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Abstract Provenance information of digital objects main-
tained by digital libraries and archives is crucial for authen-
ticity assessment, reproducibility and accountability. Such
information is commonly stored on metadata placed in var-
ious Metadata Repositories (MRs) or Knowledge Bases
(KBs). Nevertheless, in various settings it is prohibitive to
store the provenance of each digital object due to the high
storage space requirements that are needed for having com-
plete provenance. In this paper, we introduce provenance-
based inference rules as a means to complete the provenance
information, to reduce the amount of provenance information
that has to be stored, and to ease quality control (e.g., correc-
tions). Roughly, we show how provenance information can be
propagated by identifying a number of basic inference rules
over a core conceptual model for representing provenance.
The propagation of provenance concerns fundamental mod-
elling concepts such as actors, activities, events, devices and
information objects, and their associations. However, since
a MR/KB is not static but changes over time due to several
factors, the question that arises is how we can satisfy update
requests while still supporting the aforementioned inference
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rules. Towards this end, we elaborate on the specification
of the required add/delete operations, consider two different
semantics for deletion of information, and provide the cor-
responding update algorithms. Finally, we report extensive
comparative results for different repository policies regard-
ing the derivation of new knowledge, in datasets containing
up to one million RDF triples. The results allow us to under-
stand the tradeoffs related to the use of inference rules on
storage space and performance of queries and updates.

Keywords Digital data · Knowledge base · Inference
rules · Derivation rules · Provenance · Knowledge evolution ·
Storage space

1 Introduction

The amount of digital objects (publications, datasets, art-
works) that libraries and archives have to maintain constantly
increases [3]. Digital libraries and archives should be able to
assess the authenticity [51], the accountability [5] and the
reproducibility [53] of the archived digital objects. This is of
paramount importance for e-Science. It is therefore impor-
tant to document and preserve the history of digital objects,
i.e., their provenance, and this is usually done by extra meta-
data. To store such metadata, more and more Digital Libraries
(DLs) rely on Semantic Technologies. This is true for partic-
ular DLs (e.g., Europeana1) or for tools and systems which
are used for setting up DLs (e.g., Fedora2).

In a naive view, the provenance of a digital object can be
seen as a record specific to it of the events and their contexts
that have contributed or had significant influence on its con-
tent. However, digital objects do not undergo “changes” as

1 http://www.europeana.eu/.
2 http://www.fedora-commons.org/.
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material items, which sum up to a cumulative effect, but each
modification leaves behind the original version, which may
or may not be reused in another context. Hence any realistic
creation process of digital content gives rise to a set of dig-
ital items, temporary or permanent, connected by metadata
forming complex graphs via the individual processes con-
tributing to it. The provenance of a single item is the graph
of all “upstream” events until the ultimate empirical capture
(measurement), software simulation run or human creative
process.

In a production environment, often controlled by a work-
flow system, there are no clear a priori rules regarding which
data item will be permanent. Interactive processes of inspec-
tion of intermediate results and manual interventions or
changes of processing steps may corrupt any preconceived
order of events. Therefore, one should explicitly store the
provenance of each digital object. However, in cases like
empirical 3D model generation, where tens of thousands of
intermediate files and processes of hundreds of individual
manual actions are no rarity, it is prohibitive to register for
each item its complete history because of the immense repe-
tition of facts between the files: on one side, the storage space
needed would be blown up by several orders of magnitude,
and on the other, any correction of erroneous input would
require tracing the huge proliferation graph of this input.

To tackle this problem, in this work we show how infer-
ence rules can be used for propagating provenance infor-
mation. These rules can complete the initial ingested prove-
nance information such as that if a camera participates to an
event (e.g., a shooting event), then its lens also participates to
the same event. This completion is dynamic, i.e., the propa-
gated information is not explicitly stored. Consequently this
reduces the space requirements, as well as the search space
for detecting and correcting possible errors. In addition, it
saves space, which may be important in applications where
storage space is more expensive than processing power (e.g.,
when the data must be sent over a slow network). A fur-
ther advantage of this method is that people can more easily
understand and perform changes on the ingested data, than
on the one produced by the application of inference rules.

Given that our approach is more valuable over dynamic
data, we place emphasis on addressing the problem of evo-
lution, in the presence of inference rules for dynamic prove-
nance propagation. To the best of our knowledge, this is not
covered by other provenance-related papers. For instance,
[19,35] consider minimization techniques on already stored
information, which is in contrast to our approach that pro-
poses a dynamic derivation of new knowledge which does
not have to be stored. Furthermore, our work is complemen-
tary to the works that infer provenance dependencies between
data such as [15,23,44,45].

For representing provenance, we adopt a core conceptual
model that contains fundamental (for provenance) modelling

concepts such as actors, activities, events, devices, informa-
tion objects and their associations. Over this model we iden-
tify three basic custom inference rules which occur frequently
in practice. Of course, one could extend this set according to
the details and conventions of the application at hand.

However, we should consider that a knowledge base
(either stored in a system or composed by various metadata
files) changes over time. The question that arises is how we
can satisfy update requests while still supporting the afore-
mentioned inference rules, for instance: how one can delete
provenance information that has been propagated, i.e., infor-
mation that is produced by inference rules and is not explicitly
stored in the repository?

To tackle the update requirements we propose three oper-
ations, namely Add, Disassociate, and Contract, and discuss
their semantics along with the required algorithms. The last
two operations concern the deletion of information and are
founded on the related philosophical viewpoints, i.e., foun-
dational and coherence semantics. These viewpoints actu-
ally differ in the way they value the inferred knowledge in
comparison to the explicitly ingested one. This is novel in
the literature, because existing works (e.g., the approaches
[34,37,43]) consider only one of the viewpoints and only
the standard RDF/S inference rules (not custom inference
rules).

Having specified provenance propagation, and prove-
nance update, the next step is to evaluate this approach.
For this reason we report comparative results for alternative
repository policies regarding the storage of new (derived)
knowledge. The policy proposed here does not store any
inferred knowledge. This is in contrast to existing approaches
(discussed in Sect. 4), where both the explicitly ingested and
the inferred information is stored.

The objective of this evaluation is to enable us to under-
stand the trade off among space usage, query performance
and update performance for these policies. To this end, we
conducted experiments that measure the storage space before
and after the application of the inference rules, and the impact
of inferencing on the performance of queries and updates.
For these experiments we used real-world data and syn-
thetic data that exhibit features observed in typical real-world
datasets. In brief, the results showed that our suggested policy
(i.e., storing only the explicit provenance information) sig-
nificantly reduces the storage space requirements of prove-
nance information while introducing only a small perfor-
mance overhead for queries and updates.

The rest of this paper is organized as follows: Sect. 2 dis-
cusses the provenance model that we consider in this work
and continues with a motivating example; Sect. 3 introduces
the provenance inference rules; subsequently, Sect. 4 analy-
ses how the explicit and inferred knowledge can be stored and
the assumptions considered for the rest of the paper; Sect. 5
details on the knowledge evolution requirements and their
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interplay with the inference rules; Sect. 6 explains the algo-
rithms defined for the knowledge evolution; Sect. 7 presents
the experimental evaluation of this work; Sect. 8 elaborates
on the applicability of our work; Sect. 9 compares related
work to our approach, and finally Sect. 10 concludes the paper
and identifies issues that are worth further research. Extra
material including the signatures of the proposed update
operations and their algorithms is given in the Appendix.

This paper extends the ideas first presented at [57]. In com-
parison to that work, this paper details the implementation,
reports extensive and comparative experimental results over
real and synthetic datasets, discusses the applicability of our
approach (working assumptions and repository policies) and
contains a detailed discussion of related work.

2 Provenance model and motivating example

2.1 Provenance model

There are several models for representing provenance, such
as OPM [44], ProvDM [45] and Dublin Core [2]. All of them
contain some basic concepts like actors, activities, events,
devices, information objects and associations between them
(e.g., actors carrying out activities or devices used in events).
In this work we consider a basic model shown in Fig. 1. It
consists of six concepts and nine associations. It is actually
part of CIDOC CRM (ISO 21127:2006) [25], which is a
core ontology describing the underlying semantics of data
schemata and structures from all museum disciplines and
archives.

CIDOC CRM can be applied for scientific data because
scientific data and metadata can be considered as histori-
cal records: scientific observation and machine-supported
processing are initiated on behalf of and controlled by human
activity. Things, data, people, times and places are related
by events, while other relations are either deductions from
events or found by observation. Furthermore, CIDOC CRM

Fig. 1 Part of CRM Dig

has been extended, resulting in CRMdig [59]3, for better
capturing the modelling and query requirements of digital
objects. In numbers, CIDOC CRM contains 86 classes and
137 properties, while its extension CRMdig currently con-
tains an additional set of 31 classes and 70 properties.

As already mentioned, it is enough to consider only the
small part shown at Fig. 1, since only that part is involved
in the inference rules which are introduced in Sect. 3. Even
though we focus on the CIDOC CRM model, the approach
is more general and can be applied to any RDF-based anno-
tation model. Furthermore, this set of rules is only indicative
and one can follow the logic of our approach to define extra
rules for query or update operations.

The shown classes and properties are described in detail in
CIDOC CRM’s official definition [1]. In brief, the properties
P46 is composed of and P9 forms part of represent the part-
hood relationships of man-made objects (i.e., instances of the
E22 Man-made Object class) and activities (i.e., instances
of the E24 Physical Man-Made Thing class), respectively.
According to their semantics, these properties are transitive,
reflexive and antisymmetric.

The property P14 carried out by describes the active par-
ticipation of actors (i.e., instances of the E39 Actor class) in
activities and also implies causal or legal responsibility. In
this respect, actors could have participated in some part of
an activity, and not necessarily in all of it.

