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Abstract We consider semi-continuous network flow problems, that is, a class of net-
work flow problems where some of the variables are restricted to be semi-continuous.
We introduce the semi-continuous inflow set with variable upper bounds as a relax-
ation of general semi-continuous network flow problems. Two particular cases of this
set are considered, for which we present complete descriptions of the convex hull in
terms of linear inequalities and extended formulations. We consider a class of semi-
continuous transportation problems where inflow systems arise as substructures, for
which we investigate complexity questions. Finally, we study the computational effi-
cacy of the developed polyhedral results in solving randomly generated instances of
semi-continuous transportation problems.

Keywords Mixed-integer programming - Network flow problems - Semi-continuous
variables

Mathematics Subject Classification 90C11 - 90C35 - 90C57

1 Introduction

A variable x is said to be semi-continuous if x is required to belong to a set of the
form {0} U [/, u] for some 0 <[ < u. We call [ and u lower and upper bounds of x,
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566 G. Angulo et al.

respectively. Note that in this definition we consider continuous variables as a special
case where / = 0. A semi-continuous variable can be regarded as a generalization of
a binary variable. In fact, by setting / = u = 1 in the above definition, we have that
x is binary. As such, the presence of these variables may lead to hard optimization
problems.

Semi-continuous variables appear in inventory management models where ship-
pings from a given supplier are required to be between prestablished minimum and
maximum quantities whenever an order is placed [14]. In portfolio optimization, semi-
continuous constraints are known as minimum transaction levels, and are studied in [2]
and [12]. Semi-continuous variables are also common when modeling petrochemical
processes as described in [8] and [9]. Furthermore, as [9] and [14] suggest, supply
chain models may involve network flow structures with semi-continuity constraints
on flow variables whenever production, purchases, and shipping in low quantities are
undesirable from the operational point of view.

Although semi-continuity can be modeled by means of introducing additional
binary variables and constraints, this approach may have some drawbacks. We increase
the size of the problem at hand, which can already be large-scale. Additionally, the
presence of binary variables may lead to unnecessary branching decisions and large
LP relaxations in a branch-and-bound procedure. On the other hand, models that
incorporate auxiliary binary variables may benefit from presolve and bound tighten-
ing procedures available in state-of-the-art MIP solvers such as CPLEX and may be
solved efficiently. To overcome difficulties with auxiliary binary variables, branching
rules and cuts without the use of binary variables for some combinatorial problems
have been studied in [5] and [6]. In particular, in [4] and [7] the semi-continuous
knapsack problem is introduced and cutting-planes are presented.

In the present work, we study some particular semi-continuous sets. Specifically,
given their wide applicability, we focus on network flow problems having semi-
continuous flow variables. Our main contributions are complete descriptions of the
convex hull of two particular cases of a semi-continuous inflow set with variable
upper bounds and a computational study of the effectiveness of the derived inequali-
ties on a class of semi-continuous transportation problems. We observe that the poly-
hedral results derived from the semi-continuous sets can significantly improve the
performance of both the semi-continuous and the standard mixed integer formulation
involving auxiliary binary variables. The rest of the paper is organized as follows. In
Sect. 2 we introduce the semi-continuous inflow set along with some basic properties.
In Sects. 3 and 4 we present polyhedral studies of two particular cases of this set. Then,
in Sect. 5 we introduce a class of semi-continuous transportation problems for which
we give complexity results. We devote Sect. 6 to computational results regarding the
performance of the polyhedral results when solving semi-continuous transportation
problems. Finally, in Sect. 7 we conclude with some remarks.

2 The semi-continuous inflow set

Consider the network substructure shown in Fig. 1. Let N := {1, ..., n} be a set of
nodes, where n > 2, and let d > 0 be the required total flow from nodes in N to
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Semi-continuous network flow problems 567

Fig. 1 Inflow relaxation

another node 0. For i € N, let y; be the flow from node i to node 0, and x; be the
flow into node i. Let /; and h; be the lower bounds on flows x; and y; whenever these
variables are positive. Let #; be the exogenous supply into node i. The semi-continuous
inflow set with variable upper bounds is the set S(¢, #) € R" x R” defined as

> yizd 1)
ieN
(x,y) e R" x R": Vi <t + X VieN (2
S(t, h) = '
xi €{0}U[l;,00) VieN (3

vi € {0}U[hij,00) VieN (4)

Constraint (1) ensures that the minimum total inflow into the node 0 is met. Con-
straints (2) bound y; by the total available inflow #; + x; for node i € N. Finally,
constraints (3) and (4) are semi-continuity requirements on x and y, respectively. As
we shall see, the structure and tractability of the above set are essentially determined
by ¢ and & only, and therefore the dependence on [ is not made explicit in the notation.

Next we discuss how the set S(z, h) arises as a substructure in general semi-
continuous network flow problems. Consider a network represented by a directed
graph G = (V, E), where each node v € V satisfies a constraint of the form

Z fvu_ Z fuvzdvv (5)

ueVv+(v) ueV=—(v)

where variable f,, > 0 is the flow through the arc (v,u) € E, VT (v) :={u € V :
(v,u) € E}, V-(v) :={u € V : (u,v) € E}, and d, is a given real parameter.
Suppose that f;,, € {0} U [l,y, uyy], that is, f,, is semi-continuous. We refer to such
problems as semi-continuous network flow problems. We obtain S(¢, /) as arelaxation
as follows.
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568 G. Angulo et al.

Fig. 2 Nodes v and u, where V= (v) V()
ueV - (v)andd, <0

d I ~ T
‘|d1,| ~

Consider anode v € V with d, < 0 as depicted in Fig. 2. Since the first sum in (5)
is nonnegative, we have

Z fuv = _dv = |dv|,

ueV=—(v)

which has the form of the semi-contiuous knapsack set introduced in [4]. However,
since we are dealing with a network flow problem, there is more structure to be
exploited when looking for tighter relaxations. Indeed, consider (u,v) € E. Then
v € VT (u) and (5) applied to u can be written as

z fuw"‘fuv_ z fwuzdu- (6)

weV+(u)\{v} weV~(u)

As before, since the first sum in (6) is nonnegative, we arrive at

fow < DL foutdi £ D fuu+ max{d,, 0. (7
weV(u) weV (u)
Note that f, = >, cy-() fwu is @ semi-continuous variable taking values in

{0} ULy, uyl, where l,, := minycy - {lwu} and u,, = ZweV’(u) Uyy . We obtain the
system

> fuv = 1dy]

ueV=(v)
fuv < fu +max{d,,0} YueV (v)
Su €O} UL,uy] YueV™ (v) 3
Suv € {0} U Ly, uyp] Y u eV (v), 9)

which is a relaxation for the original network flow set. Finally, removing the upper
bounds from (8) and (9) we arrive at a relaxation having the form of S(z, ).

A similar approach can be followed when d, > 0, in which case we drop the
second sum in (5) and relax the balance equation for nodes in V¥ (v). In either case,
by appropriately manipulating (5) applied to v € V and u € V1 (v) U V™ (v), we
obtain the set S(z, h) as a relaxation.
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Semi-continuous network flow problems 569

We omit the case d = 0 since (1) becomes redundant and then S(¢, /) is the product
of n simple 2-dimensional sets.

2.1 Complexity of optimization

It is not difficult to verify that having finite upper bounds as in (8) and (9) would yield
a set that is already hard to deal with. We show that in our setting optimization over
S(t, h) is intractable.

Proposition 1 Optimizing a linear function over S(t, h) is N'P-hard, even if | = 0.

Proof We will show that the Binary Knapsack problem, which is A/P-hard, can be
reduced to optimization of a linear function over S(t, h).
We start with a feasible instance of the Binary Knapsack problem of the form

min ZfiZi
ieN
s.t. Zwizi >d
ieN
z;€{0,1} YieN,

where d € Z,, w € Z, and f e Z' . Consider the change of variables y; = w;z;
for alli € N. Given that z; € {0, 1}, we have that y; € {0, w;}. Furthermore, this is
equivalent to requiring y; € {0} U [w;, 0o) and y; < w;. Thus, the optimal value of
the instance is the same as that of

min aTy
st. > yizd
ieN
Vi S wj YieN

yi € {0} U[w;,00) VieN,

where «; = 5—’ for each i € N. Now, consider the problem

min cTx + aTy

s.t. Z)’i >d

ieN
yi<wi+x;, VieN
x; >0 VieN

vi € {0} U [w;,00)Vi€EN,

where ¢; = M > 0 foralli € N. Let (x*, y*) be an optimal solution and let
N*:={i € N : y/ > 0}. Given that ¢ > 0, we must have y* = w; + x; for all

1
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i€ N*.If0 < >,y x* < I, then we have

d<> yi=> yi=D (wi+x)

ieN ieN* ieEN*
—d < LZy;"J = > wi=> Iyl
ieN ieEN* ieN

Thus, given that @ > 0, rounding down each component of y* improves the solution.
Hence, either x* = 0 or Zie n X7 = 1. However, if M is sufficiently large, say
M =Y, yaiw;i = > .y [i, then we must have x* = 0. Therefore, the optimal
values of this problem, which is an instance of linear optimization over S(¢, &), and
the instance of the Binary Knapsack problem we started with are the same. Given that
the transformation is polynomial in the original input size, the proof is complete. O

Despite the general complexity result in Proposition 1, there are at least two situa-
tions where S(t, h) is tractable, namely when #;, = O for alli € N and when h; = 0
for all i € N. Note that the first case is a restriction. The second one is a relaxation as
y becomes continuous. These cases will be discussed in Sects. 3 and 4, respectively.

