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Abstract The use of highly detailed models is con-
tinuously increasing in computer-aided design (CAD)
design and computer graphics field as the technology
of range scanners advances. Real-time rendering and
manipulating applications are also increasing to sup-
port applications in various areas such as collaborative
design and scientific visualization. Although graphics
hardware technology has been improved rapidly, more
attributes such as color, material property, texture co-
ordinate, and curvature are added to CAD models, and
it becomes a challenge to handle and render such heavy
models. Consequently, the models with complex mesh
need to be approximated to improve the efficiency of
rendering and manipulation and to reduce computation
time. A considerable amount of work has been done re-
garding geometry preservation, but relatively little re-
search has been performed to preserve both geometry
and additional attributes. We present a feature sensitive
simplification method using curvature color as an addi-
tional attribute. We also use curvature color filtering
and optimal positioning methods after edge collapse to
preserve feature more sensitively. Our method is ap-
plied to several models, and the performance is demon-
strated by comparing it with other methods.

H. K. Choi (X)) - H. S. Kim - K. H. Lee

Gwangju Institute of Science and Technology(GIST),
1 Oryong-dong, Buk-gu, Gwangju 500-712,

Republic of Korea

e-mail: korwairs@gist.ac.kr

H. S. Kim
e-mail: hskim@gist.ac.kr

K. H. Lee
e-mail: khlee@gist.ac.kr

Keywords Mesh simplification - Curvature -
PN triangle

1 Introduction

The use of complex polygonal models has been steadily
increased in various application areas such as sci-
entific visualization, finite element analysis, collab-
orative design, and computer-aided design (CAD)/
computer-aided manufacturing (CAM). Especially, ap-
plications in real-time rendering of polygonal models
have been increasing rapidly. Although the capabil-
ity of graphics hardware has improved significantly,
it is still limited in handling heavy polygonal models.
Moreover, these models become more complex due
to additional attributes such as color, curvature, and
material property that are frequently used for some
applications like photo realistic rendering and physics-
based simulation. So, over the past few years, many
different methods for surface simplification have been
proposed to address these problems.

A common approach for simplification methods is
to define an error metric C(v) that can be calculated
by estimating the error between the original and the
approximated model. But the error metric C(v) cannot
guarantee the error bound and preservation of features.
In this research, the curvatures are used as an additional
attribute to preserve features. First, we calculate vari-
ous curvatures and represent them as a color attribute
on each vertex. Then the image processing technique
using the vertex color is applied to reduce noise while
preserving features. Finally, these filtered values are
applied as color attributes for the error metric C(v).
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Additionally, the optimal positioning method is used
to reduce the accumulated error during the process of
simplification.

1.1 Nomenclature

The brief introduction of nomenclature is described in
Table 1.

Table 1 Nomenclature

Terminology
QEM Quadric error metric (Section 2.2.2)
Extended QEM QEM with attributes (Section 2.2.2)
Curvature color Color mapped curvature (Section 3.1)
PN triangle Point normal triangle (Section 3.3.1)
Notation
v; i-th vertex of mesh
f; i-th triangle of mesh
n Normal vector
Ni(vq) One-ring neighboring vertices of v;
e(v;, vj) An edge connecting vertices v; and v;
A nn’ (Section 2.2.2)
A Area of triangle mesh
C(v) Simplification error metric
Avoroni Voronoi region
aij, Bij Two angles opposite the edge e(v;, v))
K(v;) Mean curvature normal
Amixed Mixed region

o) Quadric error on vertex v

K1, K2 Maximum and minimum curvature
KH, KG Mean curvature and Gaussian curvature
Av) K5 (Vi) = kG (V)

u Pixel at the coordinate u = (x, y)
I(u) Input pixel value on u

i (u) Output pixel value on u

N(u) Neighboring pixel of u

We(x) Closeness smoothing filter

oc Standard deviation of closeness
Ws(x) Similarity smoothing filter

o5 Standard deviation of similarity
W, (x) Curvature smoothing filter

Ok Standard deviation of curvature
WEe(x) Edge length smoothing filter

OE Standard deviation of edge length
b Coefficients of control points

n;j Coefficients of the normal component
1) Normal variance

R Curvedness

y Compactness

P Cost for edge collapse e(v;, vj)

P> Cost for edge collapse e(v;, v;)

P total P 1+ P 2

W Weight for normal variance

Wr Weight for curvedness

W, Weight for compactness

@ Springer

2 Related work and background
2.1 Related work

Many researchers have worked on mesh simplification
problems. Schroeder et al. proposed the simplest sim-
plification method called the vertex decimation [1]. It
estimates the approximation error iteratively using the
distance between the vertices and average planes. Some
of the vertex decimation methods use more accurate
error metric, for example, the localized Hausdorff error
[2, 3]. However, these methods delete all associated
triangles of a vertex, so we need to perform additional
retriangulation.

