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In this paper, we investigate the general problem of data hiding and propose an approach
for effective cover noise interference rejection in oblivious applications. We first evaluate
the performance in the commonly used direct sequence modulation approach where a
low-power signal is embedded into the original cover signal. The optimal detection is
derived and its performance is analyzed. Second, we study a novel approach in oblivious
data hiding and evaluate its performance and compare it with existing algorithms.

Both simulation studies and empirical data hiding results validate its efficiency in the
multimedia oblivious applications.
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1. Introduction

In the Internet era, copyright and data integrity protection has raised a great

concern. Digital watermarking and information embedding technologies provide

one of the potential solutions to these problems. Research in these areas has gained

substantial attention and recent years have seen a flurry of activities on this subject

reported in the literature. The purpose of the data hiding is to embed information

into an original content cover signal without perceptual artifacts. The information

can be extracted to solve ownership disputes, track piracy, or identify malicious

tampering. Watermarking can be regarded as a special case of data hiding. In the

following discussions, these two terms are used interchangeably. And the algorithms

discussed in data hiding are readily applicable to watermarking. Robust and fragile

watermarking techniques have different contexts in practice. Secure and resilient to

attacks, the former is often applied in copyright management. While the latter is
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usually employed for content tampering detection. In this paper, our discussion is

concentrated on robust watermarking techniques.

Embedded message extraction has different requirements. In escrow applica-

tions, the embedded message is retrieved with the assistance of the original cover

signal. In oblivious cases, the message is decoded without reference to the original

signal. In most applications, the latter is more meaningful because the original

cover is usually unavailable at the decoder. This poses a big challenge in message

decoding. The cover signal is unknown and acts as a kind of noise, called cover

noise. Its rejection is a big concern for reliable message extraction. Costa10 proved

at least in theory the oblivious data hiding can achieve the same capacity as an

escrow case. To gain this goal, the embedding involves design of an optimal code

book by taking advantage of the statistical property of the cover signal. Some recent

research has explored the problem in length.11,18 However, the optimal code book

design is pretty demanding, if not impossible at all.9 It is often more essential to

investigate embedding and decoding performance in the deployment than the theo-

retical hiding capacity calculation. Our focus in this paper is on the empirical cover

noise suppression techniques and multimedia applications.

Among the proposed message embedding schemes, the direct sequence (DS)

modulation approaches are extensively studied and widely employed. The algo-

rithms embed a key-generated vector in the cover signal. Perceptual models are

exercised to reduce the artifacts. Although originally proposed for escrow appli-

cations, the DS schemes have also been used in oblivious data hiding cases, in

images,20 video.12,13,22 and audio.3,15,17,23 The advantages in this kind of schemes

are easy distortion control and resilience to additive noise attacks. Complexity of

the schemes includes computation cost and rigid re-synchronization requirement.

Because of the imperceptible requirement, the watermark signal is of limited energy,

which dramatically degrades performance in oblivious applications. In the first half

of the paper, we derive the optimal detectors and analyze the detection bit error

rate (BER) assuming Gaussian distributed cover signal, Both theoretical analysis

and simulation studies highlight inefficiency in the cover noise suppression. In the

second half, a simple nonlinear data hiding algorithm, set partitioning, is suggested.

Distortion is calculated and suboptimal detectors are worked out. Some encouraging

experiment results with audio and image content are presented subsequently.

This paper is organized as follows. In Sec. 2, the performance of a widely used DS

modulation is analyzed. The ubiquitous correlator type decoder is not optimal. We

suggested a simple fix-up, and the maximum likelihood (ML) detector is reached.

Our assumption of Gaussian distributed cover signal is a trade-off between ease of

analysis and good statistical approximation. The inferior host noise rejection stems

from low signal noise ratio (SNR). Instead of linearly superimposing a watermark

signal into a cover signal, we come forward with a simple nonlinear hiding scheme.

Its signaling and distortion calculation is conducted in Sec. 3. The optimal and

suboptimal detection in the additive white Gaussian noise (AWGN) channel is

visited in Sec. 4. Our multimedia experiment results are presented in Sec. 5. And
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further discussion and comparison with existing algorithms is addressed in Sec. 6.