2.2 Basic polyhedral results

For a set C of real vectors, let conv(C) denote its convex hull.
In [4], the semi-continuous knapsack is introduced. This set is of the form

E wix; <r

— n . ieN
K= 7R e0 vt m) vient ’

xi €0, pilU[l;,00) Vie NJUN™

where N*, NX, N~ constitute a partition of N, w; > 0 foralli € N* UNZ, and
w; < 0 foralli € N™. Several classes of valid inequalities are presented along with
lifting procedures. Note that when r < 0 and N~ = N, this set is a relaxation of
S(t, h) as we can aggregate constraints and arrive at a system having the above form.
Thus, valid inequalities for K give rise to valid inequalities for S(z, ). In some cases,
a complete description of conv(K) can be found. In particular, if N = N=, p; =0
foreachi € N, and r < 0, then

Wi
_— X >
conv(K) = {x e R": ;\,mln{r, wili}
0<x; YVieN

As we shall see, an exponential family of inequalities similar to the one above will
suffice to describe conv(S(t, h)) when t = 0 or h = 0. We first establish some
fundamental results regarding S(z, h).
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Semi-continuous network flow problems 571

Proposition 2 S(z, h) is full-dimensional.

Proof Consider the point (x,y) € R" x R" given by x; = max{d, [;, h;} + 1 and
yi = max{d, h;} for alli € N. We have that (x, y) belongs to S(¢, &), and adding any
standard unit vector from R” x R” to (x, y) yields another point that is also feasible to
S(t, h). The collection of such 2n points along with (x, y) is an affinely independent
set, and therefore S(z, ) is of full dimension. O

Proposition 3 conv(S(¢, h)) is a polyhedron.

Proof Proposition 3 is a particular case of Proposition 23 given in the “Appendix”.
O

We now proceed to identify the trivial facets of conv(S(z, h)).

Proposition 4 For each eachi € N, y; > 0 and y; < t; + x; are facet-defining for
conv(S(t, h)). In addition, x; > 0 is facet-defining if and only if t; > 0.

Proof Leti € N.Chooseapointx € R" satisfyingx; > max{d,[;, h;}forall j € N.
Set y; =0and y; = xj forall j € N, j # i. We have that (%, y) belongs to S(z, ).
Now for each j € N, j # i, consider the points (x/, y/) and (x"*/, y"*/) given by

(xzﬁy/ﬁ) _ ’(ij +e V) k=

Xk, Yi) k # ],
n+j n+j\ _ (fj,ij—f) k=]
("k K )‘{@k,yk) k# j.

Finally, let (x', y') = (&, y) and let (x"T, y"*7) be given by

i onbi) | i te i) k=i
(xk K )‘[(ik,yk) k.

Fore > Osufficiently small, { (x/, y/), (x"*/, y"*/) : j € N}iscontainedin S(z, h).
Moreover, it is an affinely independent set, and since these 2n points satisfy y; > 0 at
equality, this constraint defines a facet of conv(S(¢, h)). The proof for y; < t; + x; is
analogous by setting y; = #; + X; and defining (x"*', y"*) as

(xn+i n+i) _ (x; +€,yi +¢€) k=i
ko (k. %) k#i.
For the last part, if 1; > 0, set X; = 0 and y; = f;. Again, the proof is similar by
defining (x"*7, y"*7) as
(xn+i yn+i) _ | Giyi—e) k=i
kK (XK, &) k #i.

Finally, note that if t; = 0, then x; > 0 is dominated by y; > 0. O

In the following two sections we turn our attention to polyhedral results for S(0, /)
and S(¢, 0), respectively.
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572 G. Angulo et al.

3 Thecaset =0

In this section we assume that ¢t = 0, and therefore S(0, ) C R" x R”" is the set of
vectors (x, y) satisfying

D> vizd (10)

ieN
yi =X VieN (11
x; € {0}U[l;,00) VieN (12)
vi € {0}U[hj,00) VieN. (13)

3.1 Inequality description of conv(S(0, h))
Define the sets

L :={i € N: max{d, h;} < l;},
H:={ieN: h; >d},

and consider the family of inequalities given by

Xi Yi

i —————— >1VTCL. 14
Z li +.Z max{d, h;} ~ B (1
ieT ieN\T

Recalling thatd > 0, we have that/; = Oimpliesi € N \ L. Thus, (14) is well-defined
for all T C L. Furthermore, note that if / = 0, then L = ¢ and (14) reduces to the
single inequality

>z

Py max{d, h;}

which in Sect. 2.2 was seen to be the semi-continuous cut derived in [4].
Proposition 5 Foreach T C L, (14) is valid and facet-defining for conv(S(0, h)).

Proof To show validity, consider (x,y) € S(0,h) and T C L. If forsomei € T
we have x; > 0, then )l‘—l’ > 1. If for some i € (N\T) N H we have y; > 0, then

m = /yTl, > 1. In both cases (14) is satisfied. If none of them occur, then y; = 0

foralli € T U[(N\T) N H]. Since (x, y) € S(0, h), we must have > ..y yi > d,
and therefore

Vi Vi Vi
Z max{d, h;} z d d —

ie(N\T)\H ie(N\T)\H ieN

Hence, (14) is satisfied in this case as well.
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Semi-continuous network flow problems 573

Now, given " € L, we will show that (14) is facet-defining by showing 2n affinely
independent points in S(0, /) that satisfy (14) at equality. Let (x‘, y’), i=1,...,2n,
be such points defined as follows:

Ifi € T, then
i i) _ | (i, max{d, h;}) J=1i
()35 = i(o, 0) J#i
(x,m- n+z~)_ (i, max {d, hi} +¢€) j=i
i )T 0,0 j#i

Ifi € N\T, then

(x;’y‘ll) — ’(max{d,hi,li},max{d, hl}) J =1

(0,0) J#I
( n4+i n+1) _ ] (max {d,hi, i} +e max{d, h;}) j=i
Y ) T 10,0 j#i.

The points previously defined belong to S(0, ) fore > Osufficiently small. Finally,
{(x",y"), (x"*,y"*) :i € N}isalinearly independentset of points satisfying (14)
at equality. Thus this constraint defines a facet of conv(S(0, h)). O

Theorem 6 below shows that all the non-trivial facets of conv(S(0, h)) are given by
(14).

Theorem 6 conv(S(0, h)) is given by the following facet-defining inequalities

xl
Z z ax{dh} zIvrel

ieT li ieN\T
Vi <X VieN (15)
yi =0 VieN. (16)

Proof We already showed that (14) is facet-defining for each T C L, and that (15)
and (16) are also facet-defining for each i € N. To show that (14)—(16) completely
describe conv(S(0, 1)), we apply the technique presented in [11]: it suffices to show
that if we optimize any non-zero linear function over S(0, ), then there exists one
inequality from (14)—(16) such that all optimal solutions, if one exists, belong to the
facet defined by that inequality.

Let (¢, @) € R" x R" be a non-zero vector and consider the problem

min {ch +aTy: (x,y) € S0, h)} .

Assumption1 ¢ > Oand ¢+« > 0.
If for some i € N we have ¢; < 0 or ¢; + «; < 0, then the problem is unbounded.
Thus, we may assume ¢ > 0, ¢+« > 0. O
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In particular, Assumption 1 implies that the optimal value is nonnegative and that
an optimal solution exists. Let (x*, y*) be any such solution.

Assumption 2 « > 0.

If for some i € N, o; < 0, then yl.* = x;k, that is, (15) is satisfied as an equality.
To see this, suppose that y* < x*. If y* > 0, then we can increase it and get a better
solution. If yl-* = 0, since x;“ > 0 and ¢; > 0 by Assumption 1 and o; < 0, we can
decrease x* to zero and get a better solution. Thus, we may assume o > 0. O

Assumption 3 ¢+« > 0.

