Journal of Experimental & Theoretical Artificial Intelligence, Taylor & Francis
Vol. 17, No. 1-2, January-June 2005, 5-18 Tayhot & Frarichs Group

Towards structure discovering in video data

ELISA BERTINO™, MOHAND-SAID HACID?
and FAROUK TOUMANI®

TUniversita degli Studi di Milano, Via Comelico, 39 20135 Milano, Italy
:Uni\(ersily Lyon 1, 43 blvd du 11 novembre 1918, 69622 Villeurbanne, France
YISIMA—Campus des Cezeaux—B.P. 125, 63173 AUBIERE, France

(Received 1 March 2004, in final form 1 August 2004)

Digital images and video clips are becoming popular due to the increase
in the availability of consumer devices that capture them. Digital content
is also growing over the Internet. Applications that benefit from video are
education and training, marketing support, medical, etc. The increase
of this digital content creates a need for user-friendly tools to browse
through large volumes of digital material. However, there are two basic
impediments to wider use of digital video. The first is cataloging, which
includes video digitization, compression and annotation, and the second
is the lack of fast and effective search and browse techniques for this
massive video content. The authors are interested in this second problem.
One method that they believe is promising is the augmentation of a
metadatabase with information on video content so that users can be
guided to appropriate data sets. An automated technique is presented
that combines manual annotations and knowledge produced by an auto-
matic content characterization technique (i.e. clustering algorithms) to
build higher level abstraction ol video content.

Keywords:  Mining multimedia data; Concepts classification; Descrip-
tion logics

1. Introduction

The availability of a huge amount of multimedia data. images and videos calls for
efficient methods and tools to index and retrieve such data types. The interest in
this topic is witnessed by several special issues in journals and definitely by the
‘work-in-progress” MPEG-7 standard. Images and videos are typical unstructured
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documents widely employed in a variety of communication frameworks such as
entertainment, advertising, sport, education, publishing, etc.

Content-based video browsing and retrieval have become important research
topics in recent years. Research interest in this field has escalated because of the
proliferation of video data in digital form. Content-based retrieval of a video stream,
segmented into its constituent elements, requires that content indexes are set.
We distinguish indexes on semantic primitives, such as objects and motion, and
indexes on the meaning conveyed by visual primitives. Object primitives are usually
extracted from key-frames and used for comparison with primitives extracted from a
query image.

For databases with large numbers of video sequences, it is not feasible to
browse linearly through the videos in the database. A desirable characteristic of a
browsing system is to let the user navigate through the database in a structured
manner,

We develop an approach to automatically create a hierarchical clustering of the
videos in the database and use the resulting tree structure to navigate through
the videos. This approach can be applied to key-frames extracted from video
segments to enable the users to browse through their video libraries. It should be
clear that the usefulness of this approach depends on the robustness of the
hierarchical clustering results. If some videos are grouped incorrectly, the user
may not be able to find them by browsing through the tree.

To represent the various aspects of a video object’s characteristics, we propose
a model that consists of two layers: (1) Feature & Content Layer, intended to
contain video visual features such as colour. texture and shape: (2) Semantic
Layer, which provides the (conceptual) content dimension of video data. Objects
of the Semantic Layer make reference to objects of the Feature & Content
Layer through a particular attribute called sequence. On top of these two lavers,
we propose to automatically build a Schema Layer, which will contain the
structured abstractions of video sequences, i.e. a general schema about the
classes of objects represented in the previous layers. This process is shown in
figure 1. To do that, we assume video sequences in the Feature & Content
Layer are clustered according to some algorithms. Video sequences are grouped
by similarity. Each cluster is seen as a class. Given those clusters and data of
the Semantic Layer', we proceed in two steps for building the Schema Layer:
(1) computing the most specific abstraction of each object in the Semantic
Layer: and (2) a minimal representation of the (partial) structure of the Semantic
Layer is then derived by computing least common subsumers of appropriate
concepts generated in the first step. To our knowledge, this is the first proposal
for automatically building an abstract layer. in the form of structural associa-
tions, on top of a video database.

