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Abstract: Current middleware does not offer enough support to cover the demands of emerging application domains, such as
embedded systems or those featuring distributed multimedia services. These kinds of applications often have timeliness
constraints and yet are highly susceptible to dynamic and unexpected changes in their environment. There is then a clear need to
introduce adaptation in order for these applications to deal with such unpredictable changes. Resource adaptation can be achieved
by using scheduling or allocation algorithms, for large-scale applications, but such a task can be complex and error-prone. Virtual
machines (VMs) represent a higher-level approach, whereby resources can be managed without dealing with lower-level details,
such as scheduling algorithms, scheduling parameters and so on. However, the overhead penalty imposed by traditional VMs is
unsuitable for real-time applications. On the other hand, virtualisation has not been previously exploited as a means to achieve
resource adaptation. This study presents a lightweight VM framework that exploits application-level virtualisation to achieve
resource adaptation in middleware for soft real-time applications. Experimental results are presented to validate the approach.

1 Introduction

The recent emergence of new application areas for
middleware, such as embedded systems, real-time systems
and multimedia, has imposed new challenges, which most
existing middleware platforms are unable to meet. Many
applications (e.g. distributed multimedia) are themselves
inherently dynamic. For instance, the number of participants
in a video-conference system may dynamically vary at any
time. As a consequence, the resource requirements of such
an application will inevitably fluctuate over time. Therefore
such platforms should provide facilities to adapt (i.e.
dynamically reconfigure) the resources allocated according
to the perceived changes to the environment. An example
of such an adaptation is a redistribution of both CPU-time
and memory to the set of activities that a system performs.

Resource adaptation can be achieved by using scheduling or
allocation algorithms, for large-scale applications, but such a
task can be complex and error-prone. Virtual machines
(VMs) represent a higher-level approach, whereby resources
can be managed without dealing with lower-level details,
such as scheduling algorithms, scheduling parameters and so
on. Also, VMs are an effective mechanism to isolate
resources. Hence, VM ensures that the allocated resources
will be available when needed even in overloaded conditions.
VMs have successfully been used in grid and parallel
programming environments. In addition, recent trends in
utility computing, including data centres, report using
virtualisation as a means to optimise resource usage.

However, traditional virtualisation faces two core challenges:
it does not offer quality of service (QoS) guarantees and has
a performance penalty that is unsuitable for certain kinds of
applications [1]. In the case of highly dynamic real-time
environments, we advocate using more efficient lightweight
VMs as such environments may require frequent creation and
deletion of VMs. Crucially, virtualisation has not been
previously exploited as a means to achieve resource
adaptation. We introduce an application-level virtualisation
framework, called virtual task machine (VTM). Our focus is
on developing an open-ended framework for lightweight
virtualisation, rather than being tied to any particular VM
implementation. Although a particular implementation of the
framework is introduced, this implementation is only
presented as a means to evaluate the framework. The main
contribution of this paper is a lightweight VM-based
approach to resource adaptation in middleware that achieves a
better performance than traditional VMs.

The paper is structured as follows. Section 2 presents an
analysis of related works. The lightweight virtual machine
framework is presented in Section 3. The evaluation of the
framework is shown in Section 4. Finally, some concluding
remarks are presented in Section 5.

2 Related works

There has been a significant interest in the development of
resource models for distributed object systems. The Object
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Management Group’s (OMG) dynamic scheduling adopted
standard [2] has been released to overcome the limitations
imposed by real-time CORBA (RT-CORBA) [3]. The QuO
project [4] provides a framework for the specification of
QoS of CORBA object interactions. A joint effort between
the QuO project and the TAO project [5] is being carried
out, which aims to study adaptive middleware for real-time
systems [6]. The real-time adaptive resource management
[7] provides middleware mechanisms for QoS negotiation
and adaptation. The ERDoS project [8] offers a generic and
comprehensive resource framework. dynamicTAO [9]
is part of the 2K project [10], which aims at developing
a distributed operating system with an integrated
architecture for adaptation.