Suppose that ¢; = «; = 0 for some i € N. Then the optimal value is zero. Since
(c,a) # (0,0), by Assumptions 1 and 2, there must exist j € N, j # i, such that
either «; > 0 or ¢; > 0. By optimality, in the former case we must have y;‘ =0,
while in the latter x* = 0 must hold. Therefore, either (16) or (15) must be satisfied
at equality by all optimal solutions. Thus, we may assume ¢ + « > 0. %

Claim1 y/ > 0= ¢;x] +a;y > 0.
If y* > 0, then x} > 0, and by Assumption 3, ¢;x} + a;y; > 0 holds. O

LetT ={i € L:a; =0}. Thenc¢; > Oforalli € T by Assumption 3, and o; > 0
foralli € L\T. We claim that

Z Z maX{d h}

ieT li ieN\T

We prove the claim by contradiction. Let 7+ = {i € T : x} > 0} and (N\T)* =
{i € N\T : y} > 0}. Then

Z—+ > max{dh} > 1. (17)

ieT+ li ie(N\T)*

Claim2 T+ =¢.

Suppose i € T, that is, x* > I; > max{d, h;}. Since a; = 0 and aj > 0 for
all j € L\T, by optimality we must have y;‘ = 0 forall j € L\T. In addition, by
Claim 1, we must have y;’f = O0forall j € N\L aswell. Thus (N\T)* = . Moreover,

given that cj > 0 forany j € T, we must have T = {i}. Then (17) takes the form
xlf* > l;, a contradiction with optimality as c¢; > 0. O

By Claim 2, we arrive at
i
—t > 1. 18
) Z max{d, h;} (18)
ie(N\T)*

Claim3 (N\T)*" N H = ¢.
Leti € (N\T)" be such that h; > d. By Claim I and optimality, (N\T)" = {i}.
Then (18) implies y! > h; > d. Ifi € L\T, then o; > 0 and by optimality we have a
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Semi-continuous network flow problems 575

contradiction. Ifi € N\L, thenl; < max{h;, d} = h;. Since c;i +o; > 0, by optimality
we must have y! = h;, a contradiction as well. O

By Claim 3, we arrive at

S owsd (19)

ie(N\T)*+

Claim 4 |[(N\T)T| > 2.

Since (N\T)™T cannot be empty, suppose (N\T)T = {i}. Then (19) and Claim 3
imply y* > d > h;. Again, ifi € L\T, then a; > 0 and we have a contradiction. If
i€ N\L,thenl; <max{h;,d} =d. Since ¢; + a; > 0, by optimality we must have
v} =d, a contradiction as well. O

Let
ip € argmin {¢; +o; : i € (N\T)"},

andleti; € (N\T)™,i; # io, which exists by Claim 4. Recall that from Assumption 3,
ciy + i, > 0. For € > 0 sufficiently small, define (x, y) as

o (x;‘;—lryiﬁ—é,yf;-i-yﬁ—G) i =io
(i, yi) =1 (0, 0) i=1i
(Co ) [ # o, 1 #11.

Certainly x; > [; whenever x; > 0, y; > h; whenever y; > 0, and y; < x; for all
i € N. Thus, given that >, eN yi* > d, we conclude that (x, y) is a feasible solution.
Moreover,

Dol —E) +ai(yf = 3i) = —cigOf, =€) — iy (] — €) + iy X} + iy
ieN
= — (cip + aip) () — €) +ciyx}' + iy}

\

— (Cio + aio) yi*l + Cilyl'*l + ailyl-*l
05

v

where the two inequalities follow from c¢;, + a4, > 0, yi*1 > 0, and xl.*1 > y;"1 , and from
the definition of i, respectively.
Hence, (x, y) improves upon (x*, y*) and we get the required contradiction. O

3.2 Extreme points of conv(S(0, h))

Since by Theorem 6 an outer description of conv(S(0, /1)) in terms of linear inequalities
is available, we look for an inner description in terms of extreme points.

Proposition 7 Let (x, y) be an extreme point of conv(S(0, h)). Then both x and y
have exactly one non-zero entry.
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576 G. Angulo et al.

Proof We claim that if x; > 0, then y; > 0. By contradiction, suppose x; > 0 and
yi = 0. We can set

1
(i, yi) = 5 [(2xi, 0) + (0. 0)].

Thus, (x, y) can be written as the average of two distinct points in S(0, /).
Now, suppose that x has more than one non-zero entry, say x; > 0 and x; > 0. By
the claim, y; > 0 and y; > 0. We can set

hifin)»xi,0<)x§1
hj <yj=pxi, 0 <pu =<1

Finally, we can write

(xi, xj, yi, ¥j) = (xi, x5, Ax;, ux;)

AXj iz
= —Axi e (xi + xxj,O, Axi + ux;, 0)
+L(O,Xj + &x,-, 0, Ax; + ,LL)C]').
AXi + px; "

Hence, (x, y) can be written as a strict convex combination of two distinct points
in S(0, h). O

Combining Theorem 6 and Proposition 7, we have the following result.

Proposition 8 [f (x, y) is an extreme point of conv(S(0, h)), then the non-zero entries
of (x, y) are one of the following:

e i € N\L = x; =max{d, h;}, yi = max{d, h;},
xi=1li, yi=lI

cicl= xi =1, yi =max{d,h;}.

Proof Let (x, y) be an extreme point of conv(S(0, h)). From Proposition 7, (x, y)
has exactly one pair of non-zero entries, say (x;, y;). From Theorem 6, (x;, y;) has to
satisfy either y; > max{d, h;} if i € N\L, or both x; > [; and y; > max{d, h;} if
i € L. From these inequalities together with y; < x;, at least two have to be satisfied
at equality since x; > 0, y; > 0,and y; = x; = Oforall j € N, j # i. The possible
solutions are exactly the combinations indicated above. O

From Proposition 8, optimization over S(0, /) can be done by enumeration in O (n)
time.

3.3 Extended formulation for conv(S(0, h))

Now, let us consider the separation problem associated to (14). Given (x*, y*), let

* *
7 =lier . <2 L
l; — max{d, h;}
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If (14) is satisfied for T*, then it is satisfied for any T C L, and if in addition (16)
and (15) hold, then (x*, y*) belongs to conv(S(0, h)). Otherwise, T* gives the most
violated inequality from (14), and therefore it can be used to separate (x*, y*) from
conv(S(0, h)). Clearly, computing 7* and its corresponding inequality can be done in
O(n) time.

Further note that (x, y) satisfies (14) for all T C L if and only if

Vi . [ Xi Vi
E —_—+ E mm(—,—) > 1.
s max{d, h;} = l; max{d, h;}

If fact, this is the separation routine for (14) given a point (x, y). Now, the above
condition holds if and only if there exists 7 € RIZ! such that

Xi

—>mViel
i

Yi .
——>m;Viel
max{d, b} — !

Vi
S >l

2 id g T2 E
ieN\L ielL

Thus, introducing variables 7, we obtain an extended formulation W of conv(S(0, h))
in a space of higher dimension given by

Vi
T 1
Z max{d,hi}—i_Z '
ieN\L eL
Xi .
l—zm Viel
W = (x,y,n)eR”xR"xR‘L‘: i Y

— L > Viel
max{d, h;}
inO VieN
xi—yi >0 VieN

Let projy (W) denote the projection of W onto the (x, y)-space.
Corollary 9 conv(S(0, h)) = projx,,(W).

This extended formulation is compact in the sense that we have, at most, doubled
the number of variables and constraints.

4 The case h =0

In this section we assume that 2 = 0 and then S(¢, 0) € R" x R” takes the form

Dvizd (20)
ieN
vi<ti+xi YVieN 21

@ Springer



578 G. Angulo et al.

x; € {0}U[l;,00) YieN (22)
yi>0 VieN. (23)

4.1 Inequality description of conv(S(z, 0))

Proposition 10 >"._\ v > d is facet-defining for conv(S(t, 0)).

Proof Choose a point x € R” satisfying x; > max{d, [;} foralli € N and set y; =
for all i € N. We have that (x, y) belongs to S(t, Q) and satisﬁes Zi.eN yi =d.No
for each j € N, j < n, consider the points (x/, y/) and (x"*/, y"*/) given by

i) = (Xj+ey) i=]
(x,,y,) [(xi,y,») i #J,
G5, i=j
)= G du+o i=n
(xi, ¥i) i #j, i #n.

d
n
W%

n+j _n+j
(xi i : J

Finally, let (xZ", y2”) = (%, y) and let (x", y"*) be given by

noomy_ | Gnte ) i=n
(xi’yf)‘[ozi,yi) i #n.