This paper is organized as follows. Section 2 discusses related work in knowledge
extraction for video browsing. In section 3, we provide the syntax and semantics of
the concept language we use for describing the extracted structural abstractions.
Section 4 develops our algorithms for discovering structural associations from video
content descriptions. We conclude in section 5.

"Data in this layer is expressed in a semistructured data model proposed in Hacid er al. (2000).
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Figure 1. Framework for discovering structural associations.

2. Related work

In the framework of video data access and retrieval, our work relates to browsing,
We shortly discuss relevant approaches regarding knowledge extraction and
summarization for video browsing. This section is intended to be illustrative. We
apologize if we have left out relevant references,

The authors of Hollfelder er al. (1998) proposed a retrieval engine for video
browsing that offers conceptual, content-based access to videos. Using a small set of
annotated stills as a training set, a statistical analysis associates patterns in feature
vectors with conceptual classification topics. A video is segmented into single
shots by a shot detection algorithm. The video stills indexing (analysis) system
then employs a number of feature detection algorithms on selected frames. The
result of these algorithms—called the feature extraction values—are used to find
rules that map the values to conceptual terms. Generated rules are stored in a
metadatabase.

The syntax and expressive power of the class of rules used are not presented.
Additionally, the extraction process together with the use of these rules to guide
evaluation of a query are not developed. In Meng and Chang (1996), the reflection
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of the semantic structure of the video material for further data reduction and
clustering of similar shots was the goal. A hierarchical key frame browser is used by a
compressed video editing and parsing system (o select the shots to be edited.
A clustering algorithm is used to create a tree hierarchy of shots by grouping
them by similarity. The clustering is done on the basis of visual information only.
Arman et al. (1994) proposed a solution in which abstractions of each of the video
sequences is pre-computed.

Each shot of a video sequence is represented at the abstraction level by using
a representative frame (Rframe). Zhang et al. (19935) presented an approach to
the problem based on parsing. More specifically, parsing will temporally segment
and abstract a video source. based on key-frames selected during abstraction
and spatial-temporal variations of visual features. The paper does not provide
indications on the information used to guide the abstraction process.
Kobla er al. (1997) described a technique that reduces a sequence of MPEG encoded
video frames to a trail of points in a low dimensional space. In this space, they
cluster frames, analyse transitions between clusters and compute properties of the
resulting trail.

Zhong er al. (1996) described a generalized top-down hierarchical clustering
process to build hierarchical representations of videos. This work has been done
in the field of video data modeling in which defining objects and events in video is
given importance.

Krishnamachari and Abdel-Mottaleb (1999) proposed a hierarchical clustering
algorithm for images. Starting from a database with n images, the similarity between
all pairs of images is pre-computed. The n images in the database are placed in n
distinct clusters. These clusters are indexed by {C,,.... C,}. Two clusters Cy and
are merged into a new class if the similarity between C; and C; is the largest. This
process is repeated until only one cluster is left out, Oh and Hua (2000) proposed an
approach for organizing and indexing video data. Each video is segmented into shots
using a camera-tracking technique. This process allows to extract the feature vector
for each shot. By using these shots, an automatic method is applied to build a
browsing hierarchy. Finally, an index table is built. Zaiane er al. (1998) developed
a multimedia data mining prototype, called MultiMediaMiner. The prototype
includes the construction of multimedia cubes and the mining of knowledge such
as summarization and classification of images and videos.

Zaiane et al. (2000) studied a set of methods for mining content-based associations
with recurrent items and with spatial relationships from large visual data reposi-
tories. A progressive resolution refinement approach was proposed in which frequent
item sets at rough resolution levels are mined. An interesting issue here is how to
combine this approach and ours in order to deal with both visual and semantic layers
of multimedia data mining.