Recently, the iterative contraction algorithm has be-
come the most popular method, which is relatively
stable compare to vertex decimation. It continuously
collapses vertex pairs (v;, v;) and generates new vertices
(V,4ew) at each iteration until the desired error is satis-
fied. Edge collapse [4] is originally proposed by Hoppe
et al. and further developed by many researchers [5].
There are two issues which need to be solved in the
edge collapse-based simplification method. It is impor-
tant to come up with the error metric C(v) that is used
to determine the priority of collapse. The other is to
calculate the location of the newly generated vertex
Vaew as a result of edge collapse.

An enhanced quadric error metric (QEM) was de-
veloped by Garland and Heckbert [6]. It defines the
error as the squared distance from a vertex to the
planes sets. This method is fast and accurate. However,
it requires 4 x 4 symmetric matrix to be present for
each vertex. After an edge collapse, the vertex position
minimizing the quadric error is found where the gra-
dient of the quadric error metric equals zero. QEM has
been used for improving various simplification methods
[7, 8].

The mesh models often have other attributes in ad-
dition to the coordinate values on each vertex such as
texture coordinate, vertex color, and normal. QEM has
been extended to accommodate these attributes [9-11].
More generalized method was proposed by Garland
and Zhou for simplifying simplicial complexes of any
type embedded in Euclidean spaces of any dimension
[12].

An image-based approach was proposed by Cohen et
al. that used an error caused by pixel operation in image
space [13]. It also accounts for multiple attributes and
decouples a surface position from color and curvature
information and storing the latter quantities in the
texture and normal maps. The geometry is simplified by
a common simplification method, while the texture and
normal maps are filtered by graphics hardware. The
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quality of resulting models is visually very close to their
original ones. Lindstrom and Turk used an image-based
metric that compares rendered images of the original
model and those of the simplified model. Geometric
criteria were not considered in their method, but visual
quality was improved significantly [14].

On the other hand, quite different method was pro-
posed by David et al. [15]. In their method, the input
model is divided into a set of nonoverlapping parts
by solving discrete partitioning optimization problem.
More compact representations are proposed by using
either additional proxy types [16] or a new approxi-
mate error metric [17]. These methods can effectively
reduce the accumulated error, but heavy computation
is needed for the optimization of a set of local proxies.

We reviewed various methods of mesh simplifica-
tion. These methods have been widely used in various
CAD applications [18, 19], parameterizations [20-22],
and computer graphics applications [23-25]. In order
to satisfy various needs of mesh simplification appli-
cations, the methods must be able to handle multiple
attributes included in the mesh model. They need to
preserve features of a specified error level within a rea-
sonable computation time even in the highly approxi-
mated models. In this study, we propose an improved
simplification method that uses curvature values as
additional attributes and also reduces the accumulated
error by locally optimizing the position of new vertices
during edge collapse.

2.2 Background
2.2.1 Gaussian curvature and mean curvature

In surface modeling, the curvature is a useful differen-
tial quantity of the discrete triangle mesh. Especially,
the Gaussian curvature and the mean curvature are
frequently used to define the properties of an arbitrary
surface. The Gaussian curvature is the product of the
two principle curvatures, while the mean curvature is
the mathematical average of them. Usually, the mean
curvature is calculated by using Laplace—Beltrami oper-
ator, and similarly, the Gaussian curvature is estimated
by using Gauss—-Bonnet theorem in discrete geome-
try. Then the principle curvatures are acquired using
both of them. For curvature calculation, the barycen-
tric finite-volume area is widely used for its simplicity.
However, this method often gives unstable results for
irregular polygonal models. We use more generalized
curvature calculation method which uses both Voronoi
finite-volume area and barycentric finite-volume area
[26].

Voronoi region (see Fig. 1a) can be calculated by
solving Eq. 1, and the mean curvature normal can be
calculated by using Eq. 2. The mean curvature value is
easily computed by taking the half the magnitude of the
normal as described in Eq. 3.

ZjeNl (v,-)(COt ojj + cot /31']') lv; — V]'||2
Avoronoi = 3 (1)

where the Ayoronoi is Voronoi region and «;; and g;; are
two angles opposite to the edge e(v;, v;) that is shared
by two triangles (see Fig. 1b).

ZjeN1 vy (cota; + cot B) (Vi — Vj)
2 Amixed

K(v,) = , 2

Amixed= Z Aj
JEN1(Vi)

A= Voronoi region, if f is nonobtuse
Aj= 1 Aj=area(f)/2, if fis obtuse at v;
= area(f)/4, if fis obtuse at v;

=
[

where f is triangle from one-ring neighborhood N (v;)
of the vertex v;.

1
m@»=?WWM2 3)

Similarly, the Gaussian curvature over the polygonal
mesh can be calculated as expressed in Eq. 4. The value
will be zero for any flat surfaces and cylindrical shapes.