All the middleware approaches mentioned above provide
some support for resource management, however, none of
these approaches makes use of VMs to carry out resource
allocation or resource adaptation. As said earlier, VMs have
successfully been used in grid and parallel programming
environments [6, 11–17]. In addition, recent trends in utility
computing (including data centres) and cloud computing [18]
report using virtualisation as a means to optimise resource
usage. Examples of such VMs are Xen [19] and VMware
[20]. However, these approaches are heavyweight VMs
which provide a virtualisation of a complete operating system
environment over a host operating system whose
performance penalty goes from 10 to 20% [21, 22]. Even
worse, this penalty is higher when there is a huge amount of
input–output (IO) operations. Moreover, heavyweight VMs
do not offer response time guarantees [1]. Operating system-
level VMs [23, 24] are an alternative to obtain a performance
near to the native operating system. However, the main
drawback of this approach is that the kernel needs to be
recompiled. Therefore we advocate using application-level
virtualisation instead. Finally, we are not aware of any work
exploiting virtualisation as a means to achieve resource
adaptation. A lightweight VM framework is presented in the
following section.

3 VM framework

3.1 Resource virtualisation

We focus on application-level virtualisation. This kind of
virtualisation is built on top of the operating system
services. The framework offers partial virtualisation. That
is, instead of providing a virtualisation of the complete set
of system resources, our approach virtualises only the
resources that are required by a particular kind of
application. The most important elements of the
virtualisation framework are abstract resources, resource
factories and resource managers, as depicted in Fig. 1.

Abstract resources explicitly represent system resources.
There may be various levels of abstraction in which higher-
level resources are constructed on top of lower-level
resources. At the lowest-level are represented physical
resources such as CPU, memory and network resources. This
level may contain information about the type and speed of the
CPU as well as the type and speed of the physical network.
Higher abstraction levels then include the representation of
more abstract resources such as virtual memory, team
of threads, network connections and more generic type of
resources. In addition, abstract resources support operations
that allow them to have access to both the adjacent higher
and lower level. The recursive use of these operations allows
the user to navigate through all abstraction levels.

Resource managers are responsible for managing
resources, that is, such managers either map or multiplex
higher-level resources on top of lower-level resources.
Furthermore, resource schedulers are a specialisation of
managers and are in charge of managing processing
resources such as threads or virtual processors (VPs) (or
kernel threads). Therefore different granularity levels for
resource management can be achieved.

Lastly, the main duty of resource factories is to create abstract
resources. For this purpose, higher-level factories make use of
lower-level factories to construct higher-level resources.

Fig. 1 UML class diagram of the VM framework

230 IET Softw., 2011, Vol. 5, Iss. 2, pp. 229–237

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2009.0091

www.ietdl.org



Resource factories follow the principle of the factory method
design pattern [25], whereby details involved in the
instantiation of an object or component are hidden. For
instance, the links to higher and lower levels of a new
resource instance are set within the factory functionality.

In addition, machines are capable of performing some
activity, that is, they receive messages and process them.
Thus, machines may be either abstract processing resources
(e.g. threads) or physical processing resources (e.g. CPUs). In
contrast, jobs only refer to abstract processing resources since
they inherit from the abstract resource class. Both abstract
resources and jobs are created by factories. In addition,
abstract resources are managed by managers. However, since
jobs are processing resources, they are managed by schedulers
instead. Importantly, VTMs are themselves jobs, which may
encompass both lower-level jobs (e.g. threads and processes)
and abstract resources (e.g. memory and network resources).
A VTM provides the execution environment of a particular
task or service (e.g. transcoding video files to MP4). Besides,
the VTMFactory and VTMScheduler are responsible for
creating and scheduling VTMs, respectively.

Some of the most relevant operations supported by the
framework are introduced below. The interface of a job
exposes the operations getSchedParam() and
setSchedParam(). The former is in charge of accessing
predefined settings. The latter is responsible for performing a
control admission test. If successful, resources are reserved
and the scheduling parameters are set. The manager interface
exposes the operation admit() which performs an
admission control test that determines whether or not there
are enough resources to satisfy a resource request. In a
successful case, resources may be reserved by using the
operation reserve(). Reservations can then be liberated
by invoking the operation expel(). The operation
adapt() makes use of the two former operations to carry
out a reallocation of resources.

