
Int J Digit Libr (1999) 2: 178–189 I N T E R N AT I O N A L J O U R N A L O N

Digital Libraries
© Springer-Verlag 1999

Drag-and-drop multimedia:
an interface framework for digital libraries

Lawrence D. Bergman1, Jerre Shoudt2, Vittorio Castelli1, Chung-Sheng Li1, Loey Knapp2

1 IBM T.J. Watson Research Center, 30 Saw Mill River Rd., Hawthorne, NY 10532, USA;
E-mail: {bergman,vittorio,clsi}@watson.ibm.com
2 IBM Government Systems, 6300 Diagonal Highway, Boulder, CO 80501, USA;
E-mail: {jschoudt,knappl}@us.ibm.com

Received: 15 December 1997/Revised: June 1999

Abstract. In this paper, we describe a new interface
for querying multimedia digital libraries and an interface
building framework.

The interface employs a drag-and-drop style of inter-
action and combines a structured natural-language style
query specification with reusable multimedia objects. We
call this interface DanDMM, short for “drag-and-drop
multimedia”. DanDMM interfaces capture the syntax of
the underlying query language, and dynamically reconfig-
ure to reflect the contents of the data repository.

A distinguishing feature of DanDMM is its ability
to synthesize integrated interfaces that incorporate both
example-based specification using multimedia objects,
and traditional techniques including keyword, attribute,
and free text-based search.

We describe the DanDMM-builder, a framework for
synthesizing DanDMM interfaces, and give several ex-
amples of interfaces that have been constructed using
DanDMM-builder, including a remote-sensing library ap-
plication and a video digital library.

Key words: Digital library – User-interface – Multime-
dia – Drag-and-drop – Query interface

1 Introduction

In this paper we present a new user-interface model de-
signed for formulating queries to multimedia information
repositories. Many digital libraries contain heterogeneous
data from a wide variety of sources. Contents may include
manuscripts, images, aerial photographs, maps, remote
sensing data, scientific records, and others [1–4]. Search
tasks range from simple keyword-based searches (e.g.,
“find all paintings by Picasso from 1932”) to complex
evaluations involving multiple object types with spatial

and temporal relationships (e.g., “find all soil records for
semi-arid rangeland adjacent to ‘large’ lakes and down-
wind of the Brush Creek fire”). It is the latter form of
query that we are particularly interested in supporting.

There are several ways in which a user can spec-
ify the desired content to be retrieved from multimedia
repositories. Example-based interfaces, including those of
QBIC [5], Virage [6], and VisualSeek [7], allow a query to
be constructed by providing one or more example images.
The search engine uses a set of matching operators to
search a database of features pre-extracted from items in
the repository. The user typically can adjust parameters
that control the weights of different features (for example,
shape, color, texture in the case of images) during the
matching process. Although this is a fairly intuitive way
to specify a query, it often fails to capture a user’s in-
tent. Some of these systems provide for more extensive
semantic specification, for example, VisualSeek supports
the definition of simple spatial relations between patches
of colors or of texture in an image through the SaFe inter-
face. In all these systems, however, the level of semantic
specification is fairly low.

Natural language interfaces for querying databases
have been under development for a number of years [8–
10]. Although these interfaces are typically easy to use,
they tend to have limited applicability due to the sys-
tem’s inability to capture precise meanings from natural
language. In addition, much of the available multimedia
material in digital libraries is accompanied by little or no
semantic labeling describing its content.

Query languages provide a more precise specification
but tend to be significantly more difficult to use. Text-
based languages such as SQL [11] allow very precise spe-
cification of complex queries, but are typically employed
only by expert users. Graphical query languages [12] at-
tempt to make querying more accessible, but also tend to
have a steep learning curve, and to provide limited sup-

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 179

port for the wide variety of datatypes and relationships
required for querying a multimedia repository.

Menu or form-based interfaces are not adequate
for multimedia repositories; direct manipulation inter-
faces containing multimedia objects are required [13].
Several graphically-oriented direct manipulation inter-
faces for digital libraries have been developed including
DLITE [14] and Delaunay [15]. These use drag-and-drop
techniques to specify queries and result presentation, but
do not address the issue of expressing query semantics
beyond simple attribute specification.

In order to support a rich set of semantic operators,
a query language interface should be combined with an
example-based interface to draw on the strengths of both.
A recent effort in this direction is the IFQ system [16],
where queries are specified using a graph that represents
query objects and relationships, with embedded image or
video examples.

Our user-interface model, drag-and-drop multimedia
(DanDMM, rhymes with “tandem”) is an attempt to
combine the best features of the existing interfaces, and
to augment them to provide a highly flexible general-
purpose environment for query construction that com-
bines both example-based specifications and structured
query language in a seamless fashion.