(2” - ZjeNl D) 9/’)
Amixed

(4)

kG (Vi) =

2.2.2 Extended QEM

The original QEM uses the squared distance between
a vertex and the planes [6]. The standard representa-
tion of a plane is n’v+d =0, where n = [a, b, c]” is
a unit normal vector and d is a scalar constant. The

(a) (b)
Fig. 1 Voronoi region and one-ring neighborhood: a Voronoi

region on a nonobtuse triangle, b one-ring neighborhood and
angles

@ Springer



238

Int J Adv Manuf Technol (2010) 50:235-252

squared distance between a plane and a given ver-
tex v =[x, y, z]7 is expressed as D*(v) = (n"v 4+ d)>.
Therefore, the equation can be written as follows:

D?*(v) = (vI(mnT)v + 2dn"v + d*) (5)

The above equation defines the quadric Q as a triple
Q = (A, b, ¢), where A is a 3 x 3 symmetric matrix, b
is three-column vector, and c is a scalar. The quadric
assigns a value Q(v) to every vertex by the second order
equation as below.

Q = (A,b,¢) = (nn"), (dn), d*) (6)

These three-dimensional quadric equations can be
extended to n-dimension by using Gram-Schmidt or-
thogonalization [9]. It means that the vertex infor-
mation of QEM can be extended from [x, y, z]7 to
[x,y,z,r,g b]T to include color data and also to n-
dimension (R"). Extended QEM has an error metric
similar to Eq. 6. However, the dimension of A is 6 x 6
symmetric matrix, b is a six-column vector, and c is a
scalar value when the vertex color is used as an attribute
value.

After the edge collapse, the optimal position Vpey
that minimizes Q(Vyeyw) is determined. Since Q(Vyew) 1S
a quadric, finding its minimum is a linear problem. The
minimum occurs where the gradient (VQ(v) = 2Av +
2b) is zero. By solving the gradient, the optimal position
is calculated as Vyew = —A~'b.

3 The proposed mesh simplification method

The mesh simplification proposed in this paper uses
the curvature color. We first calculate the curvatures
to detect features, but the initial values of them are
inappropriate for direct use, so a filtering method is
applied to the curvatures that are expressed as vertex
color. Then the filtered curvature values are used as the
error metric. Finally, the simplification operation with
optimal positing is performed to reduce geometric error
and to preserve features during edge collapse.

As shown in Fig. 2, the overall procedure consists
of four steps: the calculation of curvatures, bilateral
filtering of curvature colors, setting up the error metric
with filtered curvature colors, and the simplification
with optimal positioning.

The priority of edge collapse is determined by QEM
using the curvature color, and then the candidates for
optimal position are generated around neighboring tri-
angles of the collapsing edge. Finally, the optimal posi-
tion is selected using the optimal positioning function.
The optimal positioning process is iterated until the
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Mesh model

Calculation of curvature
and curvature color (a)
(Section 2.2.1, 3.1)

Bilateral filtering of
curvature color (b)
(Section 3.2)

v

QEM with curvature
color (Section 2.2.2) ()
Ve—
Edge collapse
(Section 2.1)

Optimal candidate
generation of
neighboring faces
(Section 3.3, 3.3.1)

\Z

Finding the optimal

(d)

position (Section 3.4)

%

\I/ Yes
Approximated
Model

Ni: current number of vertices
Ni+1: desired number of vertices

Fig. 2 The flowchart of the proposed method: a the calculation
of curvature and converting it to color, b bilateral filtering of the
curvature color, ¢ estimation of the error metric using filtered
curvature colors, d simplification with optimal positioning

number of current vertex is equal to the desired number
of vertices.

The pseudocode for the entire process is described
in Algorithm 1 for further understanding. In Algorithm
1, the procedure of the proposed method is explained
under corresponding comments.

Accurate curvature value and its appropriate ap-
plication in QEM are essential to guarantee the reli-
able determination of the collapsing priority. In this
research, we use averaging Voronoi cells in the cal-
culation of curvatures because they can accommodate
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Algorithm 1 The pseudocode of the proposed method
llinput
Vertex: v, Face f, Edge e, Mesh M
//One-ring neighborhood information of incident vertex v
V(v), F(v), E(vV)
/[Calculate curvatures and curvature color
I/(Section 2.2.1, Section 3.1)
Curvature C(v): Calculate curvature(M, V(v))
Curvature color of the curvature Cp,: Convert curvature to
color(Cy, v)
/I Bilateral filtering of curvature color (Section 3.2)
for cach vertex v do
for each neighboring vertex V(v) incident on v do
Update Cy,: Bilateral filtering(v, V(v))
end for
end for
for cach vertex v do
v[x, y, 2.1, & b]: Add curvature color to vertex(Cp,, v)
end for
IlApply filtered color map of curvature associated vertex
IIv[x,y,z,1,8b] to extended QEM (Section 2.2.2)
QEM on vertex v: QEM(v)
V (f): vertices of face f
for cach face f do
for each neighboring vertex V(f) incident on f do
Q EM(v): Calculate extend QEM(, v)
end for
end for
/I Determination of the edge collapse priority
/l(Section 2.2.2)
for each vertex v do
for each neighboring edge E(v) incident on vertex v do
Edge collapse priority EC(e): Calculate edge collapse
priority(e)
end for
end for
/|Determination of the optimal positioning
llthree parameter: compactness, curvedness, normal varia-
tion
/[(Section 3.2,3.3,3.4)
while Current number of vertices # Desired number of
vertices do
for each edge e of EC(e) do
Optimal candidates OCV/(e): Make PN Triangle(e)
for each optimal position candidates vopc of OCV do
CV D(vopc): Calculate curvedness(vopc)
CPT (vope): Calculate compactness(vopc)
NV (vopc): Calculate normal variance(vopc)
OPC(vopc): Calculate optimal positioning cost
(CVD,CPT,NV)
end for
Collapse edge(e)
Set optimal position(O PC(e))
Update QEM(e)
Update collapse priority(e)
end for
end while

the consistent representation of the first- and second-
order differential properties. Then the curvatures are
normalized and categorized to assign appropriate color.