Similar to factories, through the operation
getResources(), resource managers are able to retrieve
the references of the underlying resources they control. Such

references may be included or removed from a manager’s
registry by using the operations addResource() and
removeResource(), respectively. In addition, the
management policy is obtained by accessing the operation
getPolicy(), whereas the operation setPolicy()
allows the user to set the management policy of the manager.
Moreover, the scheduler allows the user to suspend and
resume an abstract processing resource by invoking the
operations suspend() and resume(), respectively.
Lastly, the execution order of jobs is determined by the
operation schedule().

For instance, a particular instantiation of a VTM and their
associated scheduler and factory is shown in Fig. 2 (note,
however, that the framework does not prescribe any restriction
in the number of abstraction levels nor the resource types
modelled). At the top-level of the resource hierarchy is placed
a VTM, which encompasses both memory buffer and a team
abstraction. The team abstraction in turn includes two or more
user-level threads. Moreover, a user-level thread is supported
by one or more VPs, that is, kernel-level threads. At the
bottom of the hierarchy are physical resources. In addition, a
VTM factory is at the top of the factory hierarchy and uses
both a memory and a team factory. The team factory is then
supported by both the thread and the VP factory. The
manager hierarchy involves the team scheduler and the
memory manager, which support the VTM scheduler to
suspend a VTM by temporally freeing CPU and memory
resources, respectively. The thread scheduler in turn allows
the team scheduler to suspend its threads. The VP scheduler
supports the pre-emption of VPs. Conversely, this hierarchy
also provides support for resuming suspended VTMs.

3.2 VTMs: a particular implementation

As mentioned before, a VTM is a lightweight VM which partially
virtualises the resource execution environment. For example, in
the case of providing support for multimedia communication, it
is enough to provide a virtualisation of network and CPU
resources. We developed a particular instantiation of the

Fig. 2 Particular instantiation of a VTM, factory and manager hierarchies

a Hierarchy of abstract resources
b Factory hierarchy
c Manager hierarchy
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framework which involves such kind of virtualisation. Our VM
prototype is a user-space module constructed in C++ on top
of POSIX threads and runs on Linux boxes. The signals
SIGSTOP and SIGCONT are used to suspend and resume the
execution of processes, respectively. The VTM scheduler is
periodically woken up by a timer according to the quantum
value. The VTM scheduler can be accessed either as a
command shell or as a service from an executing program.
Note, however, that the framework does not prescribe any
restriction in the type of resources virtualised nor it is tied to
any particular implementation.

3.2.1 Network bandwidth: Virtualisation of network
bandwidth resources is achieved by controlling the
bandwidth share of both incoming and outgoing bandwidth.
This is implemented by using Diffserv based on a
hierarchical token bucket queuing discipline [26]. This
scheduling algorithm is used to limit the rate of received and
sent network traffic. It is based on class services, whereby
traffic can be classified and different assured rates can be
associated with each class. The following service classes
were defined. A 6 Mbit bandwidth is assigned to the gold
service while the remaining 4 Mbits are allocated to the best
effort class. At any time the spare bandwidth is allocated
with the highest priority to the gold service. This
configuration is achieved by marking packets at the edge
router taking into account the target IP address. Such packets
are forwarded to an output router, which places the packets
in different queues according to the markings. The output
router splits the network bandwidth into these queues. The
operation network_reserve(VTM, bandwidth,
target_ip_adresses) is used to reserve network
resources. This operation involves remotely invoking a
number of scripts in both routers to achieve this reservation.
Such scripts use the tc shell command to manipulate traffic
control settings. This command is part of the iproute2
Linux package [27] already included in some distributions
such as Debian and RedHat. Further description of the
network configuration is presented in Section 4.1.2.

3.2.2 Computer processing unit: Virtualisation of CPU
resources is achieved by employing a two-level scheduling
model. The VTM scheduler is responsible for scheduling
the processing resources of the VTMs. For this purpose, the
VTM scheduler manages the team schedulers associated
with such VTMs. The VTM scheduler uses a scheduling
structure similar to [28] and extends it to a two-level
scheduling structure. Instead of scheduling single jobs, a
two-level structure enables scheduling job groups. This
feature is required as a VTM can contain multiple jobs.