For € > 0 sufficiently small, {(x/, y/), (x"*/,y"*/): j € N} is contained in
S(t, 0). Moreover, it is an affinely independent set, and since these 2n points satisfy
2 ien Yi = d at equality, this constraint defines a facet of conv(S(t, 0)). O

Definition 11 A subset R C N is areverse coverif dp :=d — 2 ;g ti > 0.

Let R C 2V be the set of all reverse covers. For a reverse cover R € R, consider
the inequality

STy 2y (24)

icr max{li, dr} ieN\R dr

Also,let Lg :={i € R: [; > dg}. Note that if R = #J, we recover (20).
Proposition 12 For each reverse cover R € R, (24) is valid for conv(S(t, 0)).

Proof Let (x, y) € S(¢,0). If there exists i € L with x; > 0, then (24) is satisfied.
Otherwise, x; = 0 for all i € Lg. Then

dSZYiZZ)’i"‘ Z yi + Z )’ifzti+ Z (ti +xi) + z yi

ieN ieLg i€R\Lg ieN\R ieLg i€R\Lg ieN\R
=>dR=d—Zti§ z xi+Zy,-.
icR ieR\Lpg ieN\R
Since max{l;, dg} = dg > 0 foreachi € R\ Lg, (24) is satisfied. O
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Definition 13 A reverse cover R € R is proper if

1. Lg #0.

2. t; > 0foralli € R\Lg.

Proposition 14 For each reverse cover R € R, (24) is facet-defining if and only if R
is empty or if R is proper.

Proof The case R = ¢ follows from Proposition 10. Thus, let R be a proper reverse
cover and leti € Lg. For each j € N, consider the points (x/, y/) and (x"*/, y"*/)
defined as follows.

If j € R,
o (max{lj,dgr},tj +dr) k=]
(xli,y,i)= 0, 1) keR, k#j
0, 0) k € N\R.
Then
S =St de=d
keN keR
and
J J I d
z X Zy_kzmax{J, R}=1
= max{ly, dg} kaNR dg  max{l;, dg}
If j € Lg,
4 . (j,tj+dr+e) k=j
(XZ+’,yZ+’) =10, 1) keR, k+#j
0,0) k € N\R.
Then
W=t tdp+ex=d
keN keR
and
Z—xl’:ﬂ + > A S
= max{ly, dp} temR dr max{l;, dg}
If j € R\Lg,
(iti+dr+e€) k=i
(xn+j n+j) _ ] ©,t5-9 k=j
e )T 0.0 keR ki k#j
0,0) ke N\R.
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Then
St =S —etdrte=d
keN keR
and
Z—x’l‘m + > Wb
= max{l, dg} R dr max{l;, dr}
If j € N\R,
o (max{l;,dr},dr) k=]
(x,{,y,{)z ©, 1) ke R
(0, 0) k € N\R, k # j,
(max{lj,dr} +€,dr) k=]
(0, 0) ke N\R, k # j.
Then
Zyk_Zyn+] Ztk+dR:d
keN keN keR
and
n+j

X
Z 1. d }+
keRmaX{k’ R

keN\R

yj
2. i

R

max{ly, dr}

> ﬂzd_lle
dgp ’

d
keR keN\R R

Giventhatdg <[ forall j € Lrand 0 < ¢; forall j € R\Lg, fore > 0 sufficiently
small, we have that {(x/, y/), (x"*/, y"*/): j € N} is contained in S(t, 0). More-
over, it is an affinely independent set, and since these 2n points satisfy (24) at equality,
this constraint defines a facet of conv(S(¢, 0)).

For the converse, let R be a nonempty cover that is not proper, thus either Lg =
or there exists i € R\Lg having #; = 0. In the former case, max{l;, dg} = dg for
all i € R, and then (24) is generated as the sum of (20) and (21) for i € R. In the
latter, since #; = 0, we have dg\(;j = dg and y; < x;. Since i € R\ Lg, we also have

max{l;, dr} = dg. Thus
X )
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Hence, the inequality given by R is implied by the one given by R\ {i}, and therefore
it cannot be facet-defining. O

We now present the main result of this section.

Theorem 15 conv(S(z, 0)) is given by the following inequalities

Zer ;—;ZWRGR

ieR ’ ieN\R

Vi <x;i+t YVieN (25)
x>0 VieN (26)
yi >0 VieN. Q7

Proof Let (¢, o) € R" x R” be a non-zero vector and consider the problem
min {ch —i—aTy D (x,y) € S(t, 0)} .

As in the proof of Theorem 6, we will show that if this problem has finite optimal
value, then there exists one inequality from (24)—(27) that is satisfied at equality by
all optimal solutions.

Assumption1 ¢ > 0andc + o > 0.
If for some i € N we have ¢; < 0 or ¢; + «; < 0, then the problem is unbounded.
Thus, we may assume ¢ > 0 and ¢ + « > 0. O

In particular, Assumption 1 implies that the objective value is bounded and there
exists an optimal solution. Let (x*, y*) be any such solution.

Assumption 2 « > 0.
If for some i € N we have o; < 0, then y/ = #; + x/ by optimality, that is, (25) is
satisfied at equality. Thus, we may assume o > 0. O

From Assumptions 1 and 2, we have that the optimal value is nonnegative.

Assumption 3 ¢'x* +a'y* > 0.

Suppose that the optimal value is zero. Since (c, a) # (0, 0), by Assumptions 1 and
2, there must existi € N such thateithero; > Oorc¢; > 0. By optimality, in the former
case we must have y;k = 0, while in the latter x;“ = (0 must hold. Therefore, either
(27) or (26) must be satisfied at equality. Thus, we may assume cTx*+aly*>0.

O

Claim1 ¢+« > 0.
If ¢; = aj = 0 for some i € N, then the optimal value is zero, contradicting
Assumption 3. O

Let R :={i € N : «; = 0}. From Assumption 3 and the definition of R, we have
Zie g li < d, since otherwise the optimal value is zero. Hence, R is a reverse cover.
We also have ¢; > 0 for all i € R by Claim 1, and ¢; > O for all i € N\R.
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We claim that

*

X yfk
Zmax{zl,-,dR}Jr 2 =L

d
ieR ieN\R “R

Suppose not. Let L}, := {i € Ly : xF > 0}, (R\LR)T :={i € R\Lg : x>0},
and (N\R)* :={i € N\R : yf > 0}. Then

x* x* ¥
-+ - L o> 1. 28
2Tt 2 gt 2 g 28)

ieL} ie(R\Lp)™ ie(N\R)*

Claim 2 L;ﬁ =0

Suppose i € L;, thatis, i € R and x! > l; > dg. Note that since aj = 0 for all
Jj € R, we cansety;f =tjforeachj € R, j # i,andy; = t;+dg without affecting the
feasibility and objective value of the solution. Recalling that c¢; > 0 for alli € R and
a; > 0 for all € N\R, from (28) and optimality we have (R\Lg)T = (N\R)* =0
and L; = {i}. Then (28) implies x}* > l; > dR, contradicting optimality since setting
x; = l; improves the objective value. O

Now, we have

DR S e (29)

ie(R\Lg)" ie(N\R)*

Claim 3 (N\R)* = 0.
From (29) and Claim 2, we have

d < Z x?+zti+ Z yl-*=2(xfk+ti)+ Z Vi

ie(R\Lg)* i€R ie(N\R)* ieR ie(N\R)*

If (N\R)™ is nonempty, we can set v} = ti+x] foreachi € R without changing the
objective value, and then decrease y; for some i € (N \R)", contradicting optimality
asa; > 0foralli € (N\R)™. O

We arrive at

Z x; > dg.

i€(R\Lp)*

Then we can improve upon (x*, y*) by taking i € argmin{c; : j € (R Lg)*) and
defining (x, y) by

(dr,tj+dgr) j=i

(xj,y;) =1 0,1;) JER, j#i
0, 0) j e N\R.
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4.2 Extended formulation for conv(S(t, 0))

At first sight, it is not clear how to separate the inequalities given by (24). We will
show that this can be done using an extended formulation. We first state a result similar
to Proposition 7.

Proposition 16 If (x, y) is an extreme point of conv(S(t, 0)), then x has at most one
non-zero entry.

Proof We claim that if x; > 0, then y; > f;. By contradiction, suppose x; > 0 and

yi < t;. We can write

1
(xi, yi) = 3 [2xi, yi) + (0, yi)].

Thus, (x, y) can be written as the average of two distinct points in S(z, 0).