3.1 Curvature color

The proposed method uses Eqgs. 3 and 4 to calculate
Gaussian curvature xg and mean curvatures «y. The
principle curvatures can be calculated using these two
curvatures.

k1(v;)) = ku(v;) ++/ A(v;) (7)
k2 (Vi) = ka (Vi) — v/ A(Y;) ®)

where A(v)) is K} (V) — kG (V).

After the calculation of various curvatures, they are
normalized and classified for coloring the vertices as
shown in Fig. 3.

In this research, we can directly use the curvature
value as an attribute value in the extended QEM. How-
ever, the range of curvature values differ significantly
depending on the geometry of the model. Although
normalized values are used, there are limitations when
noisy data are used shown in Fig. 4e. Figure 4d—f shows
that the curvature color can detect features better than
gray-level curvatures especially for the scanned data
that are often noisy. But for noiseless data as shown in
Fig. 4a—c, both gray-level curvatures and the curvature
color can detect features well. The use of the curvature
color is emphasized in this research due to this finding.
During simplification, however, many difficulties occur
in directly applying the curvature color as the attribute
value due to its discontinuity on the surface. The cur-
vature color needs to be smoothed out in the smooth-
shaped areas, while the features need to be preserved
in highly curved regions. The details discussed in the
sections below.

3.2 Feature-preserved smoothing of the curvature
color by bilateral filtering

The curvature color is quite sensitive in representing
the local features of the model because of its high
resolution. Furthermore, they often show the blurred
boundary at highly curved areas. Too many vertices
tend to have the similar colors for the sharp features.
On the other hand, the color often varies significantly
for a smooth area because of the sensitiveness of curva-
tures. For successful simplification, most vertices need
to maintain its continuity of the color while preserving
the color of sharp features.

We applied bilateral filtering [27] to the curvature
color by which we can improve the smoothness of the
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Fig. 3 Samples of different
curvature colors: a an original
model, b maximum curvature
color, ¢ minimum curvature
color, d Gaussian curvature
color, e mean curvature color,
f curvedness color

(d)

color at the low curved area and the sharpness of the
color for highly curved area as illustrated in Fig. 5.
The bilateral filter has been used for generating smooth
images while preserving features in image processing
applications. The method is noniterative and simple.
If the input image is /(u), the bilateral filter at the
coordinate u = (x, y) can be defined as follows:

2 pena Wellp —ulDWs(lI(w) — I(p)D1(p)

i =
W = v Welllp — uD W, (T(w) — T)D

2

x?2 _ xs2
We(x) =e 22, Wi(x) =e =7 9)

where N(u) is the neighbor pixel of u. The closeness
smoothing filter W,(x) is a standard Gaussian filter with
parameter o, and the similarity weight is determined
by the weight function Wi(x) with parameter o to
preserve features. Denote that pixel u depends not only
on the spatial distance ||p — u|| but also on the similarity
[[Z(w) — I(p)|l. The efficiency of the filter is determined
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by the parameter o, and o. The parameter o, defines
the size of the spatial neighborhood used to filter a
pixel, and o5 controls the weight of adjacent pixels due
to color difference. In practice, these parameters are
heuristically determined depending upon applications.

Some authors have used the bilateral filter on a
surface model [28, 29]; likewise, the bilateral filter for
the curvature color is proposed as follows:

2 viemwy WEUVi=ViID Wi (i (vi) = (V) Dk (vi)
2vienion WEUYVi=ViDWie(lk (vi) =k (v )])

k(v) =

22 _ g
W) = ¢ 7, We(x) = ¢ (10)

where N;(v;) is one-ring neighbor vertices of vertex
v;. The edge length is used as the closeness smoothing
filter Wg(x) with the parameter og, and the similarity
weight is described by W, (x) with the parameter o,.
The curvature «(v;) has more influence on the closer
vertices and the one having similar curvature value.
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Fig. 4 Two examples
showing difference between
gray-level curvature and
curvature color: a an original
model, b gray-level Gaussian
curvature, ¢ Gaussian
curvature color, d an original
model, e gray-level mean
curvature, f mean curvature
color

The efficiency of the method also depends on two
parameters og and o,. The initial value of og is de-
termined based on the edge length and the property
of smoothing filter as [20g| > ||v; — v||. Also the initial

Fig. 5 Results of different
smoothing methods: a an
original model, b the color
of maximum curvature,