We have adopted an English-like query pattern, with
phrases representing actions and relationships and with
objects which are distinguishable elements in the reposi-
tory. These objects can be, for example: textual fields
(e.g., “author” or “source”); spatial features, such as fires,
roads, or land cover types; images; video or audio clips.

Multimedia objects can be easily manipulated by the
interface to dynamically construct dictionaries, and can
be seamlessly embedded into phrases. Nested queries can
also be specified, either directly, or by assigning identifiers
to subqueries and using these names in the construction
of more complex queries. Phrases constructed with the
DanDMM interface can contain optional syntax, which
allows advanced users to access features that might be
confusing for novices.

The DanDMM interface style enables the construc-
tion of arbitrarily long and complex query sentences and
provides an explicit view of all portions of the query. It
supports any context-free query language.

An important aspect of providing user-interface tools
for digital libraries is support for rapid prototyping of
interfaces, particularly interfaces that can dynamically
reflect the contents of the library and reconfigure infor-
mation in the interface based on these contents. For ex-
ample, when a user selects a particular parameter to be
specified, the interface might display the list of its avail-
able values, or change the interactor to an appropriate
type (e.g., a slider for a numeric value, a choice box for
enumerated text). We have created a builder framework
for constructing DanDMM interfaces based on specifying
the structure of the query language to be supported. The
interface specification can include dynamic behavior that

permits the interface to reconfigure based on repository
contents, or on user actions.

DanDMM interfaces are distinguished from prior in-
terfaces by the flexible way in which multimedia objects
are incorporated directly into queries. This provides for
rapid prototyping of frontends for digital libraries that
support example-based queries, as well as more tradi-
tional query operators.

This paper focuses on two main topic. The first is the
particular style of drag-and-drop interface that we call
DanDMM. Note that DanDMM is not a specific interface
– it is a type or style of interface incorporating multi-
media objects into natural language style phrases and
subphrases, used to composed queries via drag-and-drop
operations. Throughout the paper we will use the terms
“DanDMM interface” and “DanDMM-style interface” in-
terchangeably – both mean an interface built using the
DanDMM interface builder, and embodying the drag-
and-drop natural language style with embedded multime-
dia described in this paper.

The paper also describes the framework that we have
constructed for implementing DanDMM-style interfaces.
The DanDMM-builder framework (or DanDMM inter-
face builder) allows one to readily construct DanDMM
interfaces through specification of a configuration file, in-
cluding information about query language syntax, inter-
face layout, and communication between interface and
application.

The paper is organized as follows: Section 2 contains
a description of the DanDMM interface functionality and
of its components. Section 3 provides a detailed example
of the use of the interface. Section 4 describes the frame-
work for quickly prototyping DanDMM-style interfaces,
discusses the configuration file used to specify these in-
terfaces, and concludes with an example of such an in-
terface definition file. Section 5 is devoted to the archi-
tecture of the current implementation of the DanDMM
interface builder, which is currently available as a set of
Java classes. DanDMM-style interfaces have been built
as front ends for several multimedia repositories, some of
which are described in Sect. 6. Future work is discussed in
Sect. 7 and the conclusions are in Sect. 8.

2 The DanDMM interface

2.1 Interface functionality

Our user-interface model, drag-and-drop multimedia, is
aimed at providing a highly flexible, general-purpose en-
vironment for query specification that combines both
structured query language and example-based construc-
tions in a seamless fashion.

Queries are expressed as English-like patterns, which
consist of a combination of phrases and objects. Phrases
represent query prototypes, actions, and relationships be-
tween objects. Objects are distinguishable elements in the

180 L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries

repository and can be: the usual textual fields; multime-
dia entities, such as images, video or audio clips; spatial
features, such as fires or roads; or attributes and derived
quantities of the above, such as color, texture, duration,
size, shape, land-cover types, etc.

The interface was designed to meet a number of
criteria:

– Query constructs should be capable of expressing the
full power of the underlying search engine including
specification of object attributes, types, relationships,
and constraints;

– Query constructs should support any context-free
query language;

– Query constructs should be human-readable in a na-
tural-language style;

– The interface should automatically enforce syntactic,
and, where possible, semantic constraints, helping the
user to formulate reasonable queries;

– The interface should dynamically reconfigure to re-
flect the contents and structure of the data repository;

– Inclusion of multimedia objects in example-based
queries should be supported;

– The interface should facilitate the process of query
refinement by providing a set of reconfigurable and
reusable query components, and by allowing query re-
sults to be incorporated into query statements;

– The interface should provide optional syntax in order
to support both basic operations by entry-level users
as well as more advanced operations. This optional
syntax should be provided as in-line expansions of the
base syntax in a natural fashion.

To meet these objectives we have combined the power
of visual programming with natural-language structure
through the use of drag-and-drop techniques.