The property P16 was used for describes the use of objects
in a way essential to the performance of an activity. It also
indicates that the related objects were used as whole objects,
and all the parts of them were involved in the execution of
an activity.

Finally, immaterial items (i.e., instances of the E73 Infor-
mation Object class) are related to physical carriers (i.e.,
instances of the E24 Physical Man-Made Thing class) via
the P128 carries property and can be present to events via
the P12 was present at property.

2.2 Motivating example

The Mars Science Laboratory of NASA launched in 2011 a
new rover called Curiosity to explore the red planet. Curios-
ity contains a device called MastCam (see Fig. 2) designed
to take and store thousands of color images and several hours
of color video footage of the Martial terrain [47]. However,
this digital datum is meaningless without some provenance
information, stating, for example, where and when an image
(or video) was taken, the parameters and calibration of the
MastCam during the shot, etc. Completing this knowledge

3 It was initially defined during the EU Project CASPAR (http://www.
casparpreserves.eu/) (FP6-2005-IST-033572) and its evolution con-
tinued during the EU Project IST IP 3D-COFORM (http://www.3d-
coform.eu/).
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Fig. 2 Curiosity Mars Rover (extracted from NASA’s site [47])

would require both the information of usage and its parame-
ters to be associated with each part, having multiple refer-
ences of the same information, but in relation with different
parts, and thus replicating that information. For example, if
the MastCam was used for a certain shot of the Martian ter-
rain, then its parts were also used for said shot. Our target is
to avoid such replication by inferring such knowledge using
reasoning rules.

3 Provenance inference rules

3.1 The inference rules

The proposed inference rules concern the classes referred
previously, also shown in Fig. 1, and three binary rela-
tions, namely carriedOutBy (Activity, Actor), wasUsedFor
(Device, Activity), and wasPresentAt (InformationObject,
Event) which correspond to the associations P14 carried out
by, P16 was used for and P12 was present at, respectively.
Note that other associations are also related to these rules
such as the P9 forms part of (whose transitivity could also
be expressed by a rule). The rules are defined as:

• R1: If an actor has carried out one activity, then he has
carried out all of its subactivities.

• R2: If an object was used for an activity, then all parts of
the object were used for that activity too.

• R3: If a physical object that carries an information object
was present at an event, then that information object was
present at that event too.

More formally, the above three rules can be encoded into
first-order logic (FOL), as a general basis for further imple-
mentations to other languages such as SWRL or Datalog:

• R1:

∀x, y, z(formsPartOf(y, x) ∧ carriedOutBy(x, z)

→ carriedOutBy(y, z)) (1)

• R2:

∀x, y, z(isComposedOf(x, y) ∧ wasUsedFor(x, z)

→ wasUsedFor(y, z)) (2)

• R3:

∀x, y, z(carries(x, y) ∧ wasPresentAt(x, z)

→ wasPresentAt(y, z)) (3)

The considered inference rules are based on the semantics of
the involved concepts/properties, as described in the scope
notes of CIDOC CRM [1] and discussed in Sect. 2. In the
sequel we provide examples for each rule. In the forthcoming
figures we do not show the transitivity-induced properties
P46 is composed of and P9 forms part of . The information
that is inferred by each rule is depicted by dotted lines in all
figures. It should be noted that in this work we consider only
positive facts stored in the respective repository and not rules
with negation. In this regard, we assume default reasoning
and that negative facts result to the deletion of information
as an update request (Sect. 5.2).

3.2 Rule 1: carriedOutBy (Activity, Actor)

The MastCam consists of two cameras with different focal
lengths and different science color filters: (a) the MastCam-
100 having 100 mm focal length and (b) the MastCam-34
with 34 mm focal length. The manufacturing process of those
devices can be preserved by modelling a hierarchy of assem-
bly activities. As a result, we can have the superactivity Cam-
eras Assembly and the assembly subactivities of MastCam,
MastCam-100 and MastCam-34.

Another crucial information to be preserved is the person,
organization or laboratory which was responsible for carry-
ing out these activities. In this example, we record that the
NASA Laboratory was the actor responsible and associate
Cameras Assembly with the former using P14 carried out
by.

Even though the above subactivities have different
recorded metadata, the information that the initial actor was
the NASA Laboratory is desired to be preserved along the
hierarchy of activities. This is accomplished by rule R1.
Figure 3 shows the edges (represented by dotted lines)
which are inferred by the rule.
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Fig. 3 Example of rule R1

Fig. 4 Example of rule R2

3.3 Rule 2: wasUsedFor (Device, Activity)

We can extend the decomposition of MastCam-100 by mod-
elling its parts such as its lens and other electronic. More-
over, since the camera and its parts were used for the explo-
ration of Mars, this information could also be stored. Figure
4 illustrates an indicative modelling of such a composition
along with the inferences. With rule R2 we can infer that
both devices (i.e., Lens 100mm and Electronics) as parts of
MastCam-100 were used in the activity of Mars exploration.

3.4 Rule 3: wasPresentAt (InformationObject, Event)

Each MastCam of Curiosity can acquire images of high res-
olution including 720-p high-definition video. These data
could be modelled as an information object being carried
by an internal buffer which was present at the event of Mars
exploration (see Fig. 5). According to rule R3 both the buffer
and the images were present at the referred event. The infer-

Fig. 5 A high-resolution color mosaic MastCam, (up, NASA’s press
release) example of rule R3 (down)

Fig. 6 Example of rule R3 from the cultural heritage domain

ence is reasonable since without the presence of the buffer
any digital data would not exist.

Other examples can also be found to realize the extent and
applicability of our work to a variety of domains related to
digital preservation. One of such examples might be the 3D
reconstruction from images used in archaeology to digitize
and model archaeological exhibits. For instance the exhibit
shown in Fig. 6, which is part of a column of Ramesses
II, could be modelled as a physical man-made thing being
present at the event of 3D reconstruction. Moreover, the
information represented by the carved hieroglyphics could
be modelled as an information object (see Fig. 6).
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According to rule R3 if that part was present in an event,
then that information was also present at that event. Rule
R3 infers the presence of the latter because the part of the
column of Ramesses II was also present at that event. The
inference is reasonable because the information was carved
in hieroglyphics when the column was built, thus the infor-
mation in hieroglyphics coexists with the part of a column
which carries it, and this coexistence implies their common
presence at events.

3.5 Synopsis

In this section we presented a set of inference rules, to satisfy
our primary motivation of this study regarding the propaga-
tion of provenance information and the derivation of new
associations (i.e., new knowledge) based on logical assump-
tions. We focused on these three rules as they frequently
occur in practice and the related classes and associations are
fundamental for modelling provenance. Of course, one could
extend this set according to the details and conventions of the
application at hand.

4 Inference rules and repository policies

Digital preservation approaches heavily rely on the exis-
tence and curation of metadata, and currently well-defined
frameworks, such as the Resource Description Framework
(RDF) [38], are increasingly used for expressing them. To
interpret these metadata within or across user communities,
RDF allows the definition of appropriate schema vocabular-
ies (RDF/S) [16].

In RDF, the metadata are formed in triples (of the form
subject, property, object), asserting the fact that subject is
associated with object through property, and most often these
facts are connected forming complicated graphs [13].

RDF/S is used to add semantics to RDF triples, by impos-
ing inference rules (mainly related to the transitivity of sub-
sumption relationships), which can be used to entail new
implicit triples (i.e., facts) that are not explicitly asserted.
Note that standard generic inference rules are different from
the custom inference rules (R1, R2, R3) defined above, and
they have different usage, even though it is possible that stan-
dard and custom inference rules may have similar structure.

In this section, we study various repository storage poli-
cies regarding whether the inferred provenance information
is stored or not and can be used in conjunction with the infer-
ence rules (either the custom or the RDF/S ones).

We shall use the term KB to refer to a Knowledge Base
in the logical sense, composed of the contents of several
metadata files which can either be stored in RDF databases
(i.e., triple stores/repositories) [48] or in the rapidly growing
Linked Open Data (LOD) cloud [12]. We shall use K to refer

Fig. 7 Repository policies

to the set of RDF/S triples of a KB. Furthermore, hereafter
we assume that K denotes the set of triples as produced by the
adopted metadata schemas and ontologies and the ingested
facts (“raw data” yielded by manual or automated processes)
without any post-processing.

We shall use C(K) to refer to the closure of K, i.e., the data
that are produced from the data in K using the considered
inference rules. Note that C(K) can be defined with respect
to the standard inference rules for RDF/S and/or other custom
rules (e.g., like those that we introduce in this paper) and it
also includes K. From a visual perspective, in the examples
of our rules (Sect. 3), C(K) includes both the dotted and plain
associations, while K includes only the latter.

A repository policy could be to keep stored either K or
C(K) (see Fig. 7 for an overview of policies in venn dia-
gram representation). One could consider the option of stor-
ing K itself. Note that K usually contains little or no redun-
dancy, leading to a near-optimal space usage while avoiding
the overhead of searching for, and eliminating, redundancy.
Moreover, in some settings, the explicit information in K has
a different value from the implicit one in C(K), and the dis-
tinction between the two must be kept clear.

The option of storing C(K) is optimal with respect to query
efficiency, because all the information is stored and can be
efficiently retrieved, but has increased space requirements
and some overhead in update and maintenance operations.

The rest of this paper assumes (unless explicitly men-
tioned otherwise) that K is stored. In our experimental eval-
uation (Sect. 7) we will also consider the option of storing
C(K) and compare the ramifications of this option in terms of
storage, query time and update time, as opposed to the option
of storing K.