¢ Gaussian smoothing of
maximum curvature,

d bilateral smoothing of
maximum curvature

value of o, is estimated as |20,| > ||k (v;) — k(v})||. Once
the initial values of both parameters are determined,
they are heuristically adjusted by the user depending
on applications.
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The complex color feature can be expressed for the
fine mesh when the vertex color is used. Consequently,
it is required to approximate the color feature accord-
ing to the simplification procedure. The filtering tech-
niques can approximate color feature appropriately.
However, the filtering often shows poor behavior in the
simplification process. There are two regions, fine mesh
around feature and coarse mesh in other regions to
preserve a feature using the limited number of vertices.
The feature preserving filtering of this kind often shows
saw-like color pattern or inaccurate color calculation.
Therefore, bilateral filtering is used only in the ini-
tial step, and the estimation of the curvature color is
conducted to guarantee the feature preservation in the
optimal positioning step (see Section 3.3.1).

3.3 Optimal positioning after edge collapse

Most simplification methods have concentrated on
finding the cost function to determine the priority of
decimation. However, the approximation error is con-
tinuously accumulated during the process of simplifi-
cation. In highly simplified models, visual artifacts and
geometric inconsistencies frequently occur due to the
accumulated error. In this study, an optimal positioning
method is used to reduce the accumulated error.

The overall procedure of optimal positioning is ex-
plained in Fig. 6. We use three steps to find the optimal
position. As described in the figure, we first find neigh-
bor triangles of an edge that is about to collapse. The
candidates for the optimal position are generated by the
vertices that are produced by subdividing the model us-
ing PN triangle [30]. The PN triangle is a curved point-
normal triangle that will be described in the section
below. Finally, the optimal position is calculated using

Find neighboring triangles
of current edge collapse

Subdivision process to make

optimal positioning candidate

Find optimal position using
three parameters:
curvedness, normal variance
and compactness

Fig. 6 The overall procedure of optimal positioning
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Fig. 7 The control points of a triangular Bézier patch arranged
to form a control net(courtesy of [30])

three parameters that include the curvedness, normal
variance, and compactness.

3.3.1 PN triangle and curvature color estimation

The geometry of a PN triangle is defined using a cubic
Bézier patch. The patch matches the point and normal
information at each vertex of a triangle. An interesting
aspect of the curved PN triangle is the normal com-
ponent of it. The geometry of a curved PN triangle is
defined by a cubic patch b as shown in Fig. 7. The
normal of a curved PN triangle can be expressed as a
quadratic function of the position and normal coeffi-
cients n;j which is shown in Fig. 8.

The connectivity information of the triangles is not
needed in this method because we can calculate the
position and the normal of arbitrary point using control
points b;; and normal coefficients m;;. The graphics
processing unit implementation of this technique is
relatively easy, which is available in the ATI SDK

Noo2 . ny,

Fig.8 The normal coefficients of a PN triangle (courtesy of [30])
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(a)

Fig. 9 PN-triangle subdivision: a edge collapse, b subdivision,
¢ optimal position candidates

[31]. The curvature color of the optimal position can-
didates is estimated by bilinear interpolation using the
curvature color of three vertices on the corresponding
face [32].

3.3.2 The selection of an optimal position

The optimal position calculated by the extended QEM
cannot guarantee the error bound e. Moreover, the
optimal position does not often exist when the 6 x 6
inverse matrix A~! (see Section 2) is unable to be
calculated or it contains imaginary values. Our pro-
posed method uses multiple candidates for the optimal
position to reduce these exceptions. If the PN patches
are calculated, enormous number of candidates can
be generated, but we only choose 32 points to reduce
computation. The candidates are composed of points
which are generated by subdivision and the center point
of each subdivided triangle except for the rightmost and
leftmost points with respect to the collapsed half edge
(see Fig. 9c). Our method uses three parameters to es-
timate the optimal position among multiple candidates
at each iteration (see Fig. 9). These parameters are used
since they are sensitive to the change of geometry and
relatively easy to compute.

3.3.3 Curvedness

The curvedness of a vertex can be defined using prin-
ciple curvatures, but it can be defined as below using

Fig. 10 The color
representation of the
curvedness: a an original
model, b curvedness color,
¢ Gaussian curvature color,
d mean curvature color

both Gaussian curvature and mean curvature since it
contains the property of both.

R= v ICH2 - K(;2 (11)

where kg and «g are mean curvature and Gaussian
curvature, respectively.

The curvedness value can also be expressed as ver-
tex color in the same way as the curvature color as
shown in Fig. 10. In most cases, the mean curvature
and the curvedness represent overall features better
than Gaussian curvature. The curvedness value changes
smoothly except for highly curved areas, but the mean
curvature value varies significantly in the smoothly
changed curvature area.

The bilateral filtering is again applied to the curved-
ness color as shown in Fig. 11. The color map shows
distinct difference between the curvedness color and
the others. The curvedness color changes smoothly in
most areas except for the sharp features, whereas the
Gaussian curvature has dominant color only in highly
curved areas, and the mean curvature shows distin-
guishable color difference in all areas.