The DanDMM interface provides draggable entities
representing objects and phrases, i.e., query elements,
which can be dropped onto a palette or into placehold-
ers within other phrases. Queries, objects, attributes, re-
lationships, and constraints are represented as specific
phrases. Phrases can be combined with each other using
drag-and-drop operations to build up query sentences. As
described in more detail in Sect. 4, this style enables the
construction of queries from any context-free grammar.

The interface imposes constraints on the construction
process, disallowing drops that would result in syntac-
tically incorrect combinations of objects and relation-
ships. Draggable components include text items, stan-
dard interface widgets such a type-ins and choice boxes,
and multimedia objects. Drag-and-drop interface com-
ponents may be predefined, defined by the user as sub-
queries, or may be objects returned from a previous
query. Queries constructed with the interface appear as
a English-language phrases, with embedded multimedia
objects. Arbitrarily long and complex query sentences
can be constructed while maintaining an explicit view of
all their portions.

Interface elements may also dynamically reconfigure
based on user actions and on application (e.g., database)
objects. Available dynamic behaviors include

– Changes to a phrase based on user manipulation of
a widget within the phrase, e.g., adding items typed
into a type-in area to a choice list within the same
phrase;

– Changes to a phrase using information supplied by
application objects, e.g., updating a choice list to
reflect attribute values available from a application
repository;

– Marshalling of information contained within a phrase
for delivery to an application object.

Query reuse and refinement are well supported by
the drag-and-drop interface – portions of query phrases
may be removed or moved to other queries, allowing for
both modular construction of sentences and phrases, and
straightforward specification of nested queries. The user
can rely on results of previous queries to modify and re-
fine the current query. For instance, if the query engine
supports relevance feedback, previous results can be in-
corporated in the current query definition as positive or
negative examples.

To simplify the construction of complex, nested que-
ries, the interface provides a mechanism for naming sub-
queries or objects. When a subquery is named, it becomes
a new entity type that can be used in place of a subquery
clause. Similarly, new object types may be created (e.g.,
a “forest” definition). When the query is issued, subquery
and object names are expanded into their full definitions,
before being sent to the server.

Optional syntax is provided by in-line expansion
of query phrases when special add/delete widgets are
activated.

2.2 Interface components

In this section we will describe the basic components and
capabilities of a DanDMM-style interface. These will be
illustrated by means of an example in Sect. 3.

The interface as seen by the DanDMM user consists of
a set of menus on the left-hand side of a phrase palette,
within which queries are constructed (Fig. 1). A list box
contains a series of items, each of which can be selected
by clicking on it with a mouse button, dragged with the
mouse button held down, and then dropped onto the
palette by releasing the mouse button. A menu item may
be a single atomic object such as a text item, a user in-
terface widget, such as a choice list or a button, or a mul-
timedia object such as an image. Alternately, a menu
item may consist of a phrase, drawn on the palette as
a rectangular panel containing a linear sequence of atomic
objects.

The most important widget is one known as a recep-
tacle. A receptacle, drawn as an empty colored rectan-
gle within a phrase, represents an incomplete portion of

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 181

Fig. 1. The DanDMM interface showing both query phrases, and results windows. Three menus, labeled Query, Search type and
Elements are visible on the left. The phrase palette contains two queries. Three results of the top query are shown near the bottom-left

corner. Results from previous queries are also displayed at the bottom and on the right-hand side

a query phrase. The receptacle is “filled in” by dragging
a phrase from a menu or from the palette and dropping it
into the receptacle. When a receptacle receives a drop, it
expands to the size of the component being dropped, and
triggers a resize of the enclosing phrase. With multiply
nested sub-phrases, resize operations apply to all appro-
priate levels of nesting.

Figure 2 shows a DanDMM phrase containing both
filled and unfilled receptacles. Note that queries con-
structed in this fashion are composed of hierarchically
nested sets of subcomponents.

Multimedia objects (such as images) for drag-and-
drop operations can be imported from a separate digital
library application. Additionally, DanDMM has a limited
ability to directly display query results from a digital li-
brary application. Figure 1 shows three result windows
containing thumbnail images produced by library queries.
Multimedia objects in these DanDMM result windows
can be dragged directly unto the DanDMM palette or
dropped into phrase receptacles.

Besides receptacles, several other widgets are avail-
able in the current implementation. These are: text la-

Fig. 2. A query phrase showing both filled and unfilled receptacles

bels, type-in fields, toggle buttons, choice (pull down)
lists, and add/delete buttons. Multimedia objects cur-
rently include images; video clips are represented by still
images, with plans for adding real-time video support in
the near future. Figure 3 shows a choice list in use, as well
as text labels, a type-in field, and an empty receptacle.