Ordonez and Omiecinski (1999) proposed a data mining algorithm to find
association rules in 2-dimensional colour images. The proposed algorithm rests on
four steps: feature extraction, object identification, auxiliary image creation and
object mining. Auxiliary domain knowledge is not used in this framework.

Faloutsos and Lin (1995) described a fast algorithm to map objects into points
in some k-dimensional space (k is user-defined), such that the dis-similarities are
preserved. Starting with a multi-dimensional scaling method from pattern recogni-
tion, the authors proposed a faster algorithm to solve the problem.
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For building video summaries, most, if not all, of the proposed approaches
make use of visual features only. No work has been done on the representation
of structural associations in video data by combining visual features with semantic
associations (By semantic associations, we mean the use of an annotation-based
video model (here, a semistructured data model) to capture the logical relationships
between the concepts described in the text annotations of the video data.). We take a
new look at the problem of abstracting video contents and find that knowledge
representation and reasoning techniques for concept languages developed in artificial
intelligence combined with database techniques provide an interesting angle to
attack such a problem.

3. Representing structural associations

3.1 Introduction

The representational formalism we are going to use for describing structural
associations belongs to the family of description logics. Description logics
(also called concept languages or terminological logics) (Brachman and Schmolze
1985, Nebel 1990, donini e al. 1994, Baader er al. 2003) are a family of logics designed
to represent the taxonomic and conceptual knowledge of a particular application
domain on an abstract. logical level. They are equipped with well-defined, set-
theoretic semantics. Furthermore, the interesting reasoning problems such as
subsumption and satisfiability are, for most description logics, effectively decidable.
In the following, we introduce the description logic that will be used to represent the
extracted structural associations.

3.2 Language

Expressions in this language are built from symbols taken from sets of concept names
and role names and a number of constructors that permit the formation of concept
descriptions (or simply concepts).

The set of constructors allowed by the language are given below.

Definition 1 (Syntax) Let C and R be two pairwise disjoint sets of concept names and
role names respectively. Let A € C be a concept name and R € R be a role name.
Concepts C, D are defined inductively by the following rules:

C.D—T|L|A4|€nD| 3R.C

Here, the concept T (top) denotes the entire domain of an interpretation, while the
concept L (bottom) denotes the empty set of objects.

In the following, we call this language L£SA (Language for Structural
Associations).

Definition 2 (Semantics) The semantics is given by an interpretation J = (A7, -7),
which consists of an (abstract) interpretation domain A, and an interpretation
function 7, which associates each concept C with a subset C7 of AY and each role
R with a binary relation R7 on AY. Additionally, J has to satisfy the following
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equations:

+F = AT
17=p

(cnbpy =c/np’

@R.C) = |dye A7 | 3dy: (dy.dy) € RT Ads € €7}

3.3 Knowledge bases

A knowledge base K = (7,.A) built by means of the description logic is formed
by two components: a TBox 7, the intensional one, and an ABox A, the exten-
sional one.

Properties of the concepts of interest in a particular application are specified at the
intensional level using the so-called terminological axioms. Let B and D be a concept
name and a concept respectively. Then, B= D is called concept definition, where D
gives necessary and sufficient conditions for membership in B. A concept name not
appearing in the left-hand side of any terminological axiom is called an atomic
concepi.

A TBox (or terminology) 7 is a (finite) set of terminological axioms.

An interpretation 7 satisfies the axiom B=D iff B/ = D7,

Definition 3 (Valid Interpretation) An interpretation 7 = (A7, 7)) is a valid interpret-
ation, also called a model, of a TBox T iff it satisfies every axiom in T .

We say that a concept C is subsumed by a concept D, written C C D, iff 7 € D7
for every valid interpretation .7, and C is equivalent to D, written C=D, iff C7 = D7
for every valid interpretation 7.

3.4 Reasoning services

In the following, we mainly resort to non standard inference services, namely
the computation of the least common subsumer (lcs) of a set of descriptions and
the most specific concept (msc) of an object.