In practice, the geometry and features are well pre-
served when the curvedness color is applied to the
simplification method because the gentle color change
areas lead to smooth results and the dominant color
areas tend to preserve sharp features. In contrast, only
sharp features are well preserved when the Gaussian
curvature is applied, and both the smoothness and
continuity are not guaranteed when the mean curvature
is applied.

3.3.4 Compactness
The compactness is another measure that we use to
determine the optimal position. We use this to improve

the mesh quality by removing thin triangles. The thin
triangles contain a very small angle with long sides such
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Fig. 11 The example of
bilateral filtering of curvature
colors and curvedness color:
a the filtered curvedness
color, b the filtered Gaussian
curvature color, ¢ the filtered
mean curvature color

that they give undesirable effects for various applica-
tions. Guéziec defines the compactness as below [33].

43A

— 12
B+L+15 (12)

Y
where / is the length of edges and A is the area of the tri-
angle. The compactness y varies from 0 to 1 according
to the shape of a triangle. It becomes close to 1 when
the shape of the triangle is regular, and it approaches
to O for the case of very bad thin triangles. In our
proposed method, a threshold value for compactness is
used to penalize candidate positions which generate a
poor mesh. The threshold value is assigned heuristically
by the user.

The proper compactness value varies according to
the geometric characteristics and applications for a
model. For a CAD model, it is desired to give relatively
high compactness value. In contrast, a visualization
model does not need to have high compactness values
because it requires more faces to acquire similar visual
results using high compactness models.

In the proposed method, the threshold of 0.3-0.4 is
used for a CAD model and the threshold of 0.02-0.05 is
used for a visualization model through various experi-
ments. The geometric evaluation of the compactness is
described in Frey and Borouchaki [34].

3.3.5 The normal variance

The normal variance is calculated by measuring the
difference of the normal values of corresponding tri-
angles before and after an edge collapse. It has been
widely used due to its efficiency in preserving the
geometry and removing nonmanifolds. Other methods
usually skip the edge collapse and proceed to the next
step when the value of normal variance exceeds the
threshold. But the proposed method can contract edges
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without skipping the current step since it uses various
candidates and it can avoid normal flipping.

Normal flipping can occur in some cases of half edge
collapse as shown in Fig. 12, but the proposed algorithm
can preserved the consistency of the normal variance
by collapsing the edge e(vy, v;) to an optimal position
View- SMooth models can be generated when a well-
defined normal variance is used because it can reduce
the difference of normal variance between a triangle
and its neighbor triangles.

3.4 The optimal positioning function

As we mentioned before, an optimal positioning func-
tion uses three measures: normal variance, curvedness,
and compactness. These measures are also frequently
used as the constraints in the other research which do
not consider optimization. The main difference of using
of these constraints compared to the other research is
that the other research methods use these to determine
whether to make a contraction or not, while our method

—_—
v \E \E N, »my,
n,_ g
fi_ @
‘\O/;lfz

(a) Half edge collapse ~ (b) Normal flipping  (C) Normal variance

(e) No normal flipping (f) Normal variance

(d) Proposed method

Fig. 12 The comparison of the normal variance and normal
flipping between previous methods and the proposed method
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uses these to find the optimal position among various
candidates.

Consequently, the contractions are inevitably per-
formed for the other methods even though the change
of topology and geometry occurs when the model
is highly simplified. Our proposed method can avoid
these artifacts by using new vertices which minimize
the destruction of geometry and topology. The optimal
positioning function is defined using normal variance
¢, curvedness R, and compactness y. Three parameters
are scalar values since they are normalized from 0 to 1.
For example, the normal variance is angle value, and
its unit is radian but it is normalized by dividing by
the difference between its maximum and the minimum
value. The optimal positioning function can be defined
by linear combination of these parameters as follows:

Pi =3 Wo(di — $)* + Wr(Ri — B + Wy (yi — 7)?
Py=3 ;Wy(pj— )+ Wr(Rj— R + W,y (v; — 7)*
P, = Edge collapse(e(v;, v;))

P, = Edge collapse(e(v;, v;))

Pt = P1+ P2

: Normal variance ¢, Curvedness R, Compactness y

(13)

Fig. 13 Visual comparison of
simplified IGEA models: a an
original model (number of
vertices, 50,000), b QEM
(number of vertices, 1,500),

¢ the roundness method
(number of vertices, 1,500),

d the proposed method
(number of vertices, 1,500)

where ¢, R, and 7 are the average of normal vari-
ance, curvedness, and compactness of collapsing edge,
respectively, and Wy, Wg, and W, are the weight of
corresponding parameters. These weight factors are the
coefficients for convex linear combination of these pa-
rameters. In this study, the initial value of each weight
is set to 1/3. The user can provide different values for
different applications while keeping the sum of these
values equal to 1.

If a model is used only for visualization purpose, the
user can lower the weight of compactness compared
to the other two parameters. However, the control
of the weight needs to be performed approximately
within a certain level. For example, if the weight of
the curvedness is given more emphasis than the others
to reduce geometric error, the model cannot be used
numerically because of the poorer quality and visual re-
sults affect numerical calculation according to the char-
acteristics of discrete geometry. Similarly, extremely
high weights for the other parameters can also produce
anomalies. Practically, the largest weight a parameter
should be less than twice the weight of the smallest
parameter.