Add/delete buttons are special widgets that provide
support for optional syntax. These buttons allow phrases

182 L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries

Fig. 3. Widgets within a query phrase: a type-in field, a choice list
and a receptacle

to expand to an arbitrary number of predefined widget
sets. The widget is initially displayed as an “add” but-
ton containing a rightward-pointing triangle as seen at
the bottom of the phrase shown in Fig. 2. When the but-
ton is pressed, a set of widgets is added to the panel, and a
“delete” button (containing a leftward pointing triangle)
is placed to the right of the newly added items. The “add”
button is repositioned to the right of the new “delete”
button. Figure 2 has both an add button and a delete but-
ton to the immediate left of it at the right end of the first
row of widgets. Pressing the “delete” button causes the
set of widgets associated with the button (including the
“delete” button itself) to be removed from the panel.

3 Usage scenario

In this section we will illustrate the use of a DanDMM-
style interface by means of an example. It is import-
ant to note that we are describing use of an instance of
a DanDMM-style interface. This demonstrates one of the
many possible interfaces that might be constructed for
a wide variety of digital library applications. Each in-
terface might support quite different query capabilities,

Fig. 4. A satellite library application showing a portion of an image selected for use in query construction

although each will have a look and feel similar to that de-
scribed in this example.

The example provided in this section is taken from
a remote-sensed imagery digital library application we
have constructed. The application supports a variety of
query operators using both pre-defined entities (such as
forests, and agricultural areas), as well as entities defined
by the end-user. New entities are defined using sample
image clips and constraints. In this example, we show the
use of an image clip to define a new entity (lake), and then
the use of that entity in constructing queries. The sample
application is described in more detail in Sect. 6.

Figure 4 shows a portion of the satellite image browser
application. We see an image, with a subregion selected
using a bounding box. Figure 5 shows a section of the
DanDMM interface for this application. The menu items
include an operator called “Add Image Object” which
is used to import the selected subregion from the image
browser. This item is selected with the mouse, and the
“Submit” button is pressed to add the image clip. Al-
though queries are normally built using drag-and-drop
operations, simple operators that don’t require parame-
ter specification (such as “Add Image Object”) can be
simply executed from the menu. Image clips that are im-
ported in this manner become draggable entities, and can
be used in query construction.

Figure 6 shows a phrase that is used to construct an
object definition. This phrase was dragged onto a query
construction area (known as the “phrase palette”) from
one of the menus. In this case, the menu item “Define sim-
ple object” seen in Fig. 5 was dragged onto the phrase
palette. When dropped, it automatically expanded into
the phrase seen in Fig. 6. We have typed the name of the
object to be defined, “lake”, into a type-in area. Notice

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 183

Fig. 5. A section of the DanDMM menus for the satellite library
application. An “Add Image Object” operator has been used to

import an image clip from the main application

Fig. 6. A partially completed phrase for creating a user-defined
object definition

that there is a “blank” to be filled in. Such blanks, known
as “receptacles” are a key to the power of DanDMM in-
terfaces. Receptacles are filled using drag-and-drop oper-
ations and accept only syntactically correct entries.

Figure 7 shows the completed object definition phra-
se. The previously imported image clip has been dragged
from the menu into the phrase receptacle, to complete
the definition. This definition specifies that the sample
image is to be used to provide a prototype for image fea-
tures (in this case land use category) to be matched when
“lake” is requested. Once the phrase has been completed,
the object definition is added to the list of available en-
tities by pressing the “Submit” button. Figure 8 shows
a DanDMM menu containing the newly defined “lake”
object, as a result of submitting the definition phrase.

Fig. 7. Completed phrase for creating a user-defined object
definition

This menu item is a draggable entity, available for build-
ing queries.

Fig. 8. Submitting the lake definition phrase adds a “lake” entity
to a DanDMM menu

Figure 9 displays a “Find” phrase (the “Find” phrase
was selected from the menu seen in Fig. 5). This phrase
specifies a query to the satellite digital application server.
Note that there are two empty receptacles in this phrase.
Figure 10 shows the result of dragging the “lake” item
from the menu into the phrase. Also shown in this figure

Fig. 9. A “Find” query phrase with empty receptacles yet to be
filled

184 L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries

Fig. 10. The “Find” query phrase with a “lake” item dropped into the first receptacle

is the DanDMM menu that contains candidate items for
filling the remaining empty receptacle. Note that the can-
didate phrases are highlighted. By clicking on the empty
receptacle with the right mouse, we have requested that
DanDMM display all menu items which are syntactically
appropriate choices for this receptacle; only such items
can be dropped into the receptacle.