A least common subsumer of a set of descriptions Dy,...,D, € £LSA is a most
specific description (in the infinite space of all possible descriptions in £S.A) that
subsumes all the D'js.

Definition 4 (Least Common Subsumer) (Baader et al. 1999)  Ler €y, ...,C, and E be
concept descriptions in LSA. The concept description E is a least commaon subsumer of
5 IR Cu (noted E = lexX €y, .. . ) iff

e C,C EVie[l.n], and
e F is the least concept description with this property, i.e. if E' is a concept descrip-
tion satisfving C; C E' Vi € [1,n)]. then EC E'
The msc is a process that abstracts an object ¢ by constructing a very specific
description msc(e) that characterizes o.
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Definition 5 (Most Specific Concept) Ler A be an ABox. o be an object in A, and € be
a concept description. C is the most specific concept for o in A, noted C = mse(0), iff
a€C7 and if C' is a concept description satisfying o€ CV, then C C .

Techniques for computing least common subsumers and most specific concepts
are described in Donini and Era (1992) and Baader and Kiisters (1998).

Subsumption in £LSA can be decided in polynomial time. Computing the /cs of two
LS A-descriptions C, D can be done in polynomial time and the size of the /es is
polynomial in the size of C and D (Baader er al. 1999).

4. Discovering structural associations

In the following, we propose two layers for representing video content (figure 2):

(1) Feature & Content Layer: it contains video visual features (e.g. colour, shape,
motion). This layer is characterized by a set of techniques and algorithms
allowing to retrieve video sequences based on the similarity of visual features.

(2) Semantic Layer: this layer contains objects of interest, their descriptions, and
relationships among objects based on annotations or extracted features.
It constitutes what we call the extensional part of a video database. Objects in
a video sequence are represented in the Semantic Layer as visual entities.
Instances of visual objects consist of conventional attributes (e.g. name,
actorlD., date. etc.).

Video data can be captured using a semistructured data model. This one describes
data using a graph, called data graph, with objects as vertices and labels on the edges.
Each object has a unique identifier from the type oid.

Definition 6 (Data Graph) A data graph DB = (V,U V., E,r) is a labelled rooted
graph. where V,, and V. are disjoint sets of oid’s corresponding respectively to atomic
and complex objects. V, UV, forms a finite set of nodes. r € V. is a root node:
ECV.xLx(V,UV,)isaset of labelled edges, where L is an infinite set of strings

Semantic Layer

Objects of interest, their
descriptions, mutual
relationships, ...

Feature & Content Layer
Colors, motions, shapes, ...

Algorithms for similarity of
physical features

Figure 2. Two layers for video content.




12 E. Bertino et al.

indicating labels. (a, I, b) will denote an edge going from the node a to the node b
and labelled |. We assume that all the nodes in V, U V. are reachable from the root
node.

Definition 7 (Simulation/Bisimulation) Ler G, = (V. E,) and G,= (V1. E;) be two
graphs, and L be a prescribed set of edge labels. A relation R on V', Vs is a simulation
if it satisfies:

VieL, ¥Yxi.y eV, Yxie Vs (x[{]y AxiRxy = 3yae Va(xa[l]y: Ay Rya)

X[y stands for an l-labelled edge from x to y.
Let Gy=(V\,E\,r) and Gy=(V5, Esry) be two graphs, where vy and ry are,
respectively, the roots of Gy and G». A relation R on V', Vs is a simulation if it satisfies:

1. r\Rry, and
2. V.\‘|._1'| eV 1 ¥x; € Va(x, /._1‘|)€E1 A Xy Rxs =3I € V}((.\':.I._l':_)E Ex A (1 Ry2)).

A relation R is a bisimulation if it is a simulation and the reverse R~ is also a
simulation.

A simulation R is typed iff whenever xRy, if v is an atomic type, then x must be an
atomic node too and have a value of that type.

Two nodes vy and vy are similar (respectively, bisimilar) if there exists a simulation
(respectively, a bisimulation) R such that vy Rv.

