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An efficient buffer management scheme for multimedia streaming

servers is presented. The proposed scheme exploits the reference

popularity of multimedia objects as well as the time interval between

two consecutive requests on an identical object. Through trace-driven

simulations, it is shown that the proposed scheme improves the

performance of multimedia servers significantly.

Introduction: Recently, multimedia streaming services such as Video

on Demand (VOD) are rapidly becoming prevalent, and caching of

multimedia objects in these environments is becoming increasingly

important. Owing to the large volume of multimedia objects and the

strictly sequential access pattern, traditional buffer cache management

techniques will not work well for multimedia server systems. To

address this problem, Dan proposed the interval caching policy that

exploits the short-term temporal locality of accessing the same

multimedia object consecutively [1]. By caching only the data in

the interval between two successive streams on the same object, the

following stream can be serviced directly from the buffer cache

without I=O operations. Ozden et al. proposed the distance caching

policy which is similar to interval caching [2]. However, these

interval-based caching mechanisms exploit only the short-term

temporal locality of two consecutive requests on an identical object

and do not consider the popularity of an object. Consequently, when

the size of a multimedia object is not sufficiently large or when the

inter-arrival time of stream requests is too long, there is little

opportunity to obtain the effectiveness of interval caching.

In this Letter, we propose the Popularity-aware Interval Caching

(PIC) scheme for multimedia streaming servers. PIC resolves the

aforementioned problems of interval caching by considering reference

popularity as well as request intervals. We introduce the concept of

virtual interval based on the past reference behaviour of multimedia

objects to exploit the reference popularity. Trace-driven simulations

with extensive VOD traces show that the PIC scheme performs better

than the interval caching policy, the Least Recently Used (LRU)

policy, and the Most Recently Used (MRU) policy in terms of cache

miss ratio.

System model: Our multimedia server consists of an I=O manager, a

buffer manager, and a network manager (Fig. 1). The buffer manager

divides the memory buffer into the cache and the read-ahead buffer.

The read-ahead buffer stores data to be sent immediately to clients

while the cache stores data already sent to clients which can be reused

when requests for the same object arrive. Note that data in the

memory buffer do not actually move their physical positions (from

the read-ahead buffer to the cache) but just a cache flag is used to

indicate whether it is in the cache. For each stream request, when the

requested block is not in the cache, the I=O manager acquires a free

block, inserts it into the read-ahead buffer, and starts disk I=O.
However, if the requested block is in the cache, the cached block is

serviced directly without I=O operations. Finally, the network mana-

ger reads necessary data blocks from the memory buffer and sends

them to the client through the network.

Fig. 1 Multimedia streaming server architecture

Popularity-aware interval caching scheme: For any two consecutive

requests for the same object, the later stream can read the data brought

into the memory buffer by the earlier stream if the data is retained in

the cache until it is read by the later stream. Understanding such

dependencies makes it possible to guarantee continuous delivery of

the later stream with a small amount of cache space. Let an interval

denote the distance of the offsets between two consecutive requests on

an identical object. The interval caching policy aims at maximising

the number of concurrent streams serviced from the memory buffer.

Hence, with a given cache space, the interval caching policy orders

the intervals in terms of space requirements and caches the shortest

intervals (Fig. 2a).

Fig. 2 Interval caching and popularity-aware interval caching

a When cache size is 20, interval caching selects intervals 2 and 1 for caching
b When cache size is 20, PIC selects interval 2 and virtual interval 1 for caching

We add the virtual interval concept to this. A virtual interval is

defined as the distance of the offsets between the latest request on an

object and the virtual request on that object (Fig. 2b). A virtual request

is not a real request from a client but a predicted request that is expected

to be generated at that time based on the past requests on an object. To

predict forthcoming requests precisely we use an exponential average in

calculating the virtual interval which puts more weight on the latest

interval but also considers previous intervals. Let I be the latest interval

and VIn�1 be the (n� 1)th virtual interval. Then, the nth virtual interval

VIn is computed as

VIn ¼ a � I þ ð1� aÞ � VIn�1 ð1Þ

where a is a constant between zero and one, and determines how much

weight is put on the latest interval. We set the default value of a as 0.6

through empirical analysis. Since the virtual interval is updated only

when a new request on the object arrives, it may be overestimated when

there are no requests for a long time. To resolve this phenomenon, we

use an adjustment function. Let tn be the time since the latest request

arrived. Then, the adjusted value should be close to the original value

when tn is small, and it should be large enough when tn becomes large.

The following adjustment function satisfies these requirements.

fn ¼ etn=VIn ð2Þ

After this adjustment, (1) is replaced by

VI 0n ¼ fn � VIn ð3Þ

and the adjustment function is invoked periodically. PIC allocates the

cache space to intervals (including virtual intervals) by increasing order

of the interval size. Since the cache operations need to find only the

largest interval in the cache when deciding whether a new interval will

be cached or not, the intervals do not need to be completely sorted.
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Hence, we use the heap data structure for an efficient implementation.

By allocating the cache to as many intervals as possible, PIC could

maximise the number of concurrent streams serviced from the cache.

Furthermore, through the virtual interval concept, PIC caches the prefix

of popular multimedia objects before they are actually requested. This

could eventually reduce the start-up latency of popular streams per-

ceived by users which was not possible to the interval caching policy.

Fig. 3 Performance comparison

Performance evaluation: We gathered traces from several commer-

cial VOD servers and performed extensive simulations to compare

PIC with IC (interval caching), LRU and MRU. Among various

results, we presented only one result. (Note that results from other

traces are similar.) The trace shown in the result has 274 video files,

the average playback time of which is 167 s with an average inter-

arrival time of 44 s [3]. Fig. 3 shows the miss ratio of each scheme

against the memory buffer size. The PIC scheme shows consistently

better performance than the other three schemes. Specifically, PIC

performs better than IC, LRU and LFU up to 40%, 14% and 49%,

respectively. The performance of IC in our experiments is not so good

as in [1]. This is because the object size is relatively small and the

inter-arrival time is long in our traces. Note that we used real world

traces while experiments in [1] were performed with synthetic traces.

Conclusion: We have presented the Popularity-aware Interval Cach-

ing (PIC) scheme for multimedia streaming servers. By considering

reference popularity as well as the request interval of multimedia

objects, the PIC scheme performs better than interval caching, LRU

and MRU in terms of cache miss ratio for various real VOD traces we

considered.
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