Figure 11 shows the final “Find” phrase after dropping
the “Within distance” phrase into the empty recepta-
cle, and then dropping “Fire” (from the menu shown in
Fig. 8) into a receptacle in the “Within distance” phrase,
and typing the number 2 into the type-in area (Fig. 2
contains an example of an unfilled “Within distance”
phrase).

Fig. 11. The completed “Find” query phrase the first receptacle

This completed query phrase can now be submitted
to the application server by clicking “Submit”. Note that
different phrases perform different actions when “Sub-
mit” is activated. The interface designer determines ac-
tions to be performed by each phrase when “Submit” is
pressed. These actions are part of the interface file defin-
ition, described in Sect. 4.1.

A powerful feature of DanDMM interfaces is the abil-
ity to provide hidden syntax, through the use of “Add”
buttons. The “Find” phrase has an Add button (triangle
inside a small button) at the bottom in each of the previ-
ous figures. Figure 12 shows the result of clicking on this
button. A set of additional clauses is revealed, followed by
a “Delete” button that can be used to hide them.

Figure 13 shows choice of an alternative selection for
filling the last receptacle in the “Find” phrase. In this

Fig. 12. Additional syntax for “Find” exposed by activating an
“Add” button

Fig. 13. Find phrase with an incomplete Boolean phrase for
specifying query constraints

case, the “And/Or” phrase (shown in the menu in Fig. 10)
was dropped into the empty receptacle. This phrase pro-
vides for Boolean combinations of constraints. Figure 14
shows two phrases dropped into the Boolean expression.
One is the “within distance” phrase from the previous ex-
ample. We have also created two additional receptacles
for Boolean terms, by clicking the add button originally
to the right of the second Boolean receptacle. Note that
each new receptacle gets its own delete button, which can
be used to remove it if desired. Also notice that the bot-
tom “And” button has been toggled to “Or” by clicking
on it.

Again, it is important to note that the examples
given here show one instance of a DanDMM-style in-

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 185

Fig. 14. Find phrase with two constraint phrases dropped into
the Boolean phrase. Two additional receptacles have been added

by clicking add buttons. Note that the final Boolean connector has
been changed to an “Or” by clicking on the toggle button

terface. Interfaces for different applications can vary
widely, and each application can have multiple alternate
DanDMM interfaces. This interface, for example, might
have been designed with an “Add” button to the right
of the bottom receptacle in the Find phrase for adding
addition Boolean terms directly, rather than through
use of a separate And/Or subphrase. All DanDMM-style
interfaces, however, will be characterized by compos-
able, nested components for specifying queries and sub-
queries, the ability to reuse these components via drag
and drop operations, dynamic updates of the interface
to add user-defined or application-supplied entities, free-
form mixing of multi-media objects with more tradition
UI widgets, and the ability to hide or reveal optional
syntax.

4 The DanDMM-builder framework

DanDMM interfaces are specified via the DanDMM Spe-
cification Language (DSL). DSL conceptually consists of
three portions: a structural specification, a representation
specification, and a dynamic behavior specification.

The structural specification encapsulates the allow-
able configurations for the interface. In particular, it spec-
ifies the ordering of elements within phrases, and the legal
composition of phrases and sub-phrases. The structure of
the query language represented by a given DanDMM in-
terface is specified using a modified Backus-Naur Form
(BNF) grammar specification [17]. BNF provides a com-
pact representation of context-free grammars. BNF is
used in DSL to specify the syntax of the application query
language; this is in contrast to previous systems which
have employed BNF to describe the layout or behavior of
the interface [18].

Each terminal or non-terminal on the right-hand side
of a BNF expression may be accompanied by one or more
modifier clauses. These clauses define the element’s repre-

sentation (widget type and initialization information) as
well as its dynamic behavior.

Dynamic behavior is specified using a library of be-
havior operators. These operators include functions to get
and set values in a per-phrase or a global symbol table,
to add items to DanDMM menus, and to invoke Java
methods in application objects. This last facility allows
a DanDMM interface to specify interactions with appli-
cation objects for each individual phrase. Methods may
be invoked to submit queries, to retrieve information for
use in dynamically configuring widgets, or to communi-
cate interface state to an application. A set of Java API’s
is available to allow applications to package multimedia
objects in DanDMM format, and to dynamically build
new query clauses for on-the-fly installation in a running
interface.

The DSL for a given interface is stored in a DanDMM
definition file. These definition files allow a good deal of
flexibility in creating DanDMM interfaces. Definition files
may be written in advance and served to the client on re-
quest. Alternatively, the definition files may be created
on the fly by a server application. This allows the server
to dynamically construct a DanDMM interface that con-
tains, for example, lists of library objects and legal rela-
tionships between them.

4.1 Interface definition

In this section we present a partial definition file, to give
the flavor of specifying a DanDMM interface.

The sample file given here specifies a query phrase for
a simplified video digital library interface.