Now, suppose that x has more than one non-zero entry, say x; > 0 and x; > 0. By
the claim, y; > f; and y; > ¢;. Thus, there exist A, € (0, 1] such that y; = #; + Ax;
and y; = t; + ux;. Then we can write

(xXi, xj, yi, ¥j) = (i, Xj, i + Ax;, tj + uxj)

AX;
=—l(xi+ﬁxj,07fi+)txi+ﬂxj7fj)
AXj + ux; A
M (ox; 4 Kt t 4w+
T o0.xi 4+ Zxj ot b+ Ax; v ).
)\Xi‘f‘lixj j o irlis1j i T MUX;

Also, notice that

li +Axi + uxj =1 + A (xl- + %xj) <+ (xi + %xj),

A A
tj + Ax; + ux; :tj+u<;xi+xj) ftj+(;x,-+xj).

Hence, (x, y) can be written as a strict convex combination of two distinct points
in S(z, 0). O

Now consider the polyhedra

ZjeNijd
So:={(x,y) €S8t 0: x; =0VjeN=1(x,y) eR} xR} : —y; >~ VjeN
—x; >0 VjeN
Z_/eNijd
Xi—yi =i
Sii={(x,y) €S 0): x; 2, x;=0Vj#i}=1(x,y) €eR} xR}y : —y; >~ Vj#ig.,i€N.
xi =1
=~ Vij#i
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Note that S; is nonempty foreachi € N, while Sy is nonempty if and onlyif > jentj =
d.Set N = {0} UN.

For a set C, let conv(C) denote the closure of its convex hull. If C is convex, let
ext(C) and rec(C) denote the set of extreme points and the recession cone of C,
respectively.

Proposition 17 conv(S(t, 0)) = conv(U, .y Si).

Proof The reverse inclusion is easy as S; € S(¢,0) forall i N and conv(S(z, 0)) is
closed by Proposition 3.

For the forward inclusion, let (x, y) € ext(conv(S(¢, 0))). From Proposition 16,
(x,y) belongs to some Sj, i € N, thus ext(conv(S(t,0))) < conv(U; .y Si).
It remains to show that rec(conv(S(t,0))) C rec(conv(U;.5Si)). Let (x,y) €
rec(conv(S(t, 0))). From Theorem 15, we can conclude that x > 0, y > 0, and

x > y. Write (x,y) = > ;cy(xie', yie'), where €' is the i-th canonical vec-
tor in R”. On the other hand, from a result in disjunctive programming [1], we
have rec(conv(L_JiE,\-,Si)) = conv(U, yrec(S;)). Since rec(S;) is a convex cone

for f;ach l € N, we also have conv(U, grec(S;)) = ZieN rec(S;). Given that
(xie', yie') € rec(S;) for each i € N, we have that (x, y) € rec(conv(U,; .y Si)),
which completes the proof. O

From Proposition 17, conv(S(t, 0)) admits a compact representation as the projec-
tion onto (x, y) of a higher dimensional polyhedron which can be used to find violated
inequalities. Specifically, given (x, y) € R" x R”,let P C Rifﬂ)n X RS{'H)H X RT’I
be the set of vectors (x, y, A) satisfying

> ) —=ar’ =0 (o)
JEN
30+ 120 =0 VjeN (Boj)
—x; >0 VjeN
> ¥ —di =0 YieN ()
jenN
xi—yl+ 500 >0 YieN (Bi)
—yi+4A =0 VieN, Vji#i ()
xi—1;a >0 YieN ()
—xb>0 VYieN, Vj#i
xl =X YieN ()
> vl =3 VieN ()
JeN
Sai=1 ().
jeN

Thus, (x, y) belongs to conv(U; .y S;), and therefore to conv(S(z, 0)), if and only if P
is nonempty. Let Q C ]RT'I X RS{'H)H x R x R" x R" x R be the set of vectors
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(a, B, ¥, n, v, ) such that

ap— Boj +v; <0 VjeN
—doto—i—Zl‘j,Boj-i-Tr <0
JeN
o —Bij+vi<0 VieN,VjeN
Bi+vi+mn <0 VieN
—dai+zfjﬂij—li)/i+n50 VieN
JeN
71+Zm)?,'+2v,&,~ > 0.
ieN ieN

After removing unnecessary variables and constraints from P, by Farkas’ Lemma,
P is nonempty if and only if Q is empty. Moreover, given (X, y) in the continuous
relaxation of (20)—(23), there is a violated inequality from (24) if and only if the
problem

min Zm‘fci +Zvi§i -7

ieN ieEN
s.t. ap—Boj —v; <0 VjeN
—doto-i—th,Boj—i-JTfO
JEN
o —pij—vi =0 VieN,VjeN
Bii+vi—m <0 VYieN
_dai+ztj,3ij—li]/i+ﬂ'§0 VieN
JEN
anLZV,-—}-n:l
ieN iEN
a,B,y,n,v, 7 >0 (30)

has negative optimal value. In this case, any optimal solution to (30) yields a valid
inequality for conv(S(¢, 0)) that is not satisfied by (x, y).

5 A semi-continuous transportation problem

5.1 The problem and its complexity

Consider now the case where we intersect m > 1 sets of the form S(¢, /). Specifically,
let M := {1,...,m} be a set of nodes that receive flow from nodes in N, where

each j € M has a demand d; > O to be met. In this context, we refer to N and M
as suppliers and customers, respectively. In this setting, / € R’} is a vector of lower
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N M
=0 -0
o

x; € {0} U [l;, 00) /\’y;/e {0} U [hij, 00)

tizo/’!/\\\

i S S
- ~
B — - - - - — =

Fig. 3 Semi-continuous transportation problem

bounds for supplier capacities, & € R’} is a vector of lower bounds for arc flows, and
t € R is a vector of initial supplier capacities.
Let S, € R" x R™ be the set of vectors (x, y) such that

Syijzdi YjeM (31)
ieN
D yij<ti+x YieN (32)
JjeM
xi €{0}U[l;,00) VYieN (33)
vij € {0} U[hij,00) VieN, VjeM. (34)

Constraints (31), (33), and (34) are analogous to (1), (3), and (4) of S(t, k), respec-
tively. In addition, constraints (32) ensure that the total outflow from any supplier does
not exceed its available capacity. As with the inflow set, a graphical interpretation is
given in Fig. 3.

Now we address the complexity of optimization over S,.

Proposition 18 Optimizing a linear function over Sy is N'P-hard, even if t = 0 and
h =0.

Proof We will show that the Uncapacitated Facility Location Problem (UFLP), which
is N"P-hard, can be reduced to optimization of a linear function over S,. An instance
of UFLP is defined by a set of potential facilities N, a set of customers M, and cost
functions f : N - Ry ande : N x M — R_. The objective is to compute

min i min e;;
gin | 2 5+ 2 miney
ieN’ jeM
We can formulate UFLP as an integer programming problem. Let z; = 1 if and

only if facility i is open, and w;; = 1 if and only if customer j is assigned to facility
i. The corresponding formulation is
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Z1 = min ZfiZi + Z zeijwij

ieN JeEMieN
S.t. wij <z VieN,VjeM
> wij=1 VieM
ieN
w;; € {0, 1} VieN,VjeM
z; € {0, 1} VieN.

Given an instance ; of UFLP, we want to construct an instance 7 of linear
optimization over S, with the same objective value. We identify N with the set of
supply nodes and M with the set of customers. Let/; =m + 1 foralli € N,d; =1
forallj e M,c; = ijrl foralli € N,ando;; = e;; foralli € Nand j € M. We also
sett; = 0foreachi € N,and h;; = Oforeachi € N and j € M. The corresponding
instance 7> is then

Zp = min ,GZN mL_:_lxi + Z Z €ijYij

ieN jeM
S.t. Zyijfx,- VieN
jeM
Zyijil VjeM
ieN
yij =0 VieN,VjeM

x;i € {0}U[m + 1, 00) VieN.

Let (z*, w*) be an optimal solution to 7y. If we set x; = /; if zf = 1 and 0 otherwise,
and y;; =d; if w;‘j = 1 and 0 otherwise, then we get a feasible solution (x, y) to w3
with cost z1. Hence, z0 < z;.

Now, let (x*, y*) be an optimal solution to 5. Since ¢ > 0, « > 0,and [; > m+1,
we may assume that x}* € {0, /;} foralli € N. In addition, by integrality property of
networks, we may also assume that yl.*/. € {0,d;j} foranyi € N and j € M. Setting
z; = 1if x} = I; and 0 otherwise, and wi; = 1if yl*l = d; and 0 otherwise, we get a
feasible solution (z, w) to 7r1 with cost z5. Hence, z1 < z». O

5.2 Analysis of a relaxation of S

A special case of S, arises when 4 = 0, which constitutes a relaxation for this class
of problems. In such a case, we shall present structural characteristics of the convex
hull of this set that will give us some insight into the complexity of optimization over
it. In fact, we will show some results for a slightly more general set.
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For lower bounds [ € R’i, demands d € R’jﬁ, not necessarily positive, and initial
capacities t € R’ , we define

Zy,‘j Zdj VjeM
ieN
Sl )= (. y) e RY xR 2V Stitxn VieN
JjeEM
yij =0 VieN, jeM

xi €{0}U[lj,00) VieN
Once more, we begin with a result in the spirit of Propositions 7 and 16.

