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Abstract: Offset pulse position modulation (PPM) has been shown to be more attractive for use in optical fibre channels
than on–off keying, digital PPM and in some respects multiple PPM in some applications. However the spectral analysis of
this coding scheme has not yet been addressed. In this study the authors present, for the first time, the spectral
characteristics of an offset PPM sequence. The results show strong frequency components at the frame rate and, if
return-to-zero pulses are used, the slot rate.

1 Introduction

Digital pulse position modulation (digital PPM) has been proposed
as a way to trade the bandwidth available on the optical channel
for an increase in signal to noise ratio [1]. Practical work has
confirmed the theoretical predictions and measurements have
shown that digital PPM gives an increase in receiver sensitivity of
4.5 dB when compared with on–off keying [2]. Unfortunately the
benefits of digital PPM come at the expense of an increased line
rate which can be prohibitively high. This led researchers to
consider variations on digital PPM that offer the same sensitivity
benefits but at a lower line rate.

Many different coding schemes have been proposed that offer a
lower line rate. Shiu and Kahn [3] described differential PPM
which suppresses the empty slots following the digital PPM pulse.
A similar variant is digital pulse interval modulation (digital PIM)
in which the empty slots preceding a pulse are suppressed. Both
schemes offer a reduction in line rate but this comes at the
expense of increased complexity as buffers are required at both the
coder and the decoder. In the scheme known as dual header PIM
(DH-PIM) a variable word length is used to reduce the line rate
[4, 5]. Again, buffers are required in the coder and decoder.

Frame synchronisation is a problem with these modulation
schemes as the frame length is variable. A modulation format that
does not require buffers, and that has a spectral line at the frame
rate, is the bandwidth-efficient code multiple PPM [6, 7]. In this
modulation format, two or more pulses are used within a frame
with the position of the pulses being governed by the original
data. As will be seen later, this coding technique exhibits a
spectral line at the frame repetition rate. A variation is shortened
PPM [8, 9] in which the frame is divided up into (1 + 2M−1) slots
where M is the number of data bits to be encoded. The first slot is
reserved for the first data bit and the remaining slots are filled as
per digital PPM. As shown by Cryan [9] the modulation scheme
gives a spectral line at frame rate. Table 1 shows how three bits of
data are coded by these modulation formats.

All of these schemes have their relative advantages and
disadvantages and it was to counter the disadvantages that offset
PPM was invented [10]. In offset PPM the most significant bit
(MSB) is used to register the offset from a datum code, either 000
or 100 when coding three bits of data. The code alphabet is shown
in Table 1. Ray et al. [11] have shown that offset PPM offers a
3.27 dB advantage over digital PPM and a lower bandwidth. It
also gives better sensitivity than multiple PPM when the channel
bandwidth is high. However, if the channel bandwidth is lower,
the error rate increases because of inter-symbol interference (ISI)

and inter-frame interference (IFI). The effect of ISI and IFI can be
reduced by using proper pulse shaping.

This paper presents the spectral analysis of offset PPM and a
comparison between theoretical and numerical results is given. We
will show that the spectrum contains discrete components at the
slot repetition rate. Slot synchronisation has been taken into
consideration for the first time as the offset PPM spectrum exhibits
a discrete slot rate component. The effect of pulse shaping and
modulation index on the spectrum is also presented. Frame
synchronisation has also been considered for offset PPM as this
coding scheme exhibits a strong frame rate component. The
dependency of this frame component on the modulation index is
examined. A comparison of the spectral characteristics of digital,
multiple and shortened PPM is presented here. For ease of
implementation an offset PPM coder has been designed. In this
paper we have followed the approach introduced by Win [12].

2 Spectral characterisation

The spectral density function, or power spectrum, of a random
sequence of signals is defined as the distribution of the average
power with respect to frequency. Spectral analysis is important to
the design of any system because it indicates one of the most
important characteristics of a signal (i.e. bandwidth) and also the
amount of total average power of that signal in any frequency
band. The Fourier transform of the autocorrelation function of a
signal gives the spectral density in the frequency domain.

An offset PPM sequence can be represented as

m(t) =
∑1
n=−1

anp(t − nT ) (1)

where {an} is the offset pulse sequence and p(t) is the pulse shape.
To implement the probability distribution, 4-slot offset PPM was
considered and 64 frames were taken randomly to form a offset
data sequence. This data sequence was used to find out the
probability distribution of zeros and ones using Matlab which is
shown in Fig. 1.