5 Provenance inference rules and knowledge evolution

A KB changes over time, i.e., we may have requests for
adding or deleting facts due to external factors, such as new
observations [28]. Satisfying update requests while still sup-
porting the aforementioned inference rules is a challenging
issue, because several problems arise when updating knowl-
edge taking into account rules and implicit facts. These
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Fig. 8 Initial state of the KB (left) and state of the KB after the addition (right)

problems will be described in more detail below using a
running example. For each update operation, we describe
the KB’s states (through figures) and explain the challenges
related to the update process due to the existence of the infer-
ence rules.

So, let us consider a KB that contains the rule R1’s exam-
ple with the activities of Cameras Assembly that were carried
out by the NASA Laboratory. The initial state of the KB is
demonstrated in Fig. 8 (left), where inferred associations are
illustrated (as usual) by dotted lines. We will consider three
update operations: addition, disassociation, contraction.

5.1 Addition of information

The addition operation performs the insertion of a new triple
into the KB. Since there are no validity rules or negation, the
addition of a triple cannot lead to a contradiction (as, e.g.,
in the case of [28] or in the generic belief revision literature
[31]). Therefore, addition is a simple operation consisting
only of the straightforward addition of the required informa-
tion (explicit triples) in our KB. Note that if we had taken into
account a repository policy that stores its closure (C(K)), we
would have to apply additional operations after the addition
to compute and store the new C(K).

Figure 8 visualizes the process of adding a carried out
by relationship. In particular, Fig. 8 shows a request for
adding a new actor to the subactivity of the MastCam Assem-
bly, namely that the Malin Space Science Systems, for short
MSSS, which is a company designing and building such cam-
eras, is also the actor of MastCam Assembly. In the right part
of Fig. 8 we show the result of this addition; the node MSSS
is shown at the bottom right corner of the figure. Observe that
MSSS has not only been associated with the activity Mast-
Cam Assembly, but also, due to rule R1, has been implicitly
associated with the subactivities MastCam-34 Assembly and

MastCam-100 Assembly. Note that we do not have to explic-
itly add those implicit triples.

5.2 Deletion of information

The addition of information is used in practice more often
than deletion. Deletion is usually a consequential operation
taken to amend some kind of conflict. However, this is not
always the case. For example, deletion should be employed
whenever we lose confidence in a previous observation or
measurement, or when some erroneous fact was placed in
our KB (e.g., when we realize that a certain object was not
used for a particular activity).

The problem when dealing with the deletion of informa-
tion is more complex than the addition. The reason is that, due
to the inference rules, we cannot succeed by simply deleting
the required information, as the deleted information may re-
emerge as a consequence of the application of the inference
rules. Thus, it is often the case that additional information
should be deleted, along with the one explicitly requested.
This raises the additional challenge of avoiding losing (delet-
ing) any more knowledge than necessary. We will visualize
how we address this problem using our running example
below.

Consider an update request stating that the association of
NASA Laboratory with the activity MastCam-34 Assembly
through property P14 carried out by must be deleted. The
rising question is whether we should delete the association
of NASA Laboratory with MastCam-34 Assembly only, or
whether we should do the same for other activities also; in
other words, we should determine how refuting the fact that
the NASA Laboratory is responsible for MastCam-34 Assem-
bly affects the information that it is responsible for the activ-
ities Cameras Assembly, MastCam Assembly or MastCam-
100 Assembly (see Fig. 9).
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Fig. 9 Deletion of information

Initially, we note that the NASA Laboratory should also be
disassociated from the responsibility of MastCam Assembly
and Cameras Assembly; failing to do so would cause the sub-
sequent re-emergence of the refuted knowledge (i.e., that the
NASA Laboratory is not responsible for MastCam-34 Assem-
bly) due to inference.

A more complicated issue is whether the NASA Labo-
ratory should remain responsible for MastCam-100 Assem-
bly: note that this information was originally included just
because of the fact that the NASA Laboratory was consid-
ered responsible for Cameras Assembly, ergo (due to the
inference rules), also responsible for MastCam-100 Assem-
bly. Once the former information is dropped, as discussed
above, it is questionable whether the latter (inferred) infor-
mation should still remain in the KB, since its “reason for
existence” is no longer there. On the other hand, the fact
that the NASA Laboratory is not responsible for MastCam-
34 Assembly does not in any way exclude the possibility that
it is still responsible for MastCam-100 Assembly; therefore,
deleting this information seems like an unnecessary loss of
knowledge.

To address this issue, one should go deeper and study
the related philosophical issues with regard to the epistemo-
logical status of the inferred knowledge, and whether such
knowledge has the same or different value compared to pri-
mary, explicitly provided knowledge (i.e., ingested knowl-
edge). There are two viewpoints in this respect: foundational
theories and coherence theories [32].

Under the foundational viewpoint, each piece of our
knowledge serves as a justification for other beliefs; our
knowledge is like a pyramid, in which “every belief rests
on stable and secure foundations whose identity and secu-
rity does not derive from the upper stories or sections” [55].
This viewpoint implies that the ingested facts (the “base of

the pyramid”) are more important than other knowledge and
that implicit knowledge has no value of its own, but depends
on the existence and support of the explicit knowledge that
caused its inference.

On the other hand, under the coherence theory, no justi-
fication is required for our knowledge; each piece of knowl-
edge is justified by how well it fits with the rest of the knowl-
edge, in forming a coherent set of facts that contains no con-
tradictions. In this sense, knowledge is like a raft, where
“every plank helps directly or indirectly to keep all the oth-
ers in place” [55]; this means that all knowledge (implicit or
explicit) have the same “value” and that every piece of knowl-
edge (including implicit ones) is self-justified and needs no
support from explicit knowledge.

This distinction is vital for effective management of data
deletions. When a piece of knowledge is deleted, all implicit
data that are no longer supported must be deleted as well
under the foundational viewpoint. In our example, this should
cause the deletion of the fact that the NASA Laboratory is
responsible for MastCam-100 Assembly. On the other hand,
the coherence viewpoint will only delete the implicit data if
it contradicts with existing knowledge, because the notion of
support is not relevant for the coherence model. Therefore, in
our case, the fact that the NASA Laboratory is responsible for
MastCam-100 Assembly should persist, because it does not
in any way contradict the rest of our knowledge or cause the
re-emergence of the newly deleted information (i.e., that the
NASA Laboratory is responsible for MastCam-34 Assembly).

Instead of positioning ourselves in favour of one or the
other approach, we decided to support both. This is done
by defining two different “deletion” operations, namely, dis-
association (foundational) and contraction (coherence), that
allow us to support both viewpoints. We describe these oper-
ations in more detail in the sequel.

5.2.1 Disassociation

As mentioned above, disassociation handles deletion using
the foundational viewpoint. In particular, the non-
responsibility of the NASA Laboratory about MastCam-34
Assembly implies that it is no longer responsible for other
related activities (i.e., MastCam-100 Assembly), since this
knowledge is no longer supported by any explicit data. Based
on the foundational viewpoint, all such associations must also
be deleted, i.e., we should delete the following:

• (MastCam-34 Assembly, carried out by, NASA Laboratory), as
requested

• (MastCam Assembly, carried out by, NASA Laboratory), to avoid
re-emergence of the deleted knowledge

• (Cameras Assembly, carried out by, NASA Laboratory), to avoid
re-emergence of the deleted knowledge, and
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Fig. 10 Initial state of the KB (left) and state of the KB after disassociation (right)

Fig. 11 Initial state of the KB (left) and state of the KB after contraction (right)

• (MastCam-100 Assembly, carried out by, NASA Laboratory), due
to the loss of explicit support.

The right side of Fig. 10 illustrates what information will
be stored in the KB after disassociation. Note that, in practice,
implicit facts are not stored so need not be deleted; thus, in
our case, we only need to delete (Cameras Assembly, carried out

by, NASA Laboratory). We will be referring to the above case as
actor disassociation.

5.2.2 Contraction

Contraction handles deletion using the coherence view-
point. In particular, this operation assumes that the non-
responsibility of the NASA Laboratory is only for MastCam-

34 Assembly. Other activities which are still associated with
NASA Laboratory, such as MastCam-100 Assembly, should
persist despite the lack of explicit knowledge to support them.
In this case we have to delete only the following:

• (MastCam-34 Assembly, carried out by, NASA Laboratory), as
requested,

• (MastCam Assembly, carried out by, NASA Laboratory), to avoid
re-emergence of the deleted knowledge, and

• (Cameras Assembly, carried out by, NASA Laboratory), to avoid
re-emergence of the deleted knowledge.

The right side of Fig. 11 illustrates what information will
be stored in the KB after contraction. Again, implicit facts
need not be deleted, so the only actual deletion required is the
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Fig. 12 Actor disassociation (left) and actor contraction (right)

deletion of (Cameras Assembly, carried out by, NASA Labo-
ratory). For contraction, one should also be careful with the
implicit knowledge that is supposed to persist. For exam-
ple, the fact that the NASA Laboratory is responsible for
MastCam-100 Assembly is not explicitly stored and will be
lost along with the deletion of (Cameras Assembly, carried
out by, NASA Laboratory), unless we explicitly add it back.
Therefore, contraction essentially consists, in this example,
by the deletion of (Cameras Assembly, carried out by, NASA
Laboratory) and the addition of (MastCam-100 Assembly,
carried out by, NASA Laboratory). Notice that in contrast to
disassociation, the contraction operation preserves the asso-
ciation (MastCam-100 Assembly, carried out by, NASA Lab-
oratory) (see Fig. 12). We will be referring to the above case
as actor contraction.