Informally, a simulation from a graph G, to a graph G> means that whenever there
is an edge in Gy, there is a corresponding edge with the same label in G.

A data graph DB conforms to a schema graph S, in notation DB < S, if there
exists a simulation from DB to S. The notion of conformance allows to define an
ordering on graph schemas. Informally, a schema graph S is a refinement of a schema
graph 8" iff whenever a data graph DB conforms to S it conforms to §’. Refinement
of schema graph can also be defined by means of simulation relation.

4.1 Discovering structures

A data graph presents video data as self-describing with no need for any intentional
description (i.e. an a priori schema). In such a minimalist approach, the schema
is missed even if it is partially and/or implicitly available. Very often, data is not fully
unstructured and exploiting, even a partial (Application-dependent) structure, can be
very beneficial, e.g. for browsing and querying the data, optimizing query evaluation
or improving storage.

We consider the problem of discovering rypical structural information of video
data. This problem, referred to as schema discovery, can be formulated as follows:
given a data graph DB, find the corresponding TBox (and hence the £SA graph) that
describes the common substructures within DB.

In this section, we propose a bottom up approach to deal with the schema discovery
problem. Since a data graph may conform to several schema graphs, we first consider
the problem of discovering the most specific schema graph of a data graph DB.
Then, we show how the most specific schema can be compressed to obtain an
approximate typing of the input data graph.

4.1.1 Extracting the most specific schema. We propose an algorithm, called Genk,
that allows one to abstract objects of a data graph. Abstraction is a well known
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mechanism in reasoning about individuals in description logic systems. It consists of
retrieving all the assertions characterizing a given object o and collecting them into a
single concept. Such a concept has the property of being the most specific concept
expressible in £LS.A of which the object o is an instance.

Algorithm 1 (Genk))
Require: a data graph DB=(V, UV, E . L,v.r)
Ensure: a knowledge base K=(Tg, A).
//Step 1. Generating A
1: for each (o, . o)) € E do
2 A< AU (l(0;,0))
3: end for
//Step 2: Generating Tg
//Initialization of specific descriptions and atomic types
: for each o; in V, do
//If an object o, is atomic we denotes by fype(o;) its atomic type
N, < type(o;)
: end for
: for each o; in V, do
8y, 0
10: end for
//Computation of the exact structure for each object
11: for each /{0, 0;) € A do
12: 8, <&, M3ALN,,
13: end for
14: for each generated 4, do
15t Ts+TgU [N, =8,)
16: end for
//Step 3: Merging equivalent concepts
17: Merge together equivalent concepts in 7 g
18: return K =(73, A)

The algorithm Genkl works as follows:

e Step I: it maps a data graph DB to an ABox A. We view a database, and
hence the Semantic Layer, as a knowledge base K = (#,.A) with an empty
TBox. The translation of a data graph into an ABox is straightforward.

e Step 2: a TBox, called T, is derived. For each object ¢ occurring in A, the
TBox T g contains an axiom of the form N, = §,. where N, is a concept name
and §, is a concept term corresponding to mse(o). This assertion reflects the
knowledge in the ABox A concerning the object 0. By doing so, we record in a
single concept all the information about each object occurring in A as it can be
extracted from all the assertions of the ABox.

e Srep 31 It merges together equivalent concepts in 7s.

Note that the test of equivalence between two concepts can be reduced to a
subsumption test (C = D iff C € D and D C C). Therefore, Step 3 can be achieved
by first applying the classification process on the concepts of 7. leading to explicit
subsumption relationships between concepts, and then equivalent concepts are
identified and merged together.
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Proposition 1 (Correctness) Let K = (75, A) be the knowledge base generated by
applving the algorithm GenK on a data graph DB = (V,U V. E,r), and Gr, =
(V. €1.) be the description graph corresponding to Ts.