Syntax

{
<find_clause> = <find_clause_body>

{
Submit: JAVA (“application_obj”,

“submit_query”,

String ($))

};
<find_clause_body> = “find”

<object_name>

{WIDGET (TYPEIN) }
“in repository”

<repository>

{WIDGET (RECEPTACLE) };
<repository> =

<obj_archive>

{WIDGET (TEXT, “obj archive”) }
| <image_archive>

{WIDGET (TEXT, “obj archive”) }
| <live_video>

{WIDGET (TEXT, “live video feed”) }
}

186 L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries

Layout

{
List: “Queries”

{
<find_clause> : “Find”

}
List: “Repositories”

{
<obj_archive> : “Objects”

<image_archive> : “Images”

<live_video> : “Live Video”

}
}

The “Syntax” portion of the file specifies a “Find”
query phrase. The phrase is shown in the top portion
of Fig. 15. The bottom portion shows the phrase with
one of the possible repositories dropped into the recepta-
cle. Note that the BNF specifies all allowable values for
this receptacle (specified by non-terminal<repository>).
Figure 16 shows the two menus specified by this configu-
ration file.

Notice that the configuration file specifies a Java
method that is to be invoked on an application object
when the “Submit” button is pressed for this phrase. An
object called “application_obj” in a global object dictio-
nary is referenced. A “submit_query” method is invoked
on this object with a single parameter containing a string
that marshalls information from all subphrases of the
query phrase.

Although this example is only partial, it gives the fla-
vor for configuring a DanDMM interface. Not shown here
is syntax for specifying dynamic reconfiguration of inter-

Fig. 15. Top: phrase specified by <find_clause> in the sample
configuration file Bottom: phrase with <live_video> phrase

dropped into the receptacle

Fig. 17. The DanDMM system architecture

Fig. 16. Menus specified by the sample configuration file

face components, details of specifying output syntax for
passing queries to application objects, some of the other
widget types including choice boxes and toggle boxes, and
specification of optional syntax (add buttons).

5 System architecture

The DanDMM-builder framework has been implemented
in Java using Java’s AWT windowing toolkit to manage
the interface. It is available as a set of classes to be in-
voked from a library application. The application places
objects to be accessed by the DanDMM system (either
interface objects, or the application instance itself) into
the application dictionary, allowing DanDMM to control
a user session and to invoke application callbacks.

Figure 17 diagrams the architecture of the DanDMM
system. DanDMM interfaces are specified in definition
files using the DanDMM Specification Language. These
files are interpreted by an Interface Interpreter and used
to create interfaces. Where application objects are needed
for interface initialization (via Java clauses), the Inter-
face Interpreter issues a request to the Interface Runtime
Executive which, in turn, retrieves application objects
from the Application Object Dictionary, invokes the ap-
propriate methods on them, and passes return results to
the Interface Interpreter. Once the DanDMM Interface
has been generated, it is managed by an Interface Run-

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 187

time Executive. The Executive stores prototypes of each
phrase in the interface and uses them to evaluate drag-
and-drop operations for syntactic correctness. The Exec-
utive also processes all actions required when dynamic
behavior is invoked, either from the “Submit” button, or
through activating interface widgets within phrases. The
Executive accesses the Phrase Dictionary when setting or
retrieving values, or modifying DanDMM menus, and ac-
cesses the Application Object Dictionary to invoke Java
methods.

6 Implementation examples

Using the DanDMM framework, we have implemented
a query interface for a remote-sensing digital library. Fig-
ure 18 shows the interface for this query system. A var-
iety of objects to be searched are listed including land
cover types, such as water and forest, and other objects
with spatial extent such as wildfires and wildfire burn
scars (the latter two hidden in the off-screen portion of
the “Objects” menu). Queries are constructed from sen-
tence structures such as “Find”, and “Define Simple Ob-
ject”. Qualifying sub-phrases such as “Within distance”
and “Next to” are used as components of the query sen-
tences in order to restrict the search. The connective

Fig. 18. A Satellite Library Application constructed using DanDMM-builder

“And/Or” is used to build up sets of more complex quali-
fiers. Query sentences are submitted to an external search
engine as an ascii string consisting of nested function
calls.

This sample interface includes the capability of using
image examples in constructing queries. A separate nav-
igation application manages image display and simple
query tasks including retrieving images by geographical
area or name, and multi-resolution zoom. More involved
content-based queries are performed via the DanDMM
interface. A phrase within the DanDMM interface can
issue a request to the navigation application (shown in
Fig. 4) for the current image, outlined portion of an
image, or set of sub-images and install it in a menu. These
images can then be dragged into phrases designed to ac-
cept them. Figure 18 shows such a phrase (the “Define
simple object” phrase). A set of images has been added
to the interface (in the “Images” menu) and then dragged
into a phrase that defines a new example-based object
type. This phrase when “submitted” adds an entry to
a menu containing a set of object type names (seen in
the “Objects” menu). This new object type can then be
added to a query clause. This simple method for import-
ing images from an application and using them to define
new query objects by example provides a powerful mech-
anism for iterative query refinement.