6 Knowledge evolution: algorithmic perspective

An analysis like that of the previous example can be applied
for deriving the exact plan for each update operation. Indica-
tively, we provide below update plans (algorithms) for three
operations:

• AssociateActorToActivity (p:Actor, a:Activity)
• DisassociateActorFromActivity(p:Actor,a:Activity)
• ContractActorFromActivity (p:Actor, a:Activity)

Algorithm 1 takes as input an actor (p) and an activity (a),
checks if the information that p is responsible for a already
exists in the KB (line 1), and if not, adds that fact as an explicit
one in the KB (line 2). This is an easy operation, requiring
just the addition of said triple in K.

Algorithm 1 AssociateActorToActivity (p:Actor,
a:Activity)
1: if an explicit P14 link does not exist between a and p then
2: Add an explicit P14 link between a and p
3: end if

Algorithm 2 takes the same input (actor p and activity a),
but its purpose is to disassociate p from the responsibility
for a. Firstly, the requested explicit association has to be
removed from the KB (lines 1–3). Secondly, according to
the semantics given above, this also requires the deletion of
all associations of p with all superactivities of a (lines 4–6).
Note that only explicit links need to be removed, because
implicit ones do not actually exist in K.

Algorithm 2 DisassociateActorFromActivity (p:Actor,
a:Activity)
1: if an explicit P14 link exists between a and p then
2: Remove the requested P14 link between a and p
3: end if
4: for each superactivity:superAct of a related to p via the P14 link do
5: Remove possible explicit P14 link between superAct and p
6: end for

Finally, Algorithm 3 contracts p from the responsibility
for a. This requires, apart from the deletion of all associ-
ations of p with all superactivities of a (as in disassocia-
tion), the preservation of certain implicit associations that
would otherwise be lost. At first, any inferred associations
between p and any direct subactivities of a must be explicitly
added to the KB (lines 1–5). Moreover, additional associa-
tions that need to be preserved are stored in Col (lines 9–15);
to avoid adding redundant associations, we only consider the
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Algorithm 3 ContractActorFromActivity (p:Actor,
a:Activity)
1: if an explicit P14 carried out by link exists between a or a superac-

tivity of a and p then
2: for each maximal subactivity:subAct of a do
3: Execute AssociateActorToActivity (p, subAct)
4: end for
5: end if
6: if an explicit P14 carried out by link exists between a and p then
7: Remove the requested P14 carried out by link between a and p
8: end if
9: for each maximal superactivity:supAct of a related to p via the P14

carried out by link do
10: for each subactivity:subAct of supAct do
11: if subAct is not superactivity or subactivity of a then
12: Add subAct to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActorFromActivity (p, a)
17: for each maximal activity:act in Col do
18: Execute AssociateActorToActivity (p, act)
19: end for

maximal elements of Col to add the new explicit associations
(lines 17–19).

We should clarify that each operation is independent, in
the sense that after its execution there is no need for other
operations to be performed to complete a particular change.
However, their design is modular and thus different oper-
ations may use the same algorithms or parts of them. For
instance, Algorithm 3 executes Algorithm 2 at line 16 and
Algorithm 1 at line 18.

Furthermore, our operations guarantee that the resulting
KB will contain (or not contain, depending on the operation)
the added/deleted triple, either as an explicit or as an implicit
fact, given the existing knowledge and the custom inference
rules that we consider. This has been coined as the Principle of
Primacy of New Information in the belief revision literature
[21]. In addition, our operations preserve as much as possible
of the knowledge in the KB under the considered semantics
(foundational for the disassociate operation and coherence
for the contraction operation). This is known as the Principle
of Minimal Change in belief revision terminology.

6.1 Algorithmic complexity

The complexity of the above algorithms is O(logN ) for
Algorithm 1, O(N logN ) for Algorithm 2 and O(N 2) for
Algorithm 3, where N is the number of triples in K. The
above complexities assume that the triples in K are origi-
nally sorted (in a preprocessing phase); such a sorting costs
O(N logN ). Under this assumption, Algorithm 1 practically
needs to check whether a certain fact exists in a sorted table,
and if not, to add it, thus the O(logN ) cost.

Algorithm 2 requires the computation of all the superac-
tivities of an activity. To do that, we need to find all the direct
superactivities of a (i.e., those connected to a via the P9
forms part of property), a process which costs O(logN ); for
each such activity, one needs to add it in a sorted collection
that contains all the superactivities of a found so far, cost-
ing O(logM), where M is the size of the collection. M can
never exceed N , so the total computation time for finding one
superactivity of a and adding it in our list is O(logN ). Con-
tinuing this process recursively, we will eventually add all
superactivities of a, which are at most N , so the process can
be repeated at most N times, costing a total of O(N logN ).
For each superactivity, we need to determine whether a P14
carried out by link to p exists, and if so, delete it; this costs
O(logN ) for each superactivity, i.e., O(N logN ) in total (as
we can have at most N superactivities). Thus, the combined
computational cost for Algorithm 2 is O(N logN ).

Algorithm 3 is more complicated. As in disassociation,
we first need to find all superactivities of a, which costs
O(N logN ). Then, we need to find the maximal superactivi-
ties; this process requires a filtering over the set of all super-
activities. In the worst-case scenario, this requires checking
each superactivity against all others, costing O(M2) if the
total number of superactivities are M . Thus, in the worst-case
scenario (where M = O(N )), the cost of finding the maxi-
mal superactivities is O(N 2). After that, we need to compute
Col (line 7), which is a process identical to the computation
of superactivities and requires O(N logN ) time. Finding the
maximal elements in Col likewise requires O(N 2), whereas
the execution of the disassociation operation is O(N logN )

as explained above. Summing up the above complexities, we
conclude that the worst-case computational complexity for
Algorithm 3 is O(N 2).

6.2 Additional operations

The addition algorithm adds an explicit triple, only if there
is no such triple already stored in our KB. In this regard, it
should be noted that the addition algorithm is actually fol-
lowing the foundational viewpoint respecting the fact that
explicit information is more important than implicit. This
can be understood by noticing that if one tries to add a
triple that is implied by K, but is not explicit, then the triple
will be added (cf. Algorithm 1). This is based on the under-
standing that it is important to distinguish between explicitly
ingested facts and implicit ones, i.e., the discrimination of
implicit and explicit triples advocated by the foundational
viewpoint. If explicit and implicit triples were considered of
the same value (i.e., under the coherence viewpoint), then
the addition of a triple that is already implicit would have no
effect.

This choice of semantics for the addition operation was
made to subsequently allow deletions under the foundational
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Fig. 13 Actor replacement

viewpoint. Indeed, if one did not add triples that are implicit,
then disassociation would produce incorrect results, because
(some of) the explicit triples would not be marked as such. At
any rate, an addition operator under the coherence viewpoint
can be easily implemented, if desired, by just changing the
check of line 1 in Algorithm 1 to check for both implicit and
explicit triples (rather than just existing ones).

The algorithms for the operations related to the other infer-
ence rules, e.g., for DisassociateActivityFrom MMObject and
ContractActivityFromMMObject (which are related to rule
R2), can be designed analogously (see Algorithms 11 and 12
in Appendix B). Since hierarchies of devices and parts have
the same graph morphology, the respective algorithms fol-
low the same design as the ones of R1 discussed previously.
However, some obvious adjustments are essential such as
the replacement of the P14 carried out by with the P16 was
used for link and the activities with devices (i.e., man-made
objects) which are composed of parts instead of subactivities.
Moreover, instead of the actor, we now have the activity that
used the specific device.

The operations for rule R3 are not applied on hierarchies
since according to the semantics, the respective associations
P12 was present at and P128 carries are not transitive. Thus,
they are not so complicated and their algorithms can be easily
implemented. For instance, for the case of the foundational
viewpoint, the deletion of a P12 was present at link between
an information object and an event requires the deletion of
the respective P12 was present at link between the carriers of
the former and the latter (see Algorithm 22 in Appendix B).
Note that information objects cannot exist and thus be present
at events without being carried by physical things. For this
reason, we only consider foundational semantics.

For reasons of space, the signatures of the complete
set of operations are given in Appendix A of this paper.
Using the same mindset, we could also develop algorithms
for adding/deleting the transitive relationships used in our

model, such as P9 forms part of , P46 is composed of , etc.,
as well as for adding/deleting new objects, such as actors,
activities, etc.

In addition, one could compose the above operations to
define more complex, composite ones. For instance, Addi-
tion and Contraction can be composed to define a Replace
operation. Such an operation would be useful if, e.g., we
acquire the information that Michael (an employee of NASA)
is responsible for MastCam-34 Assembly instead of the NASA
Laboratory. This means that the NASA Laboratory should be
replaced by Michael. Figure 13 illustrates a possible defin-
ition of replacement as a composition of an addition and a
contraction. Another version of replace could be formed by
composing Add and Disassociate. One could similarly define
more composite operations, but this exercise is beyond the
scope of this work.

7 Experimental evaluation

7.1 Design of the experiments

The objective of the experimental evaluation is to understand
the tradeoff between storage space, and the performance of
queries and updates for different storage repositories poli-
cies. We will compare experimentally the following storage
scenarios:

• Storage of K ; we will refer to this scenario by SK.
• Storage of C(K) with respect to rule R1; we will refer to

this scenario by SC KR1.
• Storage of C(K) with respect to the standard RDF/S rules;

we will refer to this scenario by SC KRDF.
• Storage of C(K) with respect to both RDF/S rules and

inference rule R1; we will refer to this scenario by
SC KRDF+R1.
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The main objective is to compare quantitatively the poli-
cies that could be followed regarding our update operations,
contraction and disassociation, and understand the related
tradeoff: a small amount of storage space and a possible over-
head in query performance by storing K ; or a larger amount
of storage space but a better query performance in general by
storing C(K). The evaluation consists of three different exper-
iments over both real and synthetic data. These experiments
are explained below.