The VTM scheduler is placed at the highest level, as shown
in Table 1. Team schedulers are then located at the second
level of scheduling. In addition, active jobs are placed at
the third highest level. Finally, non-active jobs are placed in
a waiting list, a level below active jobs. The VTM

scheduler wakes up periodically given a quantum time, for
example, every 10 ms, to dispatch the next team scheduler
by un-blocking it and then returns to sleep. The team
scheduler then removes the jobs located at the third level
and introduces them into the waiting list at the bottom
level. Following this, the team scheduler selects one or
more jobs from the waiting list and places them at the third
level. Afterwards, the team scheduler blocks itself and the
active jobs start executing. The first level of scheduling
supports rate-monotonic [29], whereas the second
scheduling level uses a round-robin policy [30]. A job may
be either a thread or a process depending on the
implementation of the scheduling structure.

The rate-monotonic policy is realised by generating a
dispatch table according to both the period and the
execution time of a VTM. The dispatch table defines the
execution order of VTMs. Hence, this table contains a
repeatable set of time slots, whereby each slot corresponds
to a slice of CPU time. Such a dispatch table is
automatically generated by the VTM scheduler according to
either the period and CPU usage or the period and
execution time. Note that our framework is not constrained
to use rate-monotonic at the first scheduling level, rather, a
scheduling policy can be selected based on the environment
demands. For instance, EDF scheduling policy [29] is
suitable for more dynamic environments but rate-monotonic
behaves better in overload conditions [31].

The operation for CPU reservation is the following:

cpu reservation(VTM,period,execution time,

cpu usage)

An example of how this operation can be employed, consider
a scenario in which a video-on-demand (VOD) server transmits
video streams and also carries out the transcoding of video files
to MP4 [32]. Since a video transcoding job is CPU intensive, it
is needed to reserve enough resources for time-sensitive
operations such as stream transmission. The process of
resource reservation is simple as can be seen below:

1. vtmVOD_bestEffort.addResource(pid_transcode1)
2. vtmVOD_bestEffort.addResource(pid_transcode2)
3. vtmSched.cpu_reservation(vtmVOD_gold, 40, 16)
4. vtmSched.cpu_reservation(vtmVOD_bestEffort, 80, 8)
5. vtmSched.schedule()

The process ids of the transcoding processes are given as
input parameters in order to add them into vtmVOD_bestEffort

(lines 1 and 2). We assume that the processes in charge of
the stream transmission are already bounded to
vtmVOD_gold. A CPU reservation for vtmVOD_gold is
performed in which 16 ms are assigned in a 40 ms period
(line 3), whereas vtmVOD_bestEffort has 8 ms allocated within
an 80 ms period (line 4). Hence, the CPU reservation
settings shown in Table 2 are defined. As a result of
performing a new schedule (line 5), the VTM schedulerTable 1 Priority scheduling structure

Scheduling structure

Level Scheduler/jobs

1 VTM scheduler

2 team scheduler

3 active jobs

4 waiting jobs

Table 2 Scheduling parameters of the VTMs

Scheduling parameters of VTMs

VTM Period, ms Execution time, ms

vtmVOD_gold 40 16

vtmVOD_bestEffort 80 8
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generates the dispatch table shown in Table 3. Following, the
VMs start executing, for example, when vtmVOD_bestEffort is
active, the two transcoding processes share the CPU in a
round-robin fashion at the second scheduling level. Again,
our framework does not prescribe using round-robin; the
only consideration that needs to be taken into account is
that the selected scheduling policy must assure that the jobs
contained in the active VTM fairly share the CPU.

Using a bare POSIX-type operating system such as Linux
to achieve CPU virtualisation has two main drawbacks.
First, the time-shared policy used by this type of operating
system makes it impossible to know when the kernel is
going to give a process the CPU even when process
priorities are set, in the best case we could only assure that
a process would get the CPU more often than other
processes with lower priority. Secondly, although this kind
of CPU reservation is achievable by using POSIX timers
and signals, the complexity of using them is certainly much
higher than using our API.