Proposition 19 If (x, y) is an extreme point of conv(S«(l, d, t)), then ZjeM Vij >t
foralli € N such that x; > 0.

Proof Suppose that x; > 0 and Z/eM yij <t; forsomei € N.Then we can write

1
(Xis Yits - os Yim) = 3 [2xi, Yits oo Yim) + O, yit, .o Yim)],

that is, (x, y) is the strict convex combination of two distinct points in S, (I, d, t), and
thus it cannot be an extreme point of conv(S.(l, d, t)). O

For (x, y) € S«(l,d, t), we define the support o (x) of x as the subset of suppliers
with positive production, that is

o) :={ieN:% >0l

We will prove that if (x, y) is an extreme point of conv(S«(l, d, t)), then |o (X)| < m.
We need the following key lemma.

Lemma 20 Ift = 0 and (x, y) is an extreme point of conv(S«(l, d, 0)), then |o (x)| <
m.

Proof For a contradiction, suppose that for some positive integers n > m the claim
does not hold. Choose n and m so that n + m is minimum among all such instances.
Note that by Proposition 16, m > 1. Let (x, y) be an extreme point of S.(/, d, 0)
having |0 (X)| > m, where l € R’} andd € R”..

By minimality of n + m, we may assume that |o (x)| = n, since otherwise x; = 0
for some i € N, and removing this supplier from the instance would yield a smaller
counterexample.

Claim1l n=m+1._ N
Ifn >m+1, let N :== N\{n}. We define d € R’} by

di=Y 5V jeM.
ieN
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Let (X,79) € R’} I x ]R(n Dm and T e R’ U be the restrictions s of (X, y) and | with
respect to N respecttvely We have that (x y) is feasible for S, (l d 0) and |o (X)| =
n—1 > m + 1. By minimality of n + m, (X,y) cannot be an extreme point of
conv(Sy (T, c/l\, 0)). Thus, we can write

q
@) =D hpx?, yP),

p=1

where g > 2, {(xPy?) : p =1, ..., q} are distinct points in S*(’l\,c’l\, 0), Ap > 0 for
allp=1,...,q, and Z'[i:l Ap =1 Foreachp =1,...,q, weextend (x?, yP) t?\
(xP,yP) € R* x R by setting X} = %, and }',':/ = Yuj forall j € M. Since x? > |
and x, > l,, we have XP > L. In addition, for each j € M, we have

Z)ZI; ZZ)’S‘ + Ynj = dj + ynj > d;.
ieN IGZ/V\

Thus, {(x?,yP) : p =1,..., q} are distinct points in Si(l, d, 0). We can see that

q
&) =>4, ("
p=1

and therefore (x, y) cannot be an extreme point of conv(S«(l, d, 0)). The claim is thus
proved. O

Let G = (N UM, E) be a bipartite graph where i € N is adjacent to j € M if and
only if y;; > 0. Notice that since o () = N, by Proposition 19 we have that for each
i € N, there exists j € M having y;; > 0, and therefore deg(i) > 1foralli € N.
Furthermore, we may assume deg(j) > 1 for all j € M, since if deg(j) = 0, then
d; = 0and removing this customer from the instance yields a smaller counterexample.
Therefore, given that n = m + 1, there must exist some component of G having more
suppliers than customers. Hence, we may assume that G is connected, since otherwise
some component of G induces a smaller counterexample. We may also assume that G
is acyclic, since otherwise we can modify y along the arcs in a cycle and write (x, y)
as the average of two different solutions in Si(/, d, 0). Thus, we may assume that G
is a tree.

Claim 2 deg(j) =2Vj e M.

We first argue thatdeg(j) > 2 forall j € M. By contradiction, we may assume that
deg(m) = 1 andthat m is supplied by n. As before, let N := N\{n} and M := M\{m}.
We define d € R’_ﬁfl by

c,i} ::Zyij‘v’jeﬁ?.
ieN
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Taking the restrictions of (x,y) and | with respect to N and M, and proceeding
as in the proof of Claim 1, we conclude that (x,y) cannot be an extreme point of
conv(S«(l,d,0)). Hence, deg(j) > 2V j € M. However, since G is a tree, we have
|[E|=INUM|—1=m+1+m—1=2m, and thus deg(j) = 2 for each j € M.
The claim is thus proved. O

Now, foreachi € N, let

M@G) :={jeM: @))€ E}
NG@):={le N\{i}: 3j € Msuchthat (i, j), (I, j) € E}.

In other words, M (i) are the customers served by i, while N (i) are the suppliers
that share a customer with i, which we refer to as its neighbors. Clearly [ € N (i)
if and only if i € N (/). Note that since G is acyclic, any two suppliers can have at
most one common customer. Thus, given neighbors i and / in N, there exists a unique
Jj =:j(i,1) € M connecting them in G.

Let (¢, «) € R" x R™ be such that (x, y) is the unique minimizer in S, (l, d, 0)
with respect to this function. For each i € N, consider the solution (x, y’) given by

_ 0 =i ' 0 =i
xp=1X+Yijin NG yij =Y +Vijan LeN@, j=jGD
X otherwise, Vij otherwise.

Thus, we obtain (x?, y?) from (X, y) by moving the production from i to its neighbors
and removing i from the solution. It is straightforward to verify that (x’, y’) is feasible
to Si(/, d, 0). However, since (x, y) is the unique minimizer for (c, ), we have that the
cost incurred by (%, 7) is less than the cost incurred by (x', y'). Since these solutions
only differ in the variables associated to i and its neighbors, we have

ciXi + Z @ijyij < Z (c1 + 0 .0) YijiD)-
JeM() 1eNG)

Recalling that 3 ;¢ ;) ¥ij < Xi, we have

Z (ci +ajj)yij < Z (c1 + o i,0) YijiD)-

JEM(i) leN (i)

Rewriting the left-hand-side in the last inequality, we obtain

Z (ci +aija.n)Yijan < Z (cr + o .0) Viji0y-
1eNG) 1eNG)

Hence, there must exist some [ € N (i) such that

¢ toijin <ca+ojan-
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For neighbors i and /, we say that i dominates [ if the above inequality holds. Thus,
we have that any supplier has to dominate at least one of its neighbors.

Let G’ = (N, E’) be a graph where (i, j) € E’ if and only if i and j are neighbors
in G, and note that G’ is also a tree. Let L € N be the set of leaves of G’. Since
n =m+1 > 3, L has at least two elements and N\ L is nonempty. Note that any leaf
dominates its unique neighbor. Now, pick some r € L asarootof G’,andleti € N\L
be such that all of its children are leaves of G’. Since i is dominated by its children,
it must dominate its parent. Reasoning by induction, we have that any supplier has
to dominate its parent. In particular, we conclude that r is dominated by its child, a
contradiction since r is a leaf. This completes the proof. O

With Proposition 19 and Lemma 20 at hand, we can prove the main result of this
section.

Theorem 21 For any t > 0, if (X, y) is an extreme point of conv(Si(l,d, 1)), then
lo(X)] < m.

Proof For a contradiction, suppose that for some positive integers n > m the claim
does not hold. Let (x, y) be an extreme point of S, (I, d, t) having |o (x)| > m, where
I,t e R andd € R.