The first experiment (described in Sect. 7.2) quantifies the
storage space gain of using SK as opposed to SC KRDF and
SC KRDF+R1. This experiment focuses on real data only, and
the inference rules considered are the RDF/S rules and our
custom rule R1. Due to the small size and the low complexity
of the real data considered, the query and update performance
is not measured in this experiment; the evaluation of query
and update performance is the subject of the second and third
experiments, respectively.

The second experiment (described in Sect. 7.3) consists
of two sub-experiments measuring the storage space and
the query execution time respectively of the two considered
storage policies SKand SC KR1 over synthetic data. In both
sub-experiments, we focus on rule R1 only; note that rule
R2 applies on similar graph morphologies (so its evaluation
would give similar results), whereas rule R3 is much simpler
as it is not relying on hierarchies.

In the third experiment (described in Sect. 7.4), the time of
maintenance and update operations for the two policies, SK
and SC KR1, is measured, and consists of the time required for
computing and storing transitive inferences and the time for
disassociating/contracting a fact from the KB, respectively.
This experiment is based on rule R1 and the synthetic data
used in the second experiment.

Summarizing, our evaluation consists of the following
three experiments:

1. storage space evaluation over real data (Sect. 7.2)
2. storage and query execution time evaluation over syn-

thetic data (Sect. 7.3)
3. time evaluation for computing and storing transitive

inferences, and execution time evaluation for mainte-
nance/update operations over synthetic data (Sect. 7.4)

In the figures that follow “No inference” denotes a repository
containing only the initial triples (according to SK policy),
while “Rule R1 inference” denotes a repository containing
all inferences derived from rule R1 (according to SC KR1

policy).

7.1.1 Experimental settings

We performed our experiments on a Pentium 4 CPU at
2.55GHz and 2GB RAM, running Linux Ubuntu 11.10. The

Fig. 14 Experimental design on real data

chosen triple store was Virtuoso’s open source version 6.1.54.
Based on the available memory we chose to change some
parameters of Virtuoso to minimize swapping. Our experi-
ments were based on real-world data and realistic synthetic
data. Specifically, our real dataset was extracted from a repos-
itory used in the 3D COFORM project (whose data con-
cern 3D capture/acquisition), while the synthetic data were
generated using PowerGen [60]: a RDFS schema generator
that considers the features exhibited in real semantic web
schemata.

7.1.2 Input datasets

Real data Our real dataset was extracted from the most
completed metadata repository available as part of the 3D
COFORM project5 in FORTH-ICS. The specific dataset was
the result of a significant cooperation between institutes and
museums in the context of 3D COFORM, and was collected
and created manually. The model CIDOC CRM is used for
encoding the metadata and the provenance of the related
artefacts.

Thus, in general, it has low complexity and does not
involve the whole set of classes and properties of CIDOC
CRM. It consists of 150,434 triples in total; the triples involv-
ing P9 forms part of and P14 carried out by properties
(which are the most critical for experiments) were 8,937 and
0, respectively.

Using the triples of this dataset, we created three differ-
ent repositories. The first stored just the explicit facts (K).
The second stored K along with all the inferences coming
from the standard RDF/S rules (as supported by Virtuoso),
i.e., SC KRDF. The third stored K along with all the infer-
ences from both the standard RDF/S rules and rule R1, i.e.,
SC KRDF+R1; for the latter, we defined P9 forms part of as
a transitive relation, and let Virtuoso handle the transitive
computation. These three repositories are shown in Fig. 14
and were used for the experiment described in Sect. 7.2.

4 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
VOSDownload.
5 http://www.3d-coform.eu/.
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Fig. 15 Experimental design
on synthetic data

Synthetic data To test the scalability of our approach and
algorithms in large datasets, we synthesized data involving
only the P9 forms part of and P14 carried out by properties.
The goal was the evaluation of space and query performance
(Sect. 7.3), and the time performance of maintenance and
update operations (Sect. 7.4) with respect to our rule R1.

We decided to evaluate the effect of two parameters on
synthetic data, namely, the number of the ingested triples
and the depth of the activity hierarchies. Thus, having in mind
these two parameters we synthesized hierarchies of the most
complex form, i.e., directed acyclic graphs (DAGs6). To this
end, we used PowerGen [60], a tool for generating random
RDF/S schemata with DAG subsumption hierarchies consid-
ering the features exhibited by graphs of real existing seman-
tic web schemata. The tool supports various parameters like
the maximum depth and the number of classes. Using Power-
gen, we generated multiple schemata of 1,000 classes. To test
our approach, we post-processed the resulting schemata, by
replacing the IsA relation RDFS:SubClassOf with P9 forms
part of ; this has the additional effect that the multitude of
PowerGen parameters dealing with tuning the morphology
of IsA hierarchies can essentially be used to tune the mor-
phology of P9 forms part of hierarchies, a critical property
for our experiments (per rule R1).

The resulting repositories contained datasets of multiple
disjoint unions of graphs reaching 200K, 400K, 600K, 800K
(K denotes thousands) and 1M (M denotes million) P9 forms
part of triples. For each dataset we distributed actors ran-
domly to the activities; the number of actors considered was
equal to 1 % of the P9 forms part of triples. The number
of activities and actors did not change for different graph
depths.

We stored these datasets in Virtuoso in different reposito-
ries for each dataset and applied rule R1. The inferred triples
of each repository were stored in other repositories (which
correspond to the SCK policy). For instance, we had two
repositories for the 200K dataset: one storing K (i.e., SK pol-
icy) and one storing C(K) (i.e., SC KR1 policy). Those repos-
itories were used for the experiments conducted in Sects.

6 http://en.wikipedia.org/wiki/Directed_acyclic_graph.

7.3 and 7.4. Figure 15 demonstrates this process for each
repository.

7.2 Space evaluation results on real data

For this experiment, we ingested our real dataset in Virtuoso.
After the RDF/S inference the number of P14 carried out by
triples increased from 0 to 129. The reason for that increase
is that even though the initial data did not consist of triples
having as predicate the P14 carried out by property, there
were triples having as predicate’s subproperties P14 carried
out by (note that according to the RDF/S rules, all instances
of a subproperty are also instances of its superproperty). The
total number of triples (implicit and explicit) in the repository
was 310,919.

Regarding the P9 forms part of relation, after the RDF/S
inference the number of 8,937 did not change (see Fig. 16),
since P9 forms part of is a super property defined in CIDOC
CRM, so there are not other superproperties to be inferred.
Subsequently, the total triples after applying rule R1 to the
dataset was 327,452 and the triples regarding P9 forms part
of and P14 carried out by properties were 24,444 and 717,
respectively.

The number of P9 forms part of triples in this case has
been increased since we take into account the transitivity
of this relation. As a result, we observe that there was an

Fig. 16 Space evaluation on real data
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Fig. 17 Space evaluation on synthetic data a 200 K triple dataset, b 600 K triple dataset, c 1 M triple dataset

increase of 106 and 118% in the number of total triples from
the repository containing K to the ones of the RDF/S infer-
ence and both RDF/S and rule R1, respectively. The increase
percentages in the policies of storing the inferences with
respect to the rule R1 and/or the RDF/S rules indicate that
our approach is more beneficial considering the storage space
requirements.

7.3 Space and query time evaluation results on synthetic
data

7.3.1 Storage Space Requirements

In this experiment, we compare the storage space required
for the storage policies SK and SC KR1, and study how these
requirements are affected by the maximum depth of DAGs
and the number of triples. We ingested our synthetic datasets
and stored the transitive and inferred triples derived by apply-
ing rule R1. In this case we do not consider any RDF/S infer-
ence. Because of this fact the data have been synthesized by
replacing the IsA relation RDFS:SubClassOf with P9 forms
part of (see also Sect. 7.1.2 describing this process).

In the figures below we show the results for the 200K
(Fig. 17a), 600K (Fig. 17b) and 1M (Fig. 17c) triples in
the respective maximum depths 3, 4 and 6. The total triples
after the inference of rule R1 and for the 1M datasets was
3,229,902, 5,478,634 and 7,560,778 for 3, 4 and 6 depths,
respectively.

We observe that the maximum depth of the DAGs is the
main cause for the difference in size of the two policies. In
particular, this difference increases as the maximum depth
increases (see Fig. 17). For instance, for the 1M triples we
have an increase of 218, 435 and 648 % in the number of
triples for SC KR1, for depths 3, 4 and 6, respectively. Finally,
we notice that the storage requirements are not affected by
the increase of the number of triples. For example for the
dataset sizes 200K, 600K and 1M, the increase is the same
and is approximately 435 %.

7.3.2 Query Performance

We also experimented with the performance evaluation of
queries involving the transitive P9 forms part of relation.
Specifically, we used the query “retrieve all associated
actors of a particular activity” aiming at returning also
the actors of its superactivities (i.e., taking into account the
application of rule R1). This query is required for answering
questions of the form “WHO: the persons or organizations
playing role in the event” [26]. Since such questions are very
often, the aforementioned query is appropriate for using it
for measuring the overhead in query answering.

We evaluated this query on our synthetic datasets for all the
activities in the hierarchies and their respective depth, taking
the average. Every time we changed a dataset we cleared
the cached buffers of the operating system to have reliable
results.

Figure 18a–c shows the query time in milliseconds (ms)
for the datasets of 200 K, 600 K and 1 M triples and the depths
3, 4 and 6, respectively. We observe that for the SC KR1 stor-
age policy, the query time is almost the same for different
dataset sizes and depths, i.e., 2 ms. This is explained by the
fact that all triples are stored, so there is not any additional
computation such as the transitive closure to be evaluated at
query time.