3.3 Resource adaptation in middleware

Although we focus on application-level virtualisation, our
approach can also be used at the middleware level since the
only requirement imposed by our VM is to have access to
the operating system services. Our middleware offers hooks,
called interceptors, which are used to co-ordinate
interactions between the middleware and the VMs.
Interceptors are dynamically pluggable components that
may be inserted in the communication path of component
and connector interconnections. Monitor interceptors are in
charge of detecting QoS violations whereas resource
interceptors are responsible for accessing VTMs able to
allocate CPU and network bandwidth resources.

The middleware also supports control aspects which
include strategy selectors and strategy activators. It is the
responsibility of strategy selectors to decide which strategy
to apply upon the occurrence of a QoS violation. Strategy
activators are then in charge of realising the adaptation
strategy by providing the detailed implementation of this
strategy. Hence, the strategy selector has access to the VTM
scheduler to perform resource adaptation. The VTM
scheduler supports the following resource adaptation
operations:

cpu adapt(VTMx,VTMy,periodx,periody,

exec timex,exec timey)

network adapt(VTMx,VTMy,bandwidthx,

bandwidthy)

4 Evaluation

4.1 Quantitative evaluation

We present a performance evaluation of the C++ prototype
and compare it with Xen whose performance is comparable to
VMware’s [21, 22]. Also, an evaluation of the CPU
adaptation capabilities of both the lightweight VM
framework and Xen is performed for an experimental
scenario involving a VOD middleware system.

4.1.1 VM performance: The experiments were carried out
on a Pentium 4 at 1.2 GHz with 1 MB of cache memory and
3 GB of RAM memory running Linux Fedora 7 Kernel 2.6.22
with Xen 3.1.0. Xen Domain0 and the guest domains were set
up with 500 MB RAM. The lightweight VM was run directly
on top of the Linux operating system.

Scheduling overhead of lightweight VMs: In the case of
having two VMs running, whereby each one contains two
jobs, we obtain a scheduling overhead of 0.008 ms, as
shown in Table 4. On the other extreme where we have
200 VMs and each VM has 200 jobs, we obtain an
overhead of 0.265 ms. The overhead is acceptable for
applications having execution times in the order of tens of
milliseconds, such as our experimental scenarios (see
below), where the performance penalty is around 1–2%.

Adaptation overhead: We also performed a number of tests
to calculate the resource adaptation overhead. As shown in
Table 5, the first three CPU adaptation scenarios involved
running one, two and 20 VMs, respectively. In these
scenarios, the lightweight VMs were given 20 ms of
execution time over a 400 ms period. In the case of Xen
each VM was given 20% of CPU. The fourth scenario
involved 200 VMs running 20 ms of execution time over a
4000 ms period. In the latter three cases, the test for CPU
adaptation consisted of giving more CPU time to a VM out
of another VM. For instance, the lightweight VMx was
given 10 ms more of execution time out of VMy. That is

Table 3 Dispatch table

Dispatch table

Time slot, ms VTM

1–8 vtmVOD_gold

9–16 vtmVOD_gold

17–24 idle

25–32 idle

33–40 idle

41–48 vtmVOD_gold

49–56 vtmVOD_gold

57–64 idle

65–72 idle

73–80 vtmVOD_bestEffort

Table 4 Scheduling overhead of lightweight VMs

No VM No jobs Scheduling overhead, ms

1 2 2 0.008

2 2 20 0.008

3 2 200 0.008

4 20 2 0.023

5 20 20 0.050

6 20 200 0.260

7 200 2 0.039

8 200 20 0.053

9 200 200 0.265

Table 5 CPU adaptation overhead

No VM Lightweight VM, ms Xen VM, ms

1 1 0.099 226.65

2 2 0.099 443.76

3 20 0.436 –

4 200 212.74 –
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VMx was set to 30 ms of execution time, whereas VMy was
downgraded to 10 ms. In all the cases, the VM obtaining
more resources was running a video file transcoding process
whereas the rest of the VMs were idle. The adaptation time
was measured 30 times and the average time was given as a
result. Our results show that the more lightweight VMs that
are running, the higher the overhead that is imposed.
Nevertheless, in the worse-case scenario where we have up
to 200 VMs, we obtain an overhead of only 212.74 ms. In
the second scenario, one Xen VM was downgraded from 20
to 15% of CPU, whereas the other one was upgraded from
5 to 10% of CPU. It should be noted that our lightweight
VM is much faster.