The sequence can be made to have a zero mean, M(t), as

M (t) = m(t)− m(t) (2)
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Here m(t) is the mean of m(t) and is defined as

m(t) W E{m(t)} =
∑1
n=−1

E{an}E{p(t − nT )} (3)

E{·} represents the expected value. The autocorrelation function of
the zero mean data sequence can be defined as (Appendix 1)

RM (t; t) = E{M (t)M∗(t + t)}

=
∑1
n=−1

∑1
m=−1

∫
y

∫
z
Ka(n:m− n)× P(y)P∗(z)

× e−j2pynTe+j2pzmTe+j2p(y−z)te−j2pztdydz

(4)

where Ka(n:m− n) = E{ana
∗
m}− E{an}E{a

∗
m}. Fig. 2 is the

autocorrelation function of offset PPM data sequence.
In general the Power Spectral Density, PSD, of a digital pulse

stream consists of both continuous and discrete components
irrespective of the properties of the pulse stream an. Assume the
pulse is a rectangular pulse of height A, pulse width tp and offset
PPM frame time Tf. According to Wiener–Khintchine theorem
power spectral density is the Fourier transform of the
autocorrelation function. The continuous spectrum (Appendix 2) of
the offset PPM data sequence can be represented by using
Wiener–Khintchine theorem [12] as

Scm(f ) = F{kRM (t:t)lt} = Sa(f )Sp(f ) (5)

where 〈·〉 denotes time average for time duration t, Sp( f ) is the part of
spectral component because of square pulse and Sa( f ) is the part of
spectral component because of data sequence an. Now, can be

calculated as follows

Sp(f ) =
1

T
|P(f )|2 = Atpsinc

ftp
Tf

( )
(6)

From (4)

Sa(f ) =
∑1
l=−1

1

N

∑N
n=1

Ka(n:l)

[ ]
e−j2pflT (7)

This term |P( f )|2, in (6) represents the Fourier transform of the pulse
shape p(t). Combining (6) and (7) with (5), the final equation of the
continuous spectrum can be written as

Scm(f ) = Atpsinc
ftp
Tf

( ) ∑1
l=−1

1

N

∑N
n=1

Ka(n:l)

[ ]
e−j2pflT (8)

The discrete spectrum (Appendix 3) can be represented as

Sdm(f ) = F{kRM (t:t)lt}

= A

T2
f

∑1
l=−1

P
l

Tf

( )∣∣∣∣
∣∣∣∣2 × ∑N

n=1

E{an}e
+j((2p/N )ln)

∣∣∣∣∣
∣∣∣∣∣
2

d f − l

Tf

( )
(9)

The term
∑N

n=1 E{an}e
+j((2p/N )ln) represents the characteristic

function of the data distribution of the offset PPM sequence and
Tf = (NT) is the total frame time.

3 Offset PPM coder design

The offset PPM coding scheme has been described in [10, 11] and
illustrated in Table 1. To determine the spectral characteristic of

Table 1 Generation of different types of coding from equivalent 3 bits of data

OOK Digital PPM Differential PPM Digital PIM DH-PIM Offset PPM Shortened PPM Multiple PPM

000 0000 0001 0000 0001 1 100 0000 0 0001 11000 (1,2)
001 0000 0010 0000 001 10 1000 0001 0 0010 10100 (1,3)
010 0000 0100 0000 01 100 1000 0 0010 0 0100 10010 (1,4)
011 0000 1000 0000 1 1000 1000 00 0100 0 1000 10001 (1,5)
100 0001 0000 0001 1 0000 1100 00 1000 1 0001 01100 (2,3)
101 0010 0000 001 10 0000 1100 0 1001 1 0010 01010 (2,4)
110 0100 0000 01 100 0000 1100 1010 1 0100 01001 (2,5)
111 1000 0000 1 1000 0000 110 1100 1 1000 00110 (3,4)

Fig. 1 Probability distribution for 4-slot offset PPM Fig. 2 Autocorrelation for 4-slot offset PPM
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offset PPM, an offset PPM coder was designed using Matlab
toolbox. For M number of pulses to be coded, the length of a
codeword is n = 2M−1 where N = 2M is the number of possible
codewords in an offset PPM sequence. Table 1 shows how the
codewords are generated in an offset PPM sequence. In offset
PPM, all n positions of a codeword are initially reset to zero
corresponding to the first codeword in the sequence. The second
codeword in the sequence is obtained by setting the least
significant bit (LSB) to one. Subsequent codewords in the
sequence are produced by shifting the LSB to left until the MSB
is reached. With reference to Fig. 3, the MSB is kept at one and
the next codeword in the sequence is formed by setting the LSB to
one. This is done by using the OR operation between the
generated sequence and the output of the first loop to keep the
MSB set. Subsequent codewords are formed by left shifting
the LSB up to (n− 1) positions. A buffer is used to store all the
codewords produced sequentially in each step. The output gives all
the possible offset PPM codewords.