(b)

(d)
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4 Experimental results

We demonstrated the performance of our method by
comparing the results with other methods visually. We
also compared the results using the normal distance be-
tween the original model and the approximated model.
Figure 13 shows the visual comparison of our method
with the results by QEM and the roundness method.

Both QEM and the roundness method are imple-
mented using OpenMesh library [35]. The error metric
of the roundness method is based on the triangle’s
roundness [36], and it is used as the constraints in the
QEM method. For comparison, the IGEA model with
50,000 vertices is used as shown in Fig. 13. The model
is reduced down to 1,500 vertices. As observed in the
figure, the proposed method gives better results for
the overall shape and for geometric features in highly
curved areas such as the nose and the lips.

Another visual comparison is made using a foot
model as shown in Fig. 14. This model is used to check
the preservation of a smooth surface. The original foot
model has 5,200 vertices, and it is simplified to 400
vertices by using the QEM, the roundness method, and
the proposed method as well. The results are obtained
by using the QEM; the roundness method shows rel-

Fig. 14 Visual comparison of
simplified foot models: a an
original model (number of
vertices, 5,200), b QEM
(number of vertices, 400),

¢ the roundness method
(number of vertices, 400),

d the proposed method
(number of vertices, 400)

(@)

atively good results. However, the proposed method
yields better results in preserving features.

The Nefertiti model has both complex geometry and
flat regions as shown in Fig. 15. This model is chosen to
test both the simple and complex geometry combined in
a model. As shown in the figure, our proposed method
yields better results not only for the sharp features but
also in the flat areas.

The dragon model shown in Fig. 16 has extreme
curved areas. This model is used to verify the stabil-
ity of the proposed algorithm in handling very sharp
features. As we observe from Fig. 16, the proposed
method preserves sharp features better than the other
methods.

The proposed method also can accommodate other
attributes such as vertex color as shown in Fig. 17.
In the figure, the original Hanbok model with 100,000
vertices has been reduced down to 2,000 vertices. All
procedures are the same except using vertex color
instead of the curvature color. Figure 17a, b shows
the simplified results using QEM and the roundness
method, respectively. As shown in the figure, the color
feature of the model is not well preserved compared to
extended QEM. The simplified result generated by ex-
tended QEM preserves color feature accurately, but the

(b)

(©)

@ Springer

(d)
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Fig. 15 Visual comparison of
simplified Nefertiti models:

a an original model (number
of vertices, 90,000), b QEM
(number of vertices, 2,000),

¢ the roundness method
(number of vertices, 2,000),

d the proposed method
(number of vertices, 2,000)

@ Springer
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Fig. 16 Visual comparison of
simplified dragon models:

a an original model (number
of vertices, 25,000), b QEM
(number of vertices, 1,500),

¢ the roundness method
(number of vertices, 1,500),

d the proposed method
(number of vertices, 1,500)

(©

geometric feature is not well preserved (see Fig. 17c).
The proposed method can balance the preservation of
geometric features and the reduction of color errors
(see Fig. 17d).

The geometric error is also compared by calculating
the deviations of the normal distance between the orig-
inal and the approximated models using the same ori-
entation and scale. The difference in geometric features
and volume shrinkage can be estimated by calculating
the normal distance between the faces of the original
model and the corresponding faces of the approxi-

@ Springer

(d)

mated models. The calculation of normal distance is
conducted by using commercial software Rapidform®
(INUS Technology Inc.). It is widely used to calculate
the normal distance error between two mesh models
[37].

Table 2 shows the average errors of normal dis-
tances comparing with the original model for different
simplification methods. Four models that are used for
visual comparison are used again. The diagonal lengths
of all models are normalized to 100 mm to check the
error of the models with consistency.
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(b)

(d)

Fig. 17 Visual comparison of Hanbok model with vertex color: a QEM (number of vertices, 2,000), b roundness (number of vertices,
2,000), ¢ extended QEM (number of vertices, 2,000), d the proposed method (number of vertices, 2,000)

As it is shown in the table, the proposed method
gives better results. Note also that the error not only
depends on the simplification ratio but also depends
on the geometry of the model. For example, the sim-
plification ratio of the dragon model is smaller than that
of the IGEA and Nefertiti model, but the geometry
error of the dragon model is bigger than others. It
mainly is caused by the collapse of the sharp features.

In case of the foot model, the overall error is
relatively bigger than others. This experiment shows

the comparison of results when the model is highly
simplified using previous methods and the proposed
one.

The normal distance error is visualized using a color
map as shown in Fig. 18. For color visualization, we
normalize the color error range from 0 to 0.18762.
As shown in the figure, the maximum error generally
occurs in the highly curved areas.