188 L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries

Figure 18 also shows the power of DanDMM in-
terfaces for query component reuse. Note the partially
constructed Boolean expression on the palette (middle
bottom). Such subexpressions can be constructed inde-
pendently, and then dragged into receptacles as needed.
Subphrases can also be dragged out of receptacles and
dropped onto the palette. This enables a very free-form
interface style accommodating a wide range of usage
patterns.

A second sample application is a video digital li-
brary interface, seen in Fig. 1. This interface is designed
to support multi-search capability including parametric
search (e.g., video name, air date), feature search (e.g.,
location, motion), and free text search on both close-
captions and speech transcriptions. Boolean operations
are supported among all of these types. Results from
a search are returned as either names or thumbnail im-
ages; we have plans to implement support for video clips
in DanDMM including extraction of sub-images from in-
dividual frames for formulating example-based queries.
We have formulated two alternative interfaces for this ap-
plication using DanDMM. The first is a static interface in
which all search attributes are listed in menu boxes. The
second interface uses dynamic behavior to reconfigure at-
tribute values based on the attribute name selected.

Figure 19 displays two versions of the same interface
component from the second (dynamic) interface. The two
components differ in choice of the attribute name in the
choice list on the left. For each selection, the interface
queries the digital library application for a set of attribute
values, which are used to populate the choice box on the
right.

Fig. 19. User selection from the left choice widget causes the right
widget to change contents

Both the static and the dynamic interface were readily
specified using the DanDMM specification language. This
indicates the power of the interface builder for prototyp-
ing multimedia interfaces.

7 Future work

An important part of user-interface development is eval-
uation of the effectiveness of the interface for perform-
ing user tasks. We are working with a group developing
user-interfaces for video libraries on a study to compare
a DanDMM-style interface with alternate interface styles.
This study will focus on ease of use and expressibility of
such DanDMM interfaces.

We are pursuing or considering a number of functional
and application-related extensions to our current work
on DanDMM. One direction is the support for additional
types of multimedia objects and for corresponding oper-
ations. We are currently implementing support for video
objects. At the time of this writing, video is represented
as still-image icons, which may be drag-and-dropped just
like any other object in DanDMM. We intend extend-
ing this to a facility for playing video using VCR-style
controls, including the ability to select a single frame for
inclusion in a query phrase.

We are also planning capabilities for manipulating
multimedia objects within DanDMM. In particular, the
ability to interactively draw on images in order to spec-
ify particular features or subregions for a query would
be extremely useful. We have yet to address how such
capabilities would be incorporated into the specification
language.

A macro facility, allowing a user to create parameter-
ized subqueries would be a natural and useful extension
of the DanDMM interface. We also envision using the
DanDMM interface to construct specification files; we an-
ticipate that the current implementation will readily al-
low us to create an interface which would facilitate the
task of writing DanDMM specification files.

In this same vein, the current internal structure used
to implement the DanDMM interface is a tightly coupled
conglomeration of phrase syntax specification, phrase in-
stances, and phrase appearances. The separation of these
elements would lend flexibility to the overall architecture.
Furthermore, exposing a programmatic interface to this
more modular architecture would allow easy extension
of DanDMM either statically at interface design time, or
dynamically from within a DanDMM application. The
structure of a DSL file is basically static (although it
could be dynamically generated outside of DanDMM, by
a Common Gateway Interface script for instance). Al-
though contents of individual widgets can be changed
dynamically, the structure of a phrase cannot. This lim-
its the degree to which an DanDMM interface can reflect
the current state of a database. The capability of spec-
ifying within DSL the relationships between database
elements and an DanDMM interface would eliminate this
limitation.

8 Conclusions

In this paper we have presented a system for synthesis of
highly interactive multimedia query interfaces. The inter-
face designer provides a syntactic description of the query
language and embeds information about appearance and
dynamic behavior. From this description, a structured
drag-and-drop interface is automatically generated.

The resulting DanDMM interface provides a limited
yet powerful style for query construction. Its strengths in-
clude: English-language style queries, automatic restric-

L.D. Bergman et al.: Drag-and-drop multimedia: an interface framework for digital libraries 189

tion to syntactically correct queries, inclusion of multime-
dia objects in the queries, and dynamic reconfiguration of
query constructs based on user actions and/or communi-
cation with application objects.