4 Result and discussion

The PSD of offset PPM was evaluated both theoretically, using the
results of Section 2, and numerically using the coder schematic and
the fast Fourier transform. Eight samples per offset PPM slot were
considered, 1024 frames were taken randomly and 50 FFT’s were
averaged to decrease the noise because of randomness of the data
sequence and because of averaging, the variance was reduced from
0.1457 to 0.1154. X-axis has been normalised to frame rate by
dividing the total number of slots and no data windowing was
considered.

Fig. 4 shows the theoretical and numerically obtained PSD of
offset PPM coding 4 bits of data (eight offset PPM data slots)

using non-return-to-zero, NRZ, pulses. As can be seen, there is
excellent agreement between theoretical and numerical results.
There are seven distinct spectral components corresponding to the
frame rate and its associated harmonics. There should be an eighth
spectral line but, as is normal with NRZ signalling, there is a null
in the spectrum corresponding to the frequency equal to the
inverse of the pulse width and this coincides with the frequency of
the missing line. To confirm this, Fig. 5 shows the spectrum
obtained using 50% return-to-zero (RZ) pulses. As can be seen,
the bandwidth is effectively doubled but there is a line at the slot
frequency.

Figs. 6–8 show the numerically predicted PSD for digital, multiple
and shortened PPM when coding 4 bits of data. As can be seen from
Fig. 6 for digital PPM, there is no line at the frame rate (because of
even distribution of the bits in the codewords) and no line at the slot
frequency, as expected. A frequency component at the frame
frequency can be generated if the digital PPM frame contains
unmodulated guard slots at the end of the frame (see Section 4.2
later). Both multiple and shortened PPM (Figs. 7 and 8) show
discrete lines at the frame frequency but no lines at the slot
frequency because of the use of NRZ pulses. As all the results are
represented for 4 bits of coding so, these figures can easily
compared in terms of line rate and bandwidth. Digital PPM gives
maximum line rate among these four coding theory as it uses 16
slots to transfer 4 bits of data and as a result it uses maximum

Fig. 3 Schematic diagram of the offset PPM coder

Fig. 4 Comparison of theoretical and numerically obtained power spectral
density for offset PPM coding 4 bits of data using NRZ data

Fig. 5 Comparison of theoretical and numerically obtained power spectral
density for offset PPM coding 4 bits of coding level using 50% duty cycle RZ
data

Fig. 6 Numerical PSD of digital PPM for coding 4 bits of data
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bandwidth. Multiple PPM is the most bandwidth efficient code and it
uses seven slots to transfer 4 bits of data and likewise shortened PPM
uses nine slots and offset PPM uses eight slots.

5 Frame synchronisation

Frame components are mostly affected by data distribution on a
frame and Table 2 compares the amplitude of the frame

components for digital, multiple, shortened and offset PPM using
NRZ pulses. Frame rate component is measured by the power at
the first spike using non-return to zero pulse and the DC value is
measured as the power at zero frequency. As previously discussed,
the frame component in digital PPM is not present unless an
empty guard interval is used. To obtain the frame component, a
modulation index of 0.8 was used. The modulation index (Fig. 9)
is defined by the ratio of the effective band to the total frame

Fig. 7 Numerical PSD of multiple PPM for coding 4 bits of data

Table 2 Comparison of offset PPM, digital PPM and multiple PPM

Coding Number of bits
coded-coding level

DC
value

Slot rate
power

Frame rate
power

offset 3 −10.1
dB

−19.16 dB −24.12 dB

PPM 4 −15.23
dB

−25.16 dB −26.82 dB

digital 3 −18.1
dB

−27.95 dB −32.45 dB
(m = 0.8)