In the case of the network adaptation, consisting of
changing the bandwidth share of the service classes, our
results show that such an adaptation takes 49.79 ms
regardless of the number of lightweight VMs running.

4.1.2 VOD scenario: CPU and network adaptation:
The experiments were carried out on the testbed shown in
Fig. 3. The network routers Edge1 and Edge2 involve a
PC Pentium III at 800 MHz, 64 MB RAM, both Edges
running Linux Red Hat 7.2 Kernel 2.4.7-10. Both, the
core and the video server are a Compaq 6510 laptop,
Core 2 Duo T7300 at 2 GHz, 2 GB RAM. The VOD
system employs MPEG-TS (MPEG-4 Part 14) and RTP.
We use the VideoLAN Software [33], which is a
middleware system that allows for the transmission of
video streams in a distributed environment. The video
transmissions are based on a 14.82 MB QuickTime (mov)
file which is transcoded to MP4 (MPEG-4 multimedia
container file format) [32] by the video codecs. To
integrate our VM framework with the VOD system, we
have added both resource and monitor interceptors to the
middleware. A traffic generator is used to overload the
network by injecting traffic. Resource virtualisation is
carried out only in the server side in the experimental
scenario.

For this experimental scenario, consider that up to five
video streams can be supported by the gold class, whereas
the best effort class supports the execution of the two
transcoding processes and deals with the bandwidth
demands of the injected traffic. The gold class provides
QoS guarantees whereas the latter does not offer any
guarantees. We follow the approach defined in [28] to
obtain the execution time required to process a frame on the
server side. In this approach a number of runs are executed
on the target platform to have an application profile of the
CPU demands. The number of runs is based on the central
limit theorem in order to converge to a normal sampling
distribution which happens to be 30. The average execution
time is calculated based on U ¼ C/T × 100%, where U is
the percentage of CPU utilisation, C is the execution time
and T is the period, therefore C ¼ (U × T )/100. The
observed average CPU usage time to process a stream is
14.19%. In addition, the resolution of the transmitted video
is 25 frames per second (fps), hence, it is required to
process a frame every 40 ms. As a result, the time required
to process a frame in our testbed is C ¼ (14.19 × 40)/
100 ¼ 5.68 ms. It is also obtained that the average
throughput requirements of a single video stream, of the
video file employed in our testbed, is 1214 kbits/s. We
assume that each video file has associated a QoS profile
where QoS requirements can be obtained.

We have a scenario where the VOD server is transmitting
four video streams. The gold service’s VM has initially
allocated 24 ms of execution time in a 40 ms period of
CPU resources and a network bandwidth of 5 Mbit/s. The
VOD server then receives a request for an additional
stream. However, the QoS manager determines the VM has
not enough CPU nor network resources to process the new
request. As a result, both CPU and network adaptations are
carried out. In the case of CPU adaptation, 8 ms are taken
out from the best effort VM so that the CPU time of the
gold VM is increased to 32 ms. Given that one stream
requires 5.68 ms at the server side, the selected execution

Fig. 3 VOD system testbed
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time is enough to cover the processing requirements of five
streams. A single stream requires 5.68 ms of processing
time; hence, five streams require 28.38 ms which can be
covered by the 32 ms of execution time reserved. Regarding
network bandwidth adaptation, a portion of 1 Mbit/s is
moved from the best effort VM to the gold VM, thus,
obtaining a network share of 6 Mbit/s. Since the average
throughput requirements of a single video stream of the
video file employed in our testbed is 1214 kbits/s, 6 Mbit/s
are roughly enough to cover the bandwidth demands.

