð27aÞ
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Figure 4. Evolutions of the control signals u1 and u2 without

constraints.
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Figure 5. Evolutions of the weights of the disturbance model

corresponding to the output system y1 and y2 without constraints.
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Figure 3. Evolutions of the system outputs y1 and subject to an

acceptable control action.
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0:25� u1(k)� 1
0:25� u2(k)� 0:36

�
for 65� k\130 ð27bÞ

0� u1(k)� 0:7
0� u2(k)� 0:7

�
for k � 130 ð27cÞ

The simulation results in the presence of the uncertainties

of the neural networks model and the control signals con-

straints are depicted in Figures 6 and 7. From these simulation

results, it is shown that the system outputs successfully track

the set-points. On the other hand, it is shown that the control

signals constraints slowly lead to a closed-loop system.
Moreover, Figure 7 illustrates that the imposed control

signals constraints are satisfied. Figure 8 shows that by

adjusting the weighting of the disturbance model, we can

overcome the steady error tracking and the output tracking

subject to an acceptable control action. The smooth trends of

the system outputs indicate good performance with the pro-

posed method. The proposed controller based on neural net-

works model with uncertain parameters in the output layer

presents a good tracking performance of the closed-loop

system.

Conclusion

A centralized predictive controller based on an uncertain

neural network for multivariable systems is developed in this

paper. Thanks to the ability to approximate the dynamic

behaviour of the system, only a single FNN model is used at

each operating point of the MIMO system. The system non-

linear model is only determined by parametric uncertain

weights of the output layer of the neural network model,

whereas the connection weights from inputs to the hidden

neurons are fixed. The control law is computed by solving a

minimax optimization problem at each sampling time. The

obtained simulation results have illustrated the efficiency of

the proposed controller.
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Figure 6. Evolutions of the system outputs y1 and y2 with constraints.
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Figure 8. Evolutions of the weights of the disturbance model

corresponding to the output system y1 and y2 with constraints.
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Figure 7. Evolutions of the control signals u1 and u2 with constraints.

Mnasser and Bouani 959



Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding
agency in the public, commercial or not-for-profit sectors.

References

Alessio A and Bemporad A (2009) A survey on explicit model predic-

tive control. Lecture Notes in Control and Information Sciences

384: 345–369.

Behera L and Kar I (2010) Intelligent Systems and Control Principles

and Applications. New York: Oxford University Press.

Bemporad A, Borrelli F and Morari M (2003) Min–max control of

constrained uncertain discrete-time linear systems. IEEE Transac-

tions on Automatic Control 48(9): 1600–1606.

Ben-Tal A, El-Ghaoui L and Nemirovski A (2009) Robust optimiza-

tion. Princeton, NJ: Princeton University Press.

Bouzouita B, Bouani F and Ksouri M (2007) Robust MPC for non-

linear multivariable systems. Proceedings of the 15th Mediterra-

nean Conference on Control and Automation, Crete, Greece.

Cheng L, Hou Z and Tan M (2007) Constrained multi-variable gener-

alized predictive control using a dual neural network. Neural Com-

puting and Applications 16(6): 505–512.

Fei M, Zhang J, Hu H, et al. (2006) A novel linear recurrent neural

network for multivariable system identification. Transactions of

the Institute of Measurement and Control 28(3): 229–242.

Hernandez E and Arkun Y (1993) Control of nonlinear systems using

polynomial ARMA models. AIChE Journal 39(3): 446–460.

Ho YK, Mjalli FS and Yeoh HK (2012) Centralized vs decentralized

adaptive generalized predictive control of a biodiesel reactor. Asia

Pacific Journal of Chemical Engineering 8(1): 137–143.

Holkar KS and Waghmare LM (2010) An overview of model predic-

tive control. International Journal of Control and Automation 5,

47–64.

Hornik K, Stinchcombe M and White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Networks

2(5): 359–366.

Jazayeri A, Fatehi A, Sadjadian H, et al. (2008) Disturbance rejection

in neural network model predictive control. Proceeding of the 17th

IFAC World Congress Seoul, Korea.

Kheriji A, Bouani F and Ksouri M (2011) A GGP approach to solve

nonconvex min-max predictive controller for a class of con-

strained MIMO systems described by state space models. Interna-

tional Journal of Control, Automation and Systems 9(3): 452–460.
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