A particularly powerful feature of DanDMM is the
ability to incorporate both example-based and more tra-
ditional query-styles into an integrated interface for a dig-
ital library application. The user can create libraries of
semantic definitions using a variety of definition mech-
anisms – example-based, keyword-based, parametric, and
others – and combine these with predefined entities via
a single consistent interface style.

The DanDMM system has been implemented in Java,
and provides an easy-to-use mechanism for communicat-
ing with application objects. Support has been provided
for retrieving and displaying multimedia objects as well
as incorporating them into queries. This provides a flex-
ible and powerful facility for query of multimedia digital
libraries.

References

1. Mintzer, F.C., Boyle, L.E., Cazes, A.N., Christian, B.S., Cox,
S.C., Giordano, F.P., Gladney, H.M., Lee, J.C., Kelman-
son, M.L., Lirani, A.C., Magerlein, K.A., Pavani, A.M.B.,
Schiattarella, F.: Toward on-line worldwide access to vatican
library materials. IBM J. Res. Devel. 40(2):139–162, 1996

2. Ogle, V., Wilensky, R.: Testbed development for the Berkeley
Digital Library Project. D-Lib Magazine, http://www.dlib.
org/dlib/july96/berkeley/07ogle.html, July/August 1996

3. Smith, T.R.: A Digital Library for Geographically Referenced
Materials. IEEE Computer 29(5):54–60, 1996

4. Castelli, V., Bergman, L.D., Kontoyiannis, I., Li, C-S, Robin-
son, J.T., Turek, J.J.: Progressive search and retrieval in large
image archives. IBM J. Res. Devel. 42:253–268, 1998

5. Niblack, W., Barber, R., Equitz, W., Flickner, M., Glas-
man, E., Petkovic, D., Yanker, P., Faloutsos, C., Taubin, G.:
The QBIC project: Querying images by content using color

texture, and shape. In Proc. SPIE – Int. Soc. Opt. Eng.
vol. 1908, Storage Retrieval for Image and Video Databases,
1993, pp. 173–187

6. Bach, J.R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B.,
Humphrey, R., Jain, R.: The Virage image search engine: An
open framework for image image management. In: Proc. SPIE
– Int. Soc. Opt. Eng., vol. 2670, Storage and Retrieval for Still
Image and Video Databases, 1996, pp. 76–87

7. Smith, J.R., Chang, S.F.: VisualSeek: A fully automated
content-based image query system. In: Proc. of the IEEE Int.
Conf. on Image Proc., (Lausanne, Switzerland), 1996

8. Keim, A.D., Lum, V.: Visual query specification in a multime-
dia database system. In: Visualization ’92, Boston, MA: Oct.
1992, pp. 194–201

9. Wong, K.P., Lum, V.Y.: Approximate retrieval of multime-
dia objects with natural language queries. In: Proc. of The
First International Conference on Visual Information Sys-
tems, (Melbourne, Australia), Feb. 1996, pp. 152–164

10. Kaneen, E., Wyard, P.: A spoken language interface to inter-
active multimedia services. In: IEE Colloquim on Advances
in Interactive Voice Technologies for Telecummunication Ser-
vices, London, UK, June 1997

11. Date, C.J., White, C.J.: A Guide to SQL/DS. Reading, MA:
Addison-Wesley, 1989

12. Ozsoyoglu, G., Wang, H.: Example-based graphical database
query languages. Computer 26(5):25–38, 1993

13. Davis, B., Marks, L., Collins, D., Mack, R., Malkin, P., Nguyen,
T.: The human interface to large multimedia databases. In:

Proc. SPIE – Int. Soc. Opt. Eng., High Speed Networking and
Multimedia Computing, 1994, pp. 2–12

14. Cousins, S.B., Paepcke, A., Winograd, T., Bier, E.A., Pier, K.:
The digital library integrated task environment (DLITE).
SIDL-WP-1996-0049, http:www-diglib.stanford.edu/cgi-
bin/WP/get/SIDL-WP-1996-0049, 1996

15. Cruz, I.F., Lucas, W.T.: A visual approach to multimedia
querying and presentation. In: ACM Multimedia, 1997

16. Li, W.S., Candan, S.K., Hirata, K., Hara, Y.: IFQ: A visual
query interface and query generator for object-based media re-
trieval. In: IEEE Multimedia Systems ’97, Ottowa, Ontario,
Canada, June 1997, pp. 353–361

17. Aho, A., Ullman, J., Sethi, R.: Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA: 1986

18. Olsen, D.,Jr., Dempsey, E.: Syngraph: A graphical user in-
terface generator. In: Computer Graphics, Proceeding SIG-
GRAPH ’83, Detroit, MI: ACM Siggraph, 1983, pp. 43–50

Copyright of International Journal on Digital Libraries is the property of Springer Science &
Business Media B.V. and its content may not be copied or emailed to multiple sites or posted
to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