For each i € N, let j(i) € M be such that >y ;-4 ¥ij =< t and
ZjeM, j<j) Yij > i Since (x, y) is an extreme point of conv(S,(/, f{’ t)), by Propo-
sition 19, j (i) is well defined for all i € N. We define y € R}" and d € R’} by

0 j <@
S22 Su-n i=i0
LY ..

keM, k<j(i)

Vij J>Jj@),

dj=2 5 VieM.

ieN

Also, let x = x. Then Zje/lg[ Vij = Z,/eM yij —ti < X; =X; foralli € N. Moreover,
(x,79) is feasible to Si(/, d, 0). Since |a@| = |o(X)| > m, by Lemma 20, (x,7)
cannot be an extreme point of conv(S,(l, d, 0)). Thus, we can write

q
(Yv 5]\) = Z)"[?(-xpa yp)v

p=1

where g > 2, {(x”,yP) : p =1, ..., q} are distinct points in S*(l,c’l\,O), Ap > 0 for
alp=1,...,q, andZ‘I])IIAp = 1. Notice that foreach p = 1,...,g andi € N,
yl.’;. =0 forall j < j(i). Then we can define w € R™" by

Vij J<Jj@
wij = 1 Yij — Vij J=Jj@
0 J > Jj@),
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and set X” = x” and y” = y” + w. Notice that for alli € N,

wije) = Vijo — Vo =V — D, Vjtti=— D, Fij+t=0.
JeEM, j<j) JEM, j<j(@)
Thus, w > 0 and y? is nonnegative for all p = 1, ..., q. Also, foralli € N we
have
2)75- = ny;-+ Z Yij = Viji) = zyf;-+ti <x+4=x"+un.
jeM JeM JEM, j=j(i) jeM

Finally, for all j € M we have

PRSI HED S TR SR

ieN ieN ieN: j<j(i) ieN: j=j(0)
=di+ > - D, Vi
ieN: j<j(i) ieN: j=j(0)
=25t 2 Wi— 2. W
ieN ieN: j<j() ieN: j=j(i)
= 20 Wt 2 Tt 2 Yi— 2 W
ieN: j=j(0) ieN: j>j(0) ieN: j<j(i) ieN: j=j(i)
=2_Ji
ieN
> dj.

Thus, (x?, yP) € Si(l,d,t) forall p =1, ..., g and are all distinct by the definition
of y”. Furthermore, it is straightforward to verify that ZZZI Ap(XP,3P) = (X, y).
Hence (x, y) cannot be an extreme point of conv(Si(/, d, t)), yielding the required
contradiction. O

Corollary 22 Minimizing a linear function over Si(l,d, t) can be done by solving
O ™) linear programming problems.

In other words, optimization over S, ([, d, t) can be done in polynomial time when
m is fixed.

As an algorithmic implication, we can tweak the branch-and-bound procedure when
we optimize over Si(/, d, t): whenever a node of the search-tree has m bounds of the
form x; > [;, we can fix the production of the remaining suppliers to 0. However, our
experimental experience indicates that a standard branch-and-cut solver does not need
to branch that many times, rendering this approach inapplicable for practical purposes.

On the other hand, we can construct relaxations of S, by considering the subsystem
defined by a few customers, say two, and taking # = 0. By Theorem 21 and an
argument similar to Proposition 17, a compact extended formulation is available for
its convex hull from which strong valid inequalities for conv(S,) may be devised.

@ Springer



Semi-continuous network flow problems 593

6 Computation

We test the performance of the inequalities presented in Sects. 3 and 4 on instances
of the semi-continuous transportation problem described in Sect. 5. We address the
effectivity of the cuts used alone or combined with CPLEX cuts, and the differences
between semi-continuous and binary formulations.

Each instance is formulated in CPLEX either declaring all variables as semi-
continuous or using auxiliary binary variables to enforce semi-continuity. In the latter
case, we introduce constraints of the form /z < x < Mz, where z is a binary vari-
able and M > 0 is a valid upper bound that yields an equivalent problem. Letting
d = ZjeM dj, [ = maxieN{li}, h = max;epn, jeM{hij}, and 1 := maxieN{ti}, we
set M = max{d, [, h} + 1.

Also, we consider the cases t = 0 and ¢ > 0 separately. In the first case, we ignore
the initial capacities and therefore cuts of the form (14) may be generated. In the
second case, valid cuts may be generated using the extended formulation (30). In both
cases, to separate a fractional solution (x, y), we consider the inflow set corresponding
to each customer j € M and we try to find a cut violated by (x, y;). Thus, we may
add up to m cuts in a single round. For simplicity, cuts are added only at the root node.
In addition, when ¢t = 0, we also test an extended formulation where a vector 7/ s
appended for each j € M. Adding the constraints that define W in Corollary 9 for
each j € M, we obtain an extended formulation where all the inequalities describing
the inflow relaxation for each customer are already implied, and therefore there is no
need to generate cuts on-the-fly. Even though an extended formulation is also available
when ¢ > 0, its size becomes a bottleneck even when solving the root relaxation, and
thus it is not considered in our experimental setup.

In our experiments, we use n € {30, 50, 80} and m € {30, 50, 80}. For each combi-
nation of these parameters, with the exception of (n, m) = (80, 80) due to time limits,
we generate 10 instances as follows:

I, ~ U[100,500]V i € N
hij~U[0, 2;]VieN, VjeM
f ~U[10,50]¥ i € N

d; ~U[10%,502] V j e M
c,-~u[40,40+%] VieN

o o ~U[-10,90] Vi € N, ¥ j € M,

where X ~ Ula, b] means that X is arandom variable following a uniform distribution
on the interval [a, b]. Then, for each instance and for each formulation, we solve using
CPLEX 12.2 default branch-and-cut (C), using only our cuts within branch-and-cut
(U), using both CPLEX and user cuts (C+U), and solving the extended formulation
(E) in the case t = 0. All experiments were carried out on a personal computer on a
single thread running at 3.33 GHz with 4 GB of RAM under Linux environment. A
time limit of 1800 CPU seconds per instance is enforced.
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Table 1 Number of solved instances when t = 0

n m Semi-continuous Binary

C U C+U E C U C+U E
30 30 10 10 10 10 10 10 10 10
30 50 10 10 10 10 10 10 10 10
30 80 10 10 10 8 10 10 10 10
50 30 10 10 10 10 10 10 10 10
50 50 10 10 10 9 9 10 10 10
50 80 4 10 5 10 1 10 4 10
80 30 5 10 4 10 10 10 10 10
80 50 0 5 0 10 4 10 2 10

Table 2 Number of nodes needed to prove optimality when 1 = 0

n m Semi-continuous Binary

C U C+U E C U C+U E
30 30 3936.2 3266.5 29192 72.8 313.3 808.4 268.1 327
30 50 6246.6 4940.7  3653.6 213.0 493.3 731.9 618.7 61.7

30 80 11764.3 9330.0 62325 930.3 1142.3 1042.6 840.3  206.1
50 30 24045.9 23725.8 205489 297.5 1501.4 4545.5 1248.5 84.8
50 50 49407.0 40399.5  54556.6 145.1 3433.0 7446.9 2382.6 1351
50 80 81456.8  159338.0 55918.8  1019.9 2086.0 23129.2 26213 4703
80 30 56262.8  210466.0  48761.0 192.8 4049.3 30828.1 4731.6 67.6
80 50 - 438369.0 - 332.3  12265.2  114003.0 17426.5 2875

6.1 Thecaset =0

Table 1 shows the number of instances solved within the time limit, Table 2 shows the
average number of explored nodes needed to reach optimality within CPLEX’s default
tolerance, and Table 3 shows the average time in CPU seconds required by such task.
In all cases, columns n and m denote the size of the problem, columns Semi-continuous
and Binary denote the type of formulation being considered, and columns C, U, C+U,
and E denote the procedure being used, as explained above. All the averages are with
respect to the number of instances that were solved. If no instance was solved for
a particular combination of n and m, a dash “=” appears in the corresponding cell.
Finally, in Tables 2 and 3 we use bold characters to indicate which method produced
the best results for each formulation.

Table 1 shows that not all instances were solved within the time limit. This may be
a bit surprising, as the underlying problem structure is fairly simple and the number
of variables does not exceed a few thousands. Adding our cuts alone and the extended
formulation have the best performance in this sense, specially in the binary formulation
where all instances where solved by both methods. As we can see from Table 2, the
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Table 3 CPU time needed to prove optimality when t = 0

n m Semi-continuous Binary
C 6] C+U E C 6] C+U E

30 30 17.1 4.0 17.7 34 23.6 2.0 22.9 4.8
30 50 54.7 129 452 16.9 98.7 4.6 126.2 20.3
30 80 129.7 33.9 117.8 126.5 409.4 9.3 332.0 89.1
50 30 256.1 28.9 244.0 10.0 148.1 11.3 151.9 12.1
50 50 609.0 59.6 724.1 13.6 597.4 21.7 586.0 37.6
50 80 1399.7 316.7 1155.6 135.5 578.2 985 1144.6 165.3
80 30 924.7 168.2 1018.3 8.2 264.5 48.1 2342 8.2
80 50 - 746.4 - 28.5 1438.7 354.6  1409.4 45.7
Table 4 Number of cuts when t = 0
n m Semi-continuous Binary

U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 96.0 24.3 96.0 76.4 60.0 15.9 51.0 10.3
30 50 154.6 69.4 154.6 132.8 100.0 45.7 70.0 29.1
30 80 262.0 137.0 262.0 218.3 128.0 69.9 120.0 79.3
50 30 87.4 7.4 87.4 49.6 67.0 6.7 102.6 37.9
50 50 147.6 18.8 147.6 101.9 123.4 15.7 180.5 98.5
50 80 239.9 45.5 239.8 181.2 231.9 43.9 316.5 178.5
80 30 88.3 5.9 87.0 42.8 58.8 4.7 94.0 23.2
80 50 147.2 9.0 - - 101.3 6.9 173.5 75.0

node count of the extended formulation is roughly one or two orders of magnitude
smaller when compared to the other procedures in both models.