In comparison, for the policy SK the query time perfor-
mance, for maximum depth 6 and all datasets, has an increase
reaching almost at 3.5ms (see Fig. 19). Therefore, the time
required for SK is increased by almost 70–75 % over the
respective one for SC KR1. This is expected since the transi-
tivity of the P9 forms part of relation has to be computed at
query time; a computation which is not needed for SC KR1.
This overhead is acceptable compared to the storage space
overhead, which is, on average, 433 % (see the previous
experiment).

Finally, Fig. 19 shows an overview of the query time for all
depths. We observe a slight performance decrease as a result
of the increasing depth for almost all datasets. Therefore, as
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Fig. 18 Query time evaluation on synthetic data a 200 K triple dataset, b 600 K triple dataset c 1 M triple dataset

Fig. 19 Query performance for
all datasets

the hierarchy becomes deeper, the number of the inferred
P9 forms part of and P14 carried out by triples increases
as well. Another observation that can be made is that, on
average, the time needed to evaluate this query for all the
activities is independent of the number of triples stored into
the repository. This can be explained by Virtuoso’s scalability
feature [27].

7.4 Time evaluation results of maintenance and update
operations on synthetic data

7.4.1 Performance of maintenance operations

One issue concerning SC KR1 is the time required for com-
puting and storing the inferred relations such as those of the
transitive closure (i.e., C(K)) of P9 forms part of .

We performed the discussed task for the P9 forms part
of relation and for each synthetic dataset, to quantify this
overhead and realize how the maximum depth affects the
execution time for this task. Since the memory usage of this
task was increased and there was some usage of the swap
file, we chose to clear the swap file before starting the task
for a new dataset.

Fig. 20 Time for computation and storing the transitive closure of all
datasets

Figure 20 shows the time (in hours) required to compute
and store the transitive closure (SC KR1) for all the triple
datasets and the various depths. We observe that both the
depth and the number of triples affect the time needed for the
discussed task. We should emphasize the increase of time
in correlation with the increase of dataset’s maximum depth
(see Fig. 20). Indicatively, the time for the 1 M dataset and
maximum depth 6 was almost 3.5 h.
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Fig. 21 Execution time evaluation of disassociation a 200 K triple dataset, b 600 K triple dataset, c 1 M triple dataset

Fig. 22 Execution time evaluation of contraction a 200 K triple dataset, b 600 K triple dataset, c 1 M triple dataset

As a result, the SK policy has one more advantage (com-
pared to SC KR1), namely the lack of any maintenance over-
head which, as Fig. 20 shows, is significant in the case of
SC KR1.

7.4.2 Disassociation time performance

In this experiment, we measure the time required for the actor
disassociation update operator. We run this operation for all
the actors and depths in our synthetic datasets, and report on
the average time needed for the disassociation operation.

Figure 21a–c shows the results for the respective datasets
and depths. We observe that the operation in the repository
following SK requires significantly less time compared to
SC KR1. More specifically, for SK the average required time
over all depths and datasets is approximately 33 % (i.e., 5ms)
of the corresponding time needed for SC KR1 (i.e., 15 ms).
The reason for this increase is mainly the larger number
of triples that have to be deleted in the case of SC KR1 as
opposed to SK.

7.4.3 Contraction time performance

Lastly, in this experiment we measure the time required
for applying the actor contraction operator. As with the

actor disassociation, we run this operation for all the actors
and depths in our synthetic datasets, and took the average
measurements.

The operation of contraction is more complicated than
disassociation. Except from the call to a disassociation oper-
ation which is performed in the end (cf. Algorithm 2 in Sect.
6), the operation requires the computation of maximal activi-
ties and the addition of triples to preserve implicit knowledge
(for SK).

Figure 22a–c shows the results for the respective datasets
and depths. As the graphs show, in this case, the time required
for contracting actors in SC KR1 is 67 % (i.e., approximately
17,5ms) of the time required in SK (i.e., approximately
26ms). This might seem strange in the light of the disassoci-
ation results, given that contraction under the SC KR1 policy
needs to delete more triples than contraction under SK (as
in disassociation). Thus, this observation suggests that the
search and addition of explicit triples along with disasso-
ciation, which is executed at the end of the algorithm, are
quite costly operations for SK. The former task involves the
addition of new triples (which are already stored in SC KR1)
and the latter, as already discussed, the inference of some
transitive triples at query time (which again is not needed in
SC KR1).

The role of disassociation (which is part of contraction)
can be realized by the fact that the number of contraction
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operation in SC KR1 is on average close to the case of dis-
association for SC KR1, i.e., approximately 16–17ms. Thus,
the time required is mostly for the operation of disassociation
in order for contraction to be completed.

7.5 Synopsis of all experimental results

Our experimental findings showed that our considered policy
SK is very beneficial regarding the reduction of storage space
requirements of provenance information, with no significant
overhead in the query time performance (refer to Sects. 7.2
and 7.3). Both for the real and synthetic data the increase
percentages in storage space were over 100 and 200 %,
respectively (see Figs. 16 and 17), compared to SC KRDF+R1

and SC KR1; whereas the overhead in query execution was
approximately 70–75 % (see Fig. 19).

The disadvantage of SC KR1 is also realized by the fact
that computing and storing the transitive inferences, which is
a KB maintenance operation necessary in SC KR1 but irrele-
vant for SK, require a significant amount of time (see Fig. 20).

Lastly, regarding the update operations disassociation and
contraction, the former was executed faster in SK, whose exe-
cution time was the 35 % of the respective one in SC KR1 (see
Fig. 21); whereas the latter achieved better execution time in
SC KR1, which was 33 % better than the one in SK (see Fig.
22). It should be noted that for all experimental measure-
ments involving the synthetic data the maximum depth of
graph hierarchies had a quite influential role on the storage
space requirements and the query performance.

Even though 1M triples could be considered a relatively
small dataset, we believe that new experiments over a bigger
dataset will not contradict our initial assumptions and will
result to the same previously discussed conclusions (in terms
of the relative reduction in the storage space requirements and
the relative overhead at the query time performance). In this
respect, the important feature is the structure, i.e., the form
of the RDFS:SubClassOf hierarchy in which the nodes of
the graphs were organized, rather than the size of the data.
This is the reason why we have chosen to use real-world data
and synthetic data that reflect the morphological features of
real schemata. Consequently, the only bias introduced in the
evaluation datasets is the bias imposed by the structure of a
typical real-world dataset.

8 On applicability

Here we discuss some of the hypotheses used in this study.
The general assumption endorsed by this study is prove-

nance information recorded by empirical evidence [46]. We
may distinguish three epistemological situations:

1. The facts can reliably and completely be registered by a
monitoring system, such as a workflow shell.

2. There are facts which users need to input manually to the
monitoring system and may not be willing to do so.

3. Facts come from different monitoring systems or uncon-
trolled human input.

The initial provenance information is assumed to be given
by the curator (or produced automatically by the system)
at ingestion time. Our algorithms in Sect. 6 are focusing
on provenance transformations, i.e., how one can deal with
changes in the provenance information. Handling changes in
the data is not in the scope of this work. Any effects of data
changes on provenance are also assumed to be given to the
system by the curator. For example, if the data regarding a
certain measurement are deleted for some reason, then all
its provenance information should be deleted as well, so the
curator should explicitly execute a disassociation operation
to delete such provenance information.

From a semantic point of view, the considered infer-
ence rules are based on the semantics of the involved con-
cepts/properties, as described in the scope notes of CIDOC
CRM. As such they are correct, as long as the representa-
tion of the provenance data is done according to the intended
semantics of CIDOC.

Alternative rules could also be reasonable, e.g., a rule stat-
ing that a person carrying out a process carries out at least one
of its sub-processes or that a person carrying out a process,
also carried out all of its super-processes. That of course
would give a different semantics to the “carries out” prop-
erty which would be incompatible with the current semantics
provided by CIDOC CRM. More specifically, in the second
case, the semantics of the property “carry out” implies more
a presence than a responsibility of the actors to the respec-
tive activities and it might be replaced by a more appropriate
property (e.g., “was present at”).

From a practical point of view, each rule causes the deriva-
tion of additional knowledge but a very large set of rules
might introduce other difficulties such as further dependen-
cies among the rules affecting the update operations (e.g.,
when an addition or deletion causes cascading violations of
other rules, which result in more side effects for each opera-
tion [28]) and result to a more complex reasoning system.

When dealing with data that involve inference rules, there
are two approaches to deal with implicit information: either
computing the full closure at ingestion time or computing
(part of) the closure at query time. Both approaches have
their merits and drawbacks and there are commercial reason-
ers that follow both the first (e.g., OWLIM7) and the second
(e.g., Virtuoso8) approach. Our approach is more valuable

7 http://www.ontotext.com/owlim.
8 http://virtuoso.openlinksw.com/.
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over dynamic data, because doing changes on the full clo-
sure is generally more expensive than doing it on the ingested
information. In addition, it saves space, which may be impor-
tant in applications where storage space is more expensive
than processing power [e.g., when the data must be sent over
a slow network, such as the case with the Mars Rover (see
Sects. 2 and 3) that sends data to Earth]. A further advantage
of this method is that people can more easily understand and
perform changes on the ingested dataset, than on the inferred
one.

The curators could use the results of this paper to evaluate
the above benefits and the overhead in querying and updating
performance (see Sect. 7), and determine whether the pro-
posed inference approach is suitable for their setting. In this
regard, our rules, and the involved classes and properties,
could be customized according that setting.

9 Related work

9.1 Knowledge evolution in RDF/S

The research field of ontology evolution [30] deals with
updating knowledge in ontologies; a detailed survey of the
field appears in [29]. However, the ontology evolution does
not consider custom inference rules and does not examine
provenance.