(h
(2)

The data graph DB conforms to Gy,.
The £L graph Gr, = (V.. E7.) is the most specific dual schema graph of DB,

Proof 1 Let N, =4, be the most specific concept associated to the root r (N, is
generated by the algorithm GenK)) and let 7 be a valid interpretation of K which
associates each object occurring in A with its most specific concept in 7s.'

We define a relation R from the nodes of DB to those of Gy, such that:

Yo € V,UV,YGy € Vr,,0RGy iff 0 € N7,

Let R~' be the inverse relation of R (i.e., GyR "o iff 0RGy).

(1)

(2)

Since Gy, is a dual schema graph (because it lists all required edges rather than
allowed edges,) we must show that G, < DB.

We have to show that R~ is a simulation, and thus Gz, < DB.

VN, N; € C, Yo; € O,

® VG, Gy eVy, if (Gy,l,Gy) € &7, then the description of N; contains the
constraint 3/.N,. Hence, Yo, € N}’ .30, € Ny such that (0;,0;) € 1 (ie.,
(o, 0)) € A. ()
e Il o; and Gy, are in R-relation then o, € N,‘:". (i1)
(1) and (ii) lead to
YGy, Gy € Vg, Yo e V, UV, if (Gy.l.Gy)e &z, and 0; RGy, then Jo;e
¥y U V. such that /(o 0)) € E and 0; RGy;. (iii)
In the same way, we can show that:
Yo;,0; € V,U V. NGy, € V1 if (01,1,0)) € E and Gy, R~ 0; then 3Gy, € Vz,
such that (Gy,./,Gy,) € E7. and Gy R 'o; (since N; = msc(o;)). (1v)

Let us now show that Gy, is a rooted graph and its root is in R-relation with the
root r of DB.

ris a root of DB implies that each object in DB is reachable from r. (v)
(iv) and (v) implies that each node in Gy is reachable from the node G .
Hence, Gy is a root of Gr,. (vi)
rand Gy are in R-relation since r € N, (vii)

(iv), (vi) and (vii) implies that R "is a simulation from DB to Gr1.. Thus,
Gz, < DB.

Gr. = (V7. E7,) 15 the most specific dual schema graph of DB.

(iii), (vi) and (vii) implies that R is a simulation® from Gz, to DB. Thus,
DB < qu_\..

The interpretation 7 can be computed using the well known refization reasoning service provided by
description logic systems.
"Hence. R is a bisimulation between DB and Gr..
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The transitivity ol simulation ensures that whenever S’ is a dual schema graph
such that DB conforms to §' (i.e., §'<DB), then & <Gr,. Hence. Gz, is the most
specific schema graph of DB.

4.2 Approximate typing

In the previous section, we provided an algorithm for extracting the most specific
schema abstracting a data graph. The data graph conforms to the schema specified
as a set of terminological axioms forming a TBox. The resulting TBox exactly
matches the data graph (each object is associated with a concept that describes it
precisely). Although, the number of concepts (in other words the number of axioms
in the TBox) is reduced by grouping together equivalent concepts, the most specific
schema may remain too large.

In general, we do not expect to find strict regular structures in video data. Indeed,
in a data graph many of the most interesting structures show up in a slightly different
forms. So, we can be often satisfied by a compact graph schema that roughly
describes the input data graph.

In the following, we propose an approach for reducing the size of the most specific
schema by grouping together the concepts that have similar structures. To do that,
we replace sets of concept descriptions by their least common subsumer in the TBox.

4.2.1 Computing common subsumers. Given a data graph DB and a threshold k,
Comp7 computes frequent substructures in DB. This algorithm is based on the
following proposition.

Proposition 2. Let DB = (V,U V., E,r) be a data graph. A description D is verified
by k objects in DB iff D T les(imsc(oy,). . . .. mse(oy)). for some o; in V., je[l.k]

So far. the most specific schema (i.e. the content of a TBox) of a data graph is
composed of most specific concepts. Therefore, given a most specific schema 7z of
a data graph DB and a threshold k&, we can infer the frequent descriptions by
computing the least common subsumers of each k concepts in 7s. The computation
terminates since Tg is finite.