Regarding time, from Table 3 we observe that the extended formulation is the
best method in most cases when the semi-continuous formulation is used, whereas
this approach is the best only in the largest instances when the binary formulation
is considered. Among cutting procedures, adding only user cuts performs better than
the rest in both formulations and is the only way to solve the largest instances within
the time limit, with time reductions of up to one order of magnitude. Again, this can
be somewhat surprising in the case of the binary formulation, as these cuts were not
developed with binary variables in mind, and in this case we expected the presolve
routines and flow covers to be particulary effective. On the other hand, combining
these and CPLEX cuts decreases the overall performance and is comparable to the
default solver.

Table 4 shows information regarding cuts. Column headers n, m, Semi-continuous,
Binary, U, and C+U have the same meaning as in the previous tables. In addition,
columns Gen denote the average number of user cuts that were generated, while
columns Appl denote the average number of cuts that were actually applied. As we let
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Table 5 Number of solved instances when r > 0

n m Semi-continuous Binary
C U C+U C U C+U

30 30 10 10 10 10 10 10
30 50 7 10 8 10 10 10
30 80 2 9 8 10 10 10
50 30 0 10 3 10 10 10
50 50 0 9 1 9 10 8
50 80 0 0 0 1 10 4
80 30 0 5 0 4 10 6
80 50 0 0 0 0 10 0
Table 6 Number of nodes needed to prove optimality when ¢ > 0
n m Semi-continuous Binary

C U C+U C U C+U
30 30 120194.0 17069.0 53748.7 603.1 852.3 4335
30 50 137858.0 52383.7 40540.5 651.2 883.4 476.3
30 80 83006.5 112944.0 33035.1 1153.6 1103.7 901.6
50 30 - 106912.0 133777.0 3555.5 5927.4 2596.4
50 50 - 216427.0 121396.0 4991.4 10361.9 3013.5
50 80 - - - 7998.0 22166.4 2496.8
80 30 - 714998.0 - 17143.5 77894.5 16998.0
80 50 - - - - 104097.0 -

CPLEX decide whether or not to apply user cuts that are generated by our separation
routine, the numbers in these columns are different in general.

First, note that more cuts are generated and applied in the semi-continuous formu-
lation than in the binary formulation. Now, in both cases, the proportion of applied
cuts with respect to the number of generated cuts is smaller when CPLEX cuts are
turned off. Given the results in Table 3, just a few cuts are required to get a non-trivial
improvement over the default solver, and the generation of more user cuts than needed
seems to increase the running times.

6.2 Thecaset > 0

Tables 5, 6, and 7 are analogous to Tables 1, 2, and 3, respectively, with the difference
that there is no column E as no extended formulation was tested in this case.

From Table 5, we see that when ¢ > 0, the instances become much harder than in
the case = 0. The performance of the semi-continuous formulation is quite poor in
general. In contrast, the binary formulation is able to solve all small instances with
any procedure, but only when CPLEX cuts are turned off it is possible to solve all
large instances as well. Regarding explored nodes, Table 6 shows that the addition of
user cuts may reduce the size of the search tree.
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Table 7 CPU time needed to prove optimality when ¢ > 0

n m Semi-continuous Binary

C U C+U C U C+U
30 30 3435 221 211.7 26.6 53 26.1
30 50 759.3 116.5 311.0 74.0 9.1 66.4
30 80 945.6 4135 488.8 224.4 18.6 202.4
50 30 - 126.4 962.1 168.8 38.7 157.5
50 50 - 406.2 1283.7 601.8 93.8 469.9
50 80 - - - 1427.6 256.6 872.4
80 30 - 838.1 - 5422 295.8 804.0
80 50 - - - - 762.9 -

Table 8 Number of cuts whenz > 0

n m Semi-continuous Binary

U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 101.7 51.2 98.7 86.6 48.0 25.6 42.0 21.1
30 50 159.0 92.1 161.9 143.1 74.9 43.8 94.9 51.8
30 80 253.0 169.4 265.0 235.1 120.0 92.4 152.0 104.7
50 30 89.8 29.5 94.3 87.7 84.0 29.1 101.2 69.4
50 50 147.7 68.8 150.0 144.0 147.9 70.4 182.9 136.5
50 80 - - - - 239.3 102.2 308.8 222.5
80 30 86.4 30.0 - - 79.0 25.1 111.2 85.3
80 50 - - - - 130.6 37.9 - -

With respect to computation times, we have that user cuts alone in the binary
formulation outperforms all other methods, as shown in Table 7. This procedure is
also the best with the semi-continuous formulations. Once again, combining CPLEX
and user cuts is comparable to the default solver.

Finally, Table 8 shows information regarding cuts, and it is analogous to Table 4.
As in the case t+ = 0, when CPLEX and user cuts are combined, the solver attemps
to generate and apply more cuts than needed, decreasing the overall performance as
follows from Table 7.

As we have seen, the proposed valid inequalities, either in their original form or
through an extended formulation when possible, are quite useful in solving this class of
semi-continuous network flow problems. Although these cuts involve only the original
variables of the problem, the introduction of binary variables seems to improve the
overall performance.

7 Conclusions

In this work we have considered semi-continuous network flow problems. In partic-
ular, we introduced the semi-continuous inflow set with variable upper bounds as a
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relaxation. Two particular cases of this set were considered, for which we presented
complete descriptions of the convex hull in terms of linear inequalities and extended
formulations. These inequalities proved to be quite efficient in solving a class of semi-
continuous transportation problems. In fact, applying these cuts to a binary formulation
of such problems turned out to be the most effective method.

We envision at least two possible venues of future research, mainly based on the
semi-continuous inflow set. The first one is to consider finite upper bounds on semi-
continuous variables. In this case, further connections with [4] may be established.
Another direction is to consider semi-continuous inflows and outflows simultaneously.
This would lead to a more general set that can be a better relaxation for appropriate
problems.
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Appendix

Given an integer t > 1, let T := {1,...,t}. For each r € T, consider 7" € R"
and 716 , | € R. We are mainly interested in the case 716 < 7y, although this is not
required in what follows. Given a closed convex set C C R”, foreach Q € 7 := 2T,
consider the set

c?.={xecC: a'x <myVreQ, n'x>n{Vr¢Q}

We call the set UQGTCQ a t-branch split disjunction as defined in [10]. Let
C™70T = cony (UQETCQ) .

When ¢t = 1, the closedness of C™-70-71 was addressed in [3]. We extend this result
forany r > 1.

Proposition 23 C™70-7"! js a closed convex set. Moreover, if C is a polyhedron, so is
CTm0.T1

Proof Let C be the recession cone of C, and foreach Q € 7, let cf .= c? 4+ Coo.
Also, let 7% := {Q € T : C2 # ¢}. If T* is empty, then the result holds. Thus,
assume 7 * is nonempty.

Claim: €770 = conv (Uger-CE).

The forward inclusion is easy as UQETCQ C Uger+ COQO.

For the reverse inclusion, consider x € conv |UgeT+ COQO) We can write x =
ZQET* 22 (x2 4+ y9), where x¢ € €2, y¢ € Cy, and A2 > 0 for each Q € T%,
and ZQGT* 1€ = 1. If we show that for any Q € 7*, x¢ + y< belongs to CT-70-71
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then the result follows. To that end, fix Q € 7™ and let

R :={reT: n"y? <0},
Rt :={(reT: n"y¢ >0},
R=:={reT: n"y?=0)}.

Note that there exists finite & > 1 such that 77 (x2 + Ay?) < my forallr € R™ and
7" (x2 4+ 1y9) > n| forall r € RT. Also, recall that x @ satisfies 77x¢ < m;y for
allr € Q and 7"x9 > wy forall r ¢ Q. Thus x2 4+ 1y belongs to C2', where
Q' := R~ U(R= N Q). Finally, note that x¢ + y2 € conv({x<, x¢ + 1y<}), which
implies x¢ + y2 € C™7071 a5 desired. O

By the claim, C™7-™1 is the convex hull of the union of nonempty closed convex
sets having the same recession cone. By Corollary 9.8.1 of [13], C™7-71 is a closed
convex set. Moreover, if C is a polyhedron, then C™-™ 7! js the convex hull of the
union of nonempty polyhedra having the same recession cone, which is a polyhedron
[1]. O
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