Some works (e.g., [56]) address the problem using ontol-
ogy editors. However, it has been argued [56] that the naive
set-theoretical application of changes that take place in most
editors is insufficient, because, first, it introduces a huge man-
ual burden to the ontology engineer, and second, it does not
consider the standard inference semantics of RDF/S and other
ontological languages.

In response to this need, works like [11,30,36,49,58] have
proposed and implemented change semantics that consider
the standard inference rules of RDF/S and determine, for
each type of change request, the side effects necessary to
properly execute said change taking into account the infer-
ence semantics. However, these works do not consider cus-
tom inference rules and do not discriminate between coher-
ence and foundational semantics for their change operations
(they only consider foundational semantics). In certain cases,
some flexibility is provided to independently customize the
semantics of some of the operations [30]. Similarly, in [42],
one can explicitly define the semantics of change operators.

Some works deal with all change operations in a generic
manner. For example, [43] proposes a declarative approach
which can handle all possible changes on the data part of
an RDF/S KB. Under this approach, operations (and their
effects) are generically modelled, avoiding the need to define
a specific operation for each type of change request. A sim-
ilar, and more generic, approach which can handle both

schema and data changes in a generic manner appears in
[37]. These works consider only the standard inference rules
of RDF/S (but [43] can be extended to support also custom
inference rules) and only the coherence semantics (i.e., there
is no support for the foundational semantics).

Finally, we should mention [34] which elaborated on
the deletion of triples (including inferred ones) assuming
the standard inference rules of RDF/S for both schema and
instance update focusing on the “erase” operation. This work
also considers generic operations, but only for the case of
removing information. The considered semantics is coher-
ence semantics (only), and the authors describe how one can
compute all the “optimal” plans for executing such an erase
operation (contraction in our terminology), without resorting
to specific-per-operation update plans.

9.2 Relational database views

The problem discussed in this work could be related to the
problem of view updating, i.e., define a view that contains the
results of inference and then use that view also for updating.

In fact, dynamic inference rules have also been proposed
in [41] in the form of non-materialized views implementing
the transitive closures. In comparison to our work, the above
works (i.e., [15,23,41,44,45]) do not examine updates.

Some of the first works on view updates are [10,20,22].
[22] proposes updating only when there are no side effects or
under certain conditions, while the authors in [10] note that
there could be more than one update policies and the choice
depends on the specific application. The non-determinism of
updating has also been studied by [17,24] in the context of
deductive databases. In general, similar to our work, [17,24]
take advantage of backward chaining searching for the justi-
fication of existing facts. Other works that follow a determin-
istic way of updating are [39,40,61], which propose storing
both the positive and negative facts in the database. How-
ever, contrary to our intention that approach would increase
the amount of information that has to be stored.

Finally we should stress that in our work the assumed
framework is that of semantic web technologies since RDF
triplestores are increasingly used in digital libraries. Nev-
ertheless, even if we ignore the technological context of
this work, one could not use a standard relational database.
Expressing our inference rules as relational views requires
adopting recursive SQL which is not supported by many
DBMSs and to the best of our knowledge none supports assis-
tance for updates through such views.

Inheritance in object-oriented databases
Provenance propagation could be compared with the

notion of inheritance used in object-oriented databases
[4,9,18,52,62]. Although, in our case, we have “part-of”
instead of “IsA” relations and in some cases (e.g., for rule
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R3) cannot be assumed because the rules are not applied on
hierarchies of objects.

9.3 Other perspectives

Propagation of provenance during ingestion versus prove-
nance propagation at query time

The reasoning forms that we consider in this work aim at
the dynamic completion (deduction) of facts from original
input by resolving transitive closures and propagating the
property instances at query time, rather than at ingestion time.
This is complementary to reasoning on “data provenance”,
which traces causal dependencies of individual elements of
datasets between input and output. For instance, and for the
context of relational databases, [6] proposes algorithms to
find the “core” minimal provenance of tuples in the results
of equivalent queries.

We should also mention the works of [15,23,44,45]: the
inference rules defined in these works are focused on the
derivation of further causal dependencies between processes
and artefacts and not on the propagation of features or prop-
erties among entities.

The work in [33] also uses rules to recompute provenance
and determine the derivation of facts based on the prove-
nance that exists in update exchanges related to systems for
data sharing. Finally, inference rules with annotations are
exploited in [14] for scalable reasoning on web data. Even
though these annotations are indicators of data provenance,
they do not directly model it.

Compact methods for storing provenance
The problem of efficient storage of provenance informa-

tion has been extensively recognized in literature and dif-
ferent methods have been presented for reducing space stor-
age requirements of provenance information. For instance,
in [35] workflow DAGs are transformed into interval tree
structures to encode provenance in a compact manner.

Similar to our notion of property propagation, [19] pro-
poses provenance to inheritance methods assuming a tree-
form model, but DAGs are not considered. Moreover, [35]
and [19] are applied in information already stored, whereas
in our case, all the inferred knowledge would have to be
derived, stored and then minimized.

Analogous techniques have been proposed in [7,8]; how-
ever, none of these works elaborate on any update opera-
tion. In [8], a model more general than CIDOC CRM is
presented; that work also considers DAGs and uses several
inference rules for collapsing provenance traces. Anand et
al. [7] mainly focus on dependency transitive relations pre-
senting a high-level query language and reducing in parallel
the storage required to represent provenance information.

Implicit versus tacit knowledge
Our approach is based on the distinction between explicit

and implicit knowledge. Another distinction that has appeared

in the literature distinguishes between implicit and tacit
knowledge [50,54]. Tacit knowledge is the kind of knowl-
edge gained from perception, cognition, intuition, experi-
ence and observation, e.g., the knowledge of riding a bike.
In this regard, tacit knowledge is distinguished from explicit,
because of the fact that it can be acquired through experience
(“know-how”). On the other hand, our considered implicit
knowledge is based solely on facts (“know-what”) and is
logically derived from the explicit one.

10 Concluding remarks

In this paper, we argued for the need for provenance-based
inference aiming at the dynamic completion (deduction) of
provenance information from the original input to reduce
the storage space requirements. The inference rules consid-
ered are complementary to the ones proposed by other works
that infer provenance dependencies between data, and they
are mainly based on the propagation of attributes in hier-
archical structures of data. This dynamic propagation may
also propagate possible errors in the KB, resulting from the
initial ingested data input. However, they can be easily cor-
rected since they are only attributed to the original (explicit)
data input and thus the search space for their identification
is reduced; instead of searching the whole KB for errors, an
examination of the ingested facts is sufficient.

The application of inference rules introduces difficulties
with respect to the evolution of knowledge; we elaborated
on these difficulties and described how we can address this
problem. We identified two ways to deal with deletions in this
context, based on the philosophical stance against explicit
(ingested) knowledge and implicit (inferred) one (founda-
tional and coherence semantics). In this regard, we elabo-
rated on specific algorithms for these operations respecting
the application of our custom rules. This presents us with
two novelties, since (a) current works do not consider both
approaches and (b) they take into account only the RDF/S
inference rules but not any user-defined custom inference
rules.

Although we confined ourselves to three specific infer-
ence rules, the general ideas behind our work (including the
discrimination between foundational and coherence seman-
tics of deletion) can be applied to other models and/or sets
of inference rules.

We conducted experiments on real and synthetic data com-
paring different policies related to (a) storing all the infer-
ences from the rules (i.e., C(K)) and (b) storing only the ini-
tial ingested facts (i.e., K, which is our proposed approach),
that could be adopted by a metadata environment. The com-
parison was made in relation to the time performance of
queries, the time performance of maintenance and update
operations, and the storage space requirements for each
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policy. Our results showed that the option of storing only the
explicit facts (under the SK policy) provides significant gains
with respect to storage space reduction. Moreover, the over-
head in the query and update time performance was not huge,
compared to the corresponding performance when storing
both the explicit and implicit information (under the SC KR1

policy). Thus, we proved the hypothesis that our approach
(SK policy) is advantageous.

A next step would be the examination of a larger set of
inference rules, that could be interdependent, and the respec-
tive update operations. Our plan is to study the problem in a
more generic manner, to deal with change operations with-
out having to resort to specific, per-operation update plans,
in the spirit of [37]. Finally, further research would be per-
forming an extended evaluation with a larger set of queries
and estimating the percentage of complete versus incomplete
provenance information before and after the rules.
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Appendix A: Set of update operations

Since we focus on three inference rules, we should define
operations for satisfying update requests related to these
rules. The signatures of the required change operations are
listed below (Table 1):

Table 1 Update operations

Signature Rel. Rule(s)

AssociateActorToActivity (p:Actor, a:Activity) R1

DisassociateActorFromActivity (p:Actor, a:Activity)

ContractActorFromActivity (p:Actor, a:Activity)

AssociateSubActivityToActivity (suba:Activity,
a:Activity)

R1

DisassociateSubActivityFromActivity
(suba:Activity, a:Activity)

CreateActor (p:InstanceName) R1

DeleteActor (p:Actor)

CreateActivity (a:InstanceName) R1, R2

DeleteActivity (a:Activity)

AssociateActivityToMMObject (a:Activity,
o:ManMadeObject)

R2

Table 1 continued

Signature Rel. Rule(s)

DisassociateActivityFromMMObject (a:Activity,
o:ManMadeObject)

ContractActivityFromMMObject (a:Activity,
o:ManMadeObject)

AssociatePartToMMObject (subo:ManMadeObject,
o:ManMadeObject)

R2

DisassociatePartFromMMObject
(subo:ManMadeObject, o:ManMadeObject)

CreateMMObject (o:InstanceName) R2

DeleteMMObject (o:ManMadeObject)

AssociatePMMThingToEvent
(ph:PhysicalManMadeThing, e:Event)

R3

DisassociatePMMThingFromEvent
(ph:PhysicalManMadeThing, e:Event)

AssociateIObjectToPMMThing
(io:InformationObject,
ph:PhysicalManMadeThing)

R3

DisassociateIObjectFromPMMThing
(io:InformationObject,
ph:PhysicalManMadeThing)

AssociateIObjectToEvent (io:InformationObject,
e:Event)

R3

DisassociateIObjectFromEvent
(io:InformationObject, e:Event)

CreateEvent (e:InstanceName) R3

DeleteEvent (e:Event)

CreateCarrier (ph:InstanceName) R3

DeleteCarrier (ph:PhysicalManMadeThing)

CreateInformationObject (io:InstanceName) R3

DeleteInformationObject (io:InformationObject)

Appendix B: Algorithms of update operations

Below, we list the algorithms of our set of update operations
which were presented previously in Appendix A.