PPM 4 −24.08
dB

−33.97 dB −38.04 dB
(m = 0.8)

multiple 3 −7.96
dB

−17.85 dB −25.82 dB

PPM 4 −10.88
dB

−20.77 dB −25.91 dB

shortened 3 −10.48
dB

−21.37 dB −26.25 dB

PPM 4 −15.51
dB

−25.41 dB −27.88 dB

Fig. 8 Numerical PSD of shortened PPM for coding 4 bits of data

Fig. 10 PSD of offset PPM for frame synchronisation at modulating
index = 0.5 and n = 4

Fig. 9 Consideration of frames for modulation index 0.8

Fig. 11 PSD of offset PPM for frame synchronisation at modulating
index = 0.5 and n = 8
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length and is given by

m = (ntp)/Tf (10)

As can be seen from Table 2, offset PPM has the frame component
with the highest amplitude. It is also worth noting that offset PPM
has the lowest bandwidth expansion and this eases implementation.

Figs. 10 and 11 show the change in frame rate power with a
change in the modulating index; m = 0.5 when n = 4 for Fig. 10
and m = 0.5 when n = 8 for Fig. 11. In Fig. 12 is shown how
frame rate power changes with variations in the modulating index.
From this figure we can say that the frame rate power is a
maximum at a modulating index of m = 0.5. Here x-axis has been
normalised to slot rate by dividing the total length of signal to the
number of slot.

6 Slot synchronisation

The strength of the slot clock is highly affected by the pulse shape (as
already seen) and the modulation index. There are two ways to
extract a slot clock from a PPM data stream: direct extraction of
the slot clock; generation of the slot clock using a phase-lock-loop
locked to the frame frequency. As discussed previously, the
spectra of the PPM systems show a null at the slot frequency
because of NRZ pulses being used. To extract the slot clock, the
pulse width must be reduced to move this null to a higher
frequency so that the slot clock can be extracted. Table 2 shows
the amplitude of the slot component for all four codes using RZ
pulses. In this case the slot clock would have to be produced and
phase locked to the frame component. This area of work is subject
to another investigation and will be reported on later.

Table 3 shows how the DC, slot component and frame component
strengths vary with coding level (number of bits coded) for offset
PPM. As can be seen, the power in all components reduces as
more bits of data are encoded. This is to be expected as the
interval between pulses increases.

If the length of the guard interval is increased, while keeping the
total frame length fixed, the modulation index will reduce and the
pulse width will be reduced. This will affect the spectrum. A
practical four slot offset PPM was evaluated considering 50%
duration of the pulse and modulating index m = 0.3. The
numerically predicted result is shown in Fig. 13. The spectrum
shows the presence of discrete slot rate components. The pulse
shaping effect and the continuum because of the data randomness
are also clear.

7 Conclusions

This paper has examined and compared the spectral characteristics of
offset, digital, multiple and shortened PPM. Theoretical predictions
of the power spectral density of offset PPM have shown excellent
agreement with simulation results.

Examination of the PSD has shown that digital PPM does not give
a discrete line at the frame repetition frequency, whereas offset,
multiple and shortened PPM do. This component can be extracted
to obtain the slot clock needed to regenerate the signal. It has been
shown that offset PPM has the strongest frame component.
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10 Appendix

10.1 Appendix 1

The correlation function [12] of the zero mean process M(t) is given
by

RM (t; t) = E{M (t)M∗(t + t)}

= E
∑1
n=−1

[anp(t − nT )− E{an}E{p(t − nT )}]

{

×
∑1

m=−1
[amp(t + t−mT )− E{am}E{p(t + t−mT )}]∗

}

(11)

This can be rewritten as

RM (t; t) =
∑1
n=−1

∑1
m=−1

E{ana
∗
mp(t − nT )p∗(t + t− mT )}

− E{an}E{a
∗
m}× E{p(t − nT )}E{p∗(t + t− mT )}

(12)

Since

p(t) =
∫1
−1

P(f )e+j2pftdf (13)

where P( f ) is the Fourier transform of p(t). Substituting (13) into
(12) gives

RM (t; t) =
∑1
n=−1

∑1
m=−1

∫
y

∫
z
[E{ana

∗
m}− E{an}E{a

∗
m}]

× P(y)P∗(z)e−j2pynTe+j2pzmT e+j2p(y−z)te−j2pztdydz

(14)

Now the Kernel is defined as

Ka(n; m− n, − y, − z) W E{ana
∗
m}− E{an}E{a

∗
m} (15)

Using the definition of Kernel, the autocorrelation function becomes

RM (t; t) =
∑1
n=−1

∑1
m=−1

∫
y

∫
z
Ka(n; m− n, − y, − z)