The resource adaptation capabilities of the framework were
tested on four scenarios. In scenario 1 where neither the CPU
nor network bandwidth adaptations of the VMs are enabled,
both a considerable amount of packet loss and jitter are
observed due to network congestion, see Fig. 4. The total

transmitted packets are 6032. In scenario 2, network
adaptation is performed but CPU adaptation is disabled and
no loss is observed. However, jitter is still unstable. In
scenario 3, the network adaptation is disabled but CPU
adaptation is carried out. This causes a better jitter
performance. Finally, in scenario 4, we have both CPU and
network adaptations. The results are promising as the jitter
and total transmitted packets are improved (8329), see
Fig. 5. That is, a jitter within 220 to 20 ms range is
achieved, with a packet loss of only 1.5%, and the
transmitted video packets is increased above 25%.

The scenario 4 is repeated using Xen. Since Xen only
supports CPU adaptation (i.e. network adaptation is not
supported by Xen), the traffic injection was disabled to
fairly compare the CPU adaptation capabilities. As in the

Fig. 4 Scenario 1 – lightweight VM: jitter and packet loss

Fig. 5 Scenario 4 – lightweight VM: jitter and packet loss
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case of the lightweight approach, the VMs are assigned to the
same physical CPU, leaving the other core-free. The CPU
adaptation gives 80% of CPU for the video streams and 20%
for the transcoding processes (which is equivalent to the
portion of CPU reserved for the lightweight VMs). A better
performance is obtained by the lightweight VMs. This can be
observed by comparing Figs. 5 and 6. The total transmitted
packets are 20% lower in relation to the lightweight VM. The
total packet loss obtained is higher. The jitter is increased in
average as well as its standard deviation.

4.2 Discussion

Lightweight VMs have shown to be an effective mechanism to
achieve resource adaptation in middleware. The total overhead
imposed by a single lightweight VM for a CPU adaptation is
about 0.099 and 49.79 ms in the case of network adaptation.
In contrast, traditional VMs have a higher overhead that can
go around 226.65 ms. Moreover, traditional VMs are unable
to isolate the network bandwidth share.

Although, our VMs are not able to have different operating
systems running on top of the host operating system, there are
certain environments in which having a single operating
system running is enough to cover the demands. For
instance, various Linux applications can benefit from
achieving resource isolation from a VM and still share the
same operating system image for working properly. In this
scenario, our VM can achieve a much better performance,
for instance, CPU adaptation is 2000–4000 times faster.

We have shown that our lightweight VM is able to offer
response time guarantees. For instance, the VOD scenario
demanded a VM able to provide an execution time of
32 ms in a 40 ms period. Since our VM does not assume a
hard real-time operating system underneath, eventually a
job may receive less CPU than the CPU allocated due to
certain kernel operations such as writing a large amount of
cached data to disk. However, this kind of disruption is
sporadic and tolerable by soft real-time applications as
demonstrated by our experimental results.

We have shown that our approach scales well as the
performance overhead of 200 VMs is only about 0.265 ms.

In contrast, traditional VMs impose high overhead penalties
when scaling up. For example, the main memory of the
host system could be rapidly exhausted when instantiating a
few VMs (e.g. 4 or 5). Also, the timer interrupts can cause
a scalability issue [34]. This is because a VM must run
whenever it receives a timer interrupt even if it is idle, thus,
imposing a high overhead with multiple context switches.

5 Concluding remarks

We have presented an application-level and lightweight
virtualisation framework. The main novelty of the
framework regards the fact that it exploits virtualisation as a
means to achieve resource adaptation in middleware for soft
real-time applications. Our approach avoids spreading
unwanted changes when a resource adaptation takes place.
That is, since resources allocated to services are
encapsulated in VMs, the reconfiguration of a VM does not
have a negative effect on other VMs. This approach helps
to prevent unpredictable behaviour on overload conditions
as only the overloaded services are affected. We advocate
partial resource virtualisation as there are certain kinds of
applications which do not require a virtualisation of the
whole resources system. For example, virtualisation of CPU
and network bandwidth is enough for VOD applications. In
addition, the experimental results show that our
virtualisation approach is able to achieve much better
performance than traditional VMs.

Ongoing work concerns about providing support for the
virtualisation of multicore systems as well as other kind of
resources, such as memory and disk, as well as employing
lightweight virtualisation in high-performance computing.
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