Additionally, the comparison of the compactness
is conducted. Thin triangles are inevitably generated

Table 2 Normal distance
error

Model name

Number of vertices

Average normal distances error (mm)

(number of vertices of simplified models QEM Roundness The proposed

of an original model) method

Foot 400 0.15806 0.18037 0.11724
(5,200) 200 0.21849 0.31440 0.15809

IGEA 2,000 0.07299 0.07661 0.05611
(50,000) 1,500 0.09153 0.09761 0.07145

Nefertiti 2,000 0.04634 0.05032 0.03001
(90,000) 1,500 0.05749 0.06310 0.03960

Dragon 2,000 0.11564 0.12592 0.08636
(25,000) 1,500 0.15106 0.14700 0.11161
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Fig. 18 The visualization of
the normal distance error:

a error range, b QEM,

c roundness, d the proposed
method

Table 3 The comparison of
the compactness

Table 4 Computation time

@ Springer

016762

0. 16385

015009

015133

0.11257

0.093%

0.07505

005628

0.03752

0.0187%

0,00000

(a)

Model name

Number of vertices

Compactness (standard deviation of compactness)

(number of vertices of simplified models QEM Roundness The proposed

of an original model) method

Foot 400 0.6845 (0.2241)  0.6950 (0.2114)  0.6751 (0.2145)
(5,200) 200 0.6840 (0.2123)  0.6827 (0.2073)  0.6320 (0.2329)

IGEA 2,000 0.7029 (0.2186)  0.7128 (0.2089)  0.7156 (0.2111)
(50,000) 1,500 0.7062 (0.2167)  0.7136 (0.2062)  0.7139 (0.2144)

Nefertiti 2,000 0.6654 (0.2318)  0.6685 (0.2222)  0.6479 (0.2349)
(90,000) 1,500 0.6552 (0.2344)  0.6696 (0.2195)  0.6512 (0.2359)

Dragon 2,000 0.6920 (0.2175)  0.7045 (0.2074)  0.7044 (0.2090)
(25,000) 1,500 0.6904 (0.2172)  0.7021 (0.2012)  0.7069 (0.2108)

Model name Number of vertices Elapsed time (s)

(number of vertices of simplified models QEM  Roundness  The proposed method

of an original model) (Optimal positioning,

curvature color + filtering)

Foot
(5,200)
IGEA
(50,000)
Nefertiti
(90,000)
Dragon
(25,000)

400

200
2,000
1,500
2,000
1,500
2,000
1,500

0.230  0.341
0231 0356
2599  4.026
2682  4.095
4541  4.670
4532 4721
1171 1.815
1.195  1.893

1.340 (1.014, 0.062)
1.357 (1.028, 0.062)
13.351 (10.169, 0.406)
13.743 (10.447, 0.406)
11.011 (5.689, 0.539)
11.361 (6.006, 0.539)
6.421 (4.865 ,0.219)
6.513 (4.931,0.219)
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around a geometric feature to preserve the feature
within the user specified number of vertices. Conse-
quently, the proposed method is expected to give the
poor compactness over the entire triangles because
of its feature sensitiveness. However, the proposed
method gives the similar compactness compared to
the other methods as described in Table 3 since the
compactness (see Section 3.3.4) is included as a parame-
ter of the optimal positioning function. However, the
proposed method requires additional computation not
only for the estimation of curvatures and optimal posi-
tions but also for the computation of extended QEM
as shown in Table 4. As we observe from the table,
the computation time mainly depends on the number of
vertices of the original model and the desired number
of vertices to be simplified except the Nefertiti model.
In the case of the Nefertiti model, the computation time
is relatively small compared to that of the IGEA model
in spite of the larger number of vertices. Since the
model has flat regions and the optimal positioning for
these regions is not important, it ends up with relatively
less computation time. All experiments were done on a
PC with 2.60 GHz Intel Core 2 CPU and 2 GB RAM.

5 Conclusion

We have developed an improved QEM-based mesh
simplification method that considers the curvatures and
optimal positioning of collapsed vertices simultane-
ously. In this paper, the bilateral filtering method is
proposed using attribute values and the edge length.
It preserves the overall feature of the attribute value
while noisy regions are smoothed out. It preserves
the feature profile with a higher priority than the
profile caused by the noise. The proposed method also
presents an overall procedure for preserving fidelity of
the geometry and the attributes. In order to achieve
this, filtering of attribute values and optimal positioning
of geometry are included in the procedure. In addition,
enhanced preservation of geometric feature is achieved
in the proposed method by transforming the curvature
to colors and using them as attribute values. To demon-
strate the performance of our method, visual compar-
ison is made and the normal distance error between
the original and simplified models is calculated. The
proposed method shows better results in terms of the
visual quality of the mesh compared to those obtained
by QEM and the roundness method. The proposed
method also yields better results in preserving the geo-
metric features as shown by the normal distance error.
However, this method requires additional computation
time to calculate the curvatures and a PN triangle.

Other attributes such as texture coordinate, normal
value, and material property can be applied to the
proposed method. For example, the texture coordi-
nates t[u, v] are easily used for bilateral filtering and
also the QEM can be extended to five dimensions to
accommodate vertex v[x, y, z, u, v].
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