Algorithm 1 AssociateActorToActivity (p:Actor, a:Activity)
1: if an explicit P14 carried out by link does not exist between a and

p then
2: Add an explicit P14 carried out by link between a and p
3: end if

Algorithm 2 DisassociateActorFromActivity (p:Actor,
a:Activity)
1: if an explicit P14 carried out by link exists between a and p then
2: Remove the requested P14 carried out by link between a and p
3: end if
4: for each superactivity:superAct of a related to p via the P14 carried

out by link do
5: Remove possible explicit P14 carried out by link between super-

Act and p
6: end for
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Algorithm 3 ContractActorFromActivity (p:Actor, a:Acti-
vity)
1: if an explicit P14 carried out by link exists between a or a superac-

tivity of a and p then
2: for each direct subactivity:subAct of a do
3: Execute AssociateActorToActivity (p, subAct)
4: end for
5: end if
6: if an explicit P14 carried out by link exists between a and p then
7: Remove the requested P14 carried out by link between a and p
8: end if
9: for each maximal superactivity:supAct of a related to p via the P14

carried out by link do
10: for each subactivity:subAct of supAct do
11: if subAct is not superactivity or subactivity of a then
12: Add subAct to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActorFromActivity (p, a)
17: for each maximal activity:act in Col do
18: Execute AssociateActorToActivity (p, act)
19: end for

Algorithm 4 AssociateSubActivityToActivity (suba:
Activity, a:Activity)
1: if an explicit P16 was used for link does not exist between suba and

a then
2: Add an explicit P16 was used for link between suba and a
3: end if

Algorithm 5 DisassociateSubActivityFromActivity (suba:
Activity, a:Activity)
1: if an explicit P16 was used for link exists between suba and a then
2: Remove the requested P16 was used for link between suba and

a
3: end if

Algorithm 6 CreateActor (p:InstanceName)
1: if an E39 Actor class instance with name p does not exist then
2: Create an instance of the class E39 Actor with name p
3: end if

Algorithm 7 DeleteActor (p:Actor)
1: for each activity:a related to p via the P14 carried out by link do
2: Remove possible explicit P14 carried out by link between a and

p
3: end for
4: Remove the requested E39 Actor class instance p

Algorithm 8 CreateActivity (a:InstanceName)
1: if an E7 Activity class instance with name a does not exist then
2: Create an instance of the class E7 Activity with name a
3: end if

Algorithm 9 DeleteActivity (a:Activity)
1: for each superactivity:superAct of a do
2: Execute DisassociateSubActivityFromActivity (superAct, a)
3: end for
4: for each performer:p related to a via the P14 carried out by link do
5: Remove possible explicit P14 carried out by link between a and

p
6: end for
7: for each man-made object:o related to a via the “P9 was used for”

link do
8: Remove possible explicit P16 was used for link between o and

a
9: end for
10: Remove the requested E7 Activity instance a

Algorithm 10 AssociateActivityToMMObject (a:Activity,
o:ManMadeObject)
1: if an explicit P16 was used for link does not exist between o and a

then
2: Add an explicit P16 was used for link between o and a
3: end if

Algorithm 11 DisassociateActivityFromMMObject (a:Acti-
vity, o:ManMadeObject)
1: if an explicit P16 was used for link exists between o and a then
2: Remove the requested P16 was used for link between o and p
3: end if
4: for each superPart:superP of o related to a via the P16 was used for

link do
5: Remove possible explicit P16 was used for link between superP

and a
6: end for

Algorithm 12 ContractActivityFromMMObject (a:Activity,
o:ManMadeObject)
1: if an explicit P16 was used for link exists between o or a superpart

of o and a then
2: for each direct subPart of o do
3: Execute AssociateActivityToMMObject (a, subPart)
4: end for
5: end if
6: if an explicit P16 was used for link exists between o and a then
7: Remove the requested P16 was used for link between o and a
8: end if
9: for each maximal superPart:superP of o related to a via the P16 was

used for link do
10: for each subPart:subP of superP do
11: if subP is not superPart or subPart of o then
12: Add subP to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActivityFromMMObject (a, o)
17: for each maximal part in Col do
18: Execute AssociateActivityToMMObject (a, part)
19: end for
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Algorithm 13 AssociatePartToMMObject (subo:Man-
MadeObject, o:ManMadeObject)
1: if an explicit P46 is composed of link does not exist between subo

and o then
2: Add an explicit P46 is composed of link between subo and o
3: end if

Algorithm 14 DisassociatePartFromMMObject (subo:
ManMadeObject, o:ManMadeObject)
1: if an explicit P46 is composed of link exists between subo and o

then
2: Remove the requested P46 is composed of link between subo

and o
3: end if

Algorithm 15 CreateMMObject (o:InstanceName)
1: if an E22 ManMadeObject class instance with name o does not exist

then
2: Create an instance of the class E22 ManMadeObject with name

o
3: end if

Algorithm 16 DeleteMMObject (o:ManMadeObject)
1: for each superPart of o do
2: Execute DisassociatePartFromMMObject (o, superPart)
3: end for
4: for each activity:a related to o via the P16 was used for link do
5: Remove possible explicit P16 was used for link between a and

o
6: end for
7: for each man-made object:mmo related to o via an IsA link do
8: Remove possible explicit IsA link between mmo and o
9: end for
10: Remove the requested E22 instance o

Algorithm 17 AssociatePMMThingToEvent (ph:Physical-
ManMadeThing, e:Event)
1: if an explicit P12 was present at link does not exist between ph and

e then
2: Add an explicit P12 was present at link between ph and e
3: end if

Algorithm 18 DisassociatePMMThingFromEvent (ph:
PhysicalManMadeThing, e:Event)
1: if a P12 was present at link exists between ph and e then
2: Remove the requested P12 was present at link between ph and e
3: end if

Algorithm 19 AssociateIObjectToPMMThing (io:
InformationObject, ph:PhysicalManMadeThing)
1: if an explicit P128 carries link does not exist between io and ph

then
2: Add an explicit P128 carries link between io and ph
3: end if

Algorithm 20 DisassociateIObjectFromPMMThing (io:
InformationObject, ph:PhysicalManMadeThing)
1: if an explicit P128 carries link exists between io and ph then
2: Remove the requested P128 carries link between io and ph
3: end if
4: for each physical man-made thing(carrier): ph related to io via the

P128 carries link do
5: Execute DisassociatePMMThingFromEvent (ph, e)
6: end for
7: Execute DisassociateIObjectFromEvent (io, e)

Algorithm 21 AssociateIObjectToEvent (io:Information-
Object, e:Event)
1: if an explicit P12 was present at link does not exist between io and

e then
2: Add an explicit P12 was present at” link between io and e
3: end if

Algorithm 22 DisassociateIObjectFromEvent (io:
InformationObject, e:Event)
1: if an explicit P12 was present at link exists between io and e then
2: Remove the requested P12 was present at link between io and e
3: end if
4: for each physical man-made thing(carrier): ph related to io via the

P128 carries link do
5: Execute DisassociatePMMThingFromEvent (ph, e)
6: end for

Algorithm 23 CreateEvent (e:InstanceName)
1: if an E5 Event class instance with name e does not exist then
2: Create an instance of the class E5 Event with name e
3: end if

Algorithm 24 DeleteEvent (e:Event)
1: for each information object:io related to e via the P12 was present

at link do
2: Remove possible explicit P12 was present at link between io and

e
3: end for
4: for each physical man-made thing(carrier):ph related to e via the

P12 was present at link do
5: DisassociatePMMThingFromEvent (ph, e)
6: end for
7: Remove the requested E5 Event class instance e

Algorithm 25 CreateCarrier (pmm: InstanceName)
1: if an E24 Physical Man-Made Thing class instance with name pmm

does not exist then
2: Create an instance of the class E24 Physical Man-Made Thing

with name pmm
3: end if
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Algorithm 26 DeleteCarrier (pmm: PhysicalManMade-
Thing)
1: for each information object:io related to pmm via the P128 carries

link do
2: DisassociateIObjectFromPMMThing (io, pmm)
3: end for
4: for each event e related to pmm via the P12 was present at do link
5: DisassociatePMMThingFromEvent (pmm, e)
6: end for
7: Remove the requested E24 Physical Man-Made Thing class instance

pmm

Algorithm 27 CreateInformationObject (io:InstanceName)
1: if an E73 Information object class instance with name io does not

exist then
2: Create an instance of the class E73 Information Object with name

io
3: end if

Algorithm 28 DeleteInformationObject (io:Information-
Object)
1: for each physical man-made thing(carrier): ph related to io via the

P128 carries link do
2: Remove the P128 carries link between ph and io
3: end for
4: for each event:e related to io via the P12 was present at link do
5: Remove possible explicit P12 was present at link between io and

e
6: end for
7: Remove the requested E73 Information Object class instance io
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