4.2.2 The algorithm Comp7. Let 7 be a given TBox. We note by Cr =
[(Niyouus N,} the set of all concept names occurring in 7, and we note by
Candidate,(Cy) the set of subsets of Cr of cardinality i (i.e. Candidate; (Ct) =
{C| C € Cy and 4C =i}, where the symbol ¢ stands for cardinality). For a non-
empty subset C = {Ny,...,N,,} of Cr, we denote by /les[C] the concept description
computed by les(Ny. ..., N,,) and we denote by N the concept name associated with
this description.

In the following, GenK' stands for a slightly modified version of the algorithm
GenKk from which we remove Step 3, which consists in merging together equivalent
concepts. GenK' is obtained by removing line 17 from the algorithm Genk.

Algorithm 2 (CompT)

Require: a data graph DB, a threshold k

Ensure: a knowledge base X = (7, .A)

1: GenK'(DB)

2: Let K = (75, A) be the knowledge base generated by GenK'.
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: Compute Candidate;(Cr)
: for all Ce Candidatey(Cr,) do
Compute les[C]
if les[C] # T then
T «— TU({N¢ = les[C])
end if
: end for
: Merge equivalent concepts in 7
: Cleaning(7)
sreturn K = (7, .A)

TSR0 e iahin s B

~d

L

The input of the algorithm Comp7 is a data graph DB and a threshold k. The first
step consists in computing (by a call to GenK') the knowledge base K = (7. .A),
where T is the most specific schema abstracting the data graph DB. Given this most
specific schema and corresponding C7, a most specific TBox 7 containing least
common subsumers is derived. To reduce the number of concepts in 7, equivalent
concepts are merged together.

Finally, a supervised cleaning process can be used for removing uninteresting
concepts.

Let us briefly describe an interactive cleaning process for removing ‘uninteresting’
concepts from 7. This process is based on a simple idea that consists in assigning
each object to its most specific description in 7, and then identifying concepts with
less than k instances.

The cleaning step consists in two main tasks:

(1) We assign each object in A to its most specific concept in 7. This is called
realization. We denote by Jr the resulting interpretation. The realization
ensures that if an object o belongs to a concept named N. then N describes at
least a part of o which is not described elsewhere in 7. Let n = tNY% (i.e. the
cardinality of N given [Jr). Hence, the differential knowledge conveyed by N
concerns n objects.

(2) We mark ‘Removable’ each concept name N in 7 such that tNY® < k. After
that, an expert user may decide which concepts have to be removed.

5. Conclusion

Browsing and retrieval require that the source material first be effectively indexed.
While we tend to think of indexing supporting retrieval, browsing is equally
significant for video source material. By *browsing” we mean an informal perusal
of content that may lack any specific goal of focus. Since a video database can have
more than one type, we considered first the extraction of the schema that best
describes the data of the Semantic Layer. This schema is the most specific of the input
instance and corresponds to perfect typing. For each object in the Semantic Layer,
we computed a single type description reflecting relevant assertions about the object
in the Semantic Layer. The computed description is the most specific concept.
expressible in our type description language. of which the object is an instance.
The result of this step is a most specific schema abstracting the Semantic Layer
content. Second, due to the irregularity of structures in video databases, perfect
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typing may lead to large sets of descriptions. We have shown that it is possible to
identify similar, and not only identical, objects, and provide an approximate typing.
For that, by computing least common subsumers of some appropriate descriptions
in the most specific schema generated in the previous step. we built a compressed
version of this most specific schema.

Due to the visual nature of video data, the proposed framework should be
extended to take into account the visual features. Hybrid representation frameworks
can provide a nice basis for such an extension. Cyclic graphs are a natural structure
for a full representation of the semantic layer of video data. Dealing with cyclic
structures in schema discovery will be an important extension. The preliminary
investigations reported in Baader (2003, 2004) can serve as a starting point.
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