Some conclusions and future work are summarized in the last section.

2. Cover Noise Interference in Direct Sequence Modulation

2.1. Multiplicative embedding and detection

Direct sequence modulation is one of the earliest data hiding schemes. The basic

scheme modulates a small value hiding signature vector w into a cover signal

vector c,

x = c + bw , (1)

where b is the antipodal information bit taking the value of either +1 or −1 to

represent bit value 1 or 0. And x is composed of selected coefficients in a data

hiding domain, while w is independent of x and can be Gaussian or uniformly dis-

tributed. In order to keep the embedding imperceptible, some adaptation is needed

to constrain distortion strength. One revised version is,

xi = ci + bwi · αci , (2)

where α is the gain factor for artifact control. The justification is the human

perceptual systems are more sensitive to relative, rather than absolute distortion.

The hiding signal is scaled by α and proportional to the cover signal. This can

keep the distortion under JND (Just Noticeable Distortion) to meet transparency

requirement. On the other hand, it is desirable to maximize embedding energy to

enhance the robustness. In the following discussions, we study the deep embedding

algorithm where w is an antipodal random sequence, i.e. wi taking the value of

either +1 or −1.

Given the cover signal c the information bit can be extracted via correlation.

In an oblivious application scenario where c is unavailable, two fix-ups can be

exercised. One keeps the correlation type detector but altering the embedding rule;

The other derives a new detector while keeping the embedding intact. We will

address the problem following these two paths.

In the linear oblivious data hiding, the challenge is cover noise rejection. For

simplicity, we neglect the noisy channel effect. Therefore the received the signal at

the decoder side is assumed just the data embedding output, r = x.

2.2. A revised direct sequence embedding

A quick fix-up for (2) introduces the absolute value operation:

xi = ci + bwi · α|ci| , (3)

and a correlator-alike detector is

q = wT · r = wT c + bαwT |c| ≈ αb

N−1
∑

i=0

wi|ci| . (4)
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The above approximation holds as long as ci is a zero-mean random variable,

and c is independent of w. Although the detection works its performance is inferior.

In fact, the optimum ML detector can be derived as follows. Considering the simple

hypothesis testing:

H1: ri = ci + ki|ci| versus H0: ri = ci − ki|ci| , (5)

where k = αw, ki is either +α or −α.

The ML ratio is calculated as

R =
P (H1|r)
P (H0|r) . (6)

For simplicity, we assume that c is composed of N components which are i.i.d.

Gaussian distributed, ci ∼ N(0, σ2). The conditional pdf can be expressed as

f(ri|H1) =
1√

2πσ(1 + s(ri) · ki)
· exp

[−r2
i

2σ2
· 1

(1 + s(ri) · ki)2

]

, (7)

where s(·) is the sign function

s(x) =











+1 , x > 0

−1 , x < 0

0 , x = 0

. (8)

Similarly, f(ri|H0) can be obtained. If we assume H1 and H0 have equal a

priori probabilities, P (H0) = P (H1), the ML ratio on ri can be expressed as

Ri =
P (ri|H1)

P (ri|H0)
=

(

1 − s(ri) · ki

1 + s(ri) · ki

)

· exp[−βr2
i · s(ri) · s(ki)] , (9)

where β = γ 1
σ2 and γ = 1

2(1+α)2 − 1
2(1−α)2 .

The ML ratio (6) is finally obtained as

R =

N−1
∏

i=0

(

1 − ki

1 + ki

)s(ri)

· exp

[

N−1
∑

i=0

−s(ri) · s(ki) · r2
i β

]

. (10)

The above calculation is quite tedious. One straightforward observation is that

for sufficiently large sequence length N , w has roughly the same count of −1’s and

+1’s,

N−1
∏

i=0

(

1 − ki

1 + ki

)s(ri)

≈ 1 . (11)

Under this approximation, a computation-efficient suboptimal detection statis-

tic results as,

R =

N−1
∑

i=0

−γr2
i · s(ri) · s(ki) . (12)
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Fig. 1. Detection performance comparison.

The decision threshold can be conveniently selected as R = 0. The sub-optimal

detector (12) has comparable computation complexity as (4). Nevertheless it out-

performs the latter as depicted in Fig. 1. But it is inferior to the optimum detector

(10) due to the approximation (11). In our simulation, the threshold ratio value is

chosen as α = 0.1, and the original coefficient is Gaussian distributed with variance

σ2 = 502.

Any data hiding scheme alters some statistical properties of the original signal.

From the embedding operation it is obvious that the message embedding impact

is the change of variance in ci. Intuitively speaking, the ML detector based on the

distinction of variance outperforms the correlator-type detector based on the mean

value.

2.3. ML detection in DS embedding

Alternatively, we try to derive the ML detector for the embedding rule (1). The

hypotheses testing at the decoder side is

H1: ri = ci + kici versus H0: ri = ci − kici . (13)

After embedding, the variance of the modified coefficients is equal to σ2
1 = (1+α)2σ2

or σ2
0 = (1 − α)2σ2.
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Similar to the analysis aforementioned, the ML ratio on r can be calculated as

R =
P (r|H1)

P (r|H0)
=

N−1
∏

i=0

1 − ki

1 + ki
· exp

[

N−1
∑

i=0

−γr2
i · s(ki)

]

. (14)

For an even value of N , suppose the random sequence is generated as w = [p,−p]

where p is an N/2 length random vector, the above can be further reduced to a

neat result,

R =

N−1
∑

i=0

s(ki) · r2
i γ , (15)

considering
∏N−1

i=0 ( 1−ki

1+ki
) = 1. If R > 0, the bit value 1 is decided, 0 otherwise.

The BER performance can be analyzed as follows. Divide ci into two sets 0 and

1 based on the value of ki, ci ∈ set 0 if ki > 0 and ci ∈ set 1 otherwise. The test

statistic (15) is rewritten as

R =
∑

{ri∈ set 0}

r2
i γ −

∑

{ri∈ set 1}

r2
i γ . (16)

Denote variable

tj =
∑

ri∈ set j

r2
i , (j = 0, 1) . (17)

It can be proved that tj (j = 0, 1) is M = N/2 degree of freedom Γ distributed

with pdf expressed as14

f(tj) =
t
M/2−1
j · e

−
tj

2σ2
j

σM
j · 2M/2 · Γ(M/2)

= Aj · tn−1
j e−Cjtj , (j = 0, 1) , (18)

where Aj = 1
σM

j ·2M/2·Γ(M/2)
, Cj = 1

2σ2

j
and n = M/2 = N/4.

Suppose the bit value 1 is embedded, BER turns out to be

BER = P (t1 < t0) =

∫ +∞

0

f(t0)dt0 ·
∫ t0

0

f(t1)dt1

=

∫ +∞

0

f0(t0)

∫ t0

0

A1t
n−1
1 e−C1t1dt1dt0 . (19)

For an integer n, using the formula
∫

xne−axdx = − e−ax

an+1
· [(ax)n + n(ax)n−1 + n(n − 1)(ax)n−2 + · · · + n!] , (20)

and
∫ +∞

0

sne−asds =
n!

an+1
, (21)
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Fig. 2. Performance in the linear modulation.

after some algebraic steps, BER yields as

BER =

[

(

1 +
C0

C1

)

(2n − 2)! +

n
∑

i=2

(n − 1)!

(n − i)!

(

1 +
C0

C1

)i
]

· −A0A1

C0 + C2n
1

+
A0A1[(n − 1)!]2

(C0C1)n
. (22)

Figure 2 demonstrates that the theoretical result (22) is a perfect match for the

simulation output. Again α is set at 0.1 and σ2 = 502. Further simulation studies

show substantial improvements over the revised DS scheme (3) with similar compu-

tation complexity. Still the scheme is not quite successful in oblivious applications.

With α = 0.1 and N = 1000, (22) yields BER = 3.91 ·10−6. To achieve performance

BER ≤ 10−9, sequence length must be N > 1800. This is the inherent limitations

in this class of DS schemes.

Our Gaussian distribution assumption for the cover signal may not be accurate.

The coefficient ci is usually in a transform domain in practice. Its statistics can be

modeled as generalized Gaussian distribution (GGD) or Laplacian distribution.1

Recently, Cheng et al.7,8 