× P(y)P∗(z)e−j2pynTe+j2pzmT e+j2p(y−z)te−j2pztdydz

(16)

10.2 Appendix 2

The continuous PSD [12] of m(t) is given by

Scm(f ) = FT {kRM (t:t)lt}

=
∑1
n=−1

∑1
m=−1

∫
y

∫
z
Ka(n; m− n, − y, − z)P(y)P∗(z)

× e−j2pynTe+j2pzmT ke+j2p(y−z)tlF{e−j2pzt}︸︷︷︸
d(f+z)

dydz

=
∫
y

∑1
n=−1

∑1
m=−1

Ka(n; m− n, − y, f )P(y)P∗(− f )

× e−j2pynTe−j2pfmT ke+j2p(y+f )tldy

=
∫
y

∑1
n=−1

∑1
m=−1

Ka(n; m− n, − y, f )P(y)P∗(− f )

× e−j2pf (m−n)Te−j2p(y+f )nT ke+j2p(y+f )tldy

(17)

Letting l = (m− n), Ka(n;l,− y, f ) is periodic in n with period N for a
WSCS sequence, it can be easily shown that

∑1
n=−1

Ka(n; l, − y, f )e−j2p(y+f )nT

=
∑N
n=1

Ka(n; l, − y, f )e−j2p(y+f )nT
∑1
i=−1

e−j2p(y+f )iNT (18)

Using Poisson sum formula

∑1
n=−1

e−j2pxnT = 1

T

∑1
k=−1

d x− k

T

( )
(19)

and integrating over y, (17) becomes

Scm(f ) =
∑1
k=−1

∑1
l=−1

1

NT

∑N
n=1

Ka n; l, f − k

NT
, f

( )

× P −f + k

NT

( )
P∗(−f )e−j2pn(k/N )e−j2pflT kej2p(k/NT )tl

(20)

For a real pulse shape p(t), |P( f )| = |P(−f)| and also

kej2p(k/NT )tl = 1

NT

∫(NT/2)
−(NT/2)

ej2p(k/NT)tdt = 1, k = 0
0, k = 0

{
(21)

Therefore equations for continuous spectrum becomes

Scm(f ) =
1

T
|P(f )|2

∑1
l=−1

1

N

∑N
n=1

Ka(n; l)

[ ]
e−j2pflT (22)
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10.3 Appendix 3

The discrete PSD [12] of m(t) is given by

Sdm(f ) = FT k∑1
n=−1

∑1
m=−1

E

{
{an}E{p(t − nT )}

× E{a∗m}E{p
∗(t + t− mT )}l

}

= FT
∑1
n=−1

∑1
m=−1

E

{
{an}E{a

∗
m}

×kE

∫
y

P(y)e−j2pynTe+j2pytdy

{ }

× E

∫
z
P∗

{
(z)e−j2pzte+j2pzmTe−j2pztdz

}
l

}

=
∫
y

∫
z

∑1
n=−1

∑1
m=−1

E{an}E{a
∗
m}

× P(y)P∗(z)× e−j2pynTe+j2pzmT

× ke+j2p(y−z)tlFT {e
−j2pzt}︸︷︷︸

d(f+z)

dydz (23)

Integrating over z and rearranging terms gives

Sdm(f ) =
∫
y

∑1
n=−1

E{an}e
−j2pynT

∑1
m=−1

E{a∗m}e
−j2pfmT

× P(y)P∗(−f )ke+j2p(y+f )tldy (24)

E{an} is periodic in n with period N, hence

∑1
n=−1

E{an}e
−j2pynT =

∑N
n=1

E{an}e
−j2pynT ×

∑1
i=−1

e−j2pyiNT (25)

Using this together with the Poisson sum formula given in (19) and
integrating over y the above expression becomes

Sdm(f ) =
1

NT

∑1
k=−1

∑N
n=1

E{an}e
−j2p(kn/N )

× 1

NT

∑1
l=−1

∑N
m=1

E{a∗n}e
−j2p(lm/N )d f − l

NT

( )

× P
k

NT

( )
× P∗ − l

NT

( )
ke+j2p(k+l/NT )tl (26)

Using (21) the above expression reduces to

Sdm(f ) =
1

(NT )2
∑1
l=−1

P
l

NT

( )∣∣∣∣
∣∣∣∣2

×
∑N
n=1

E{an}e
+j2p(ln/N )

∣∣∣∣∣
∣∣∣∣∣
2

d f − l

NT

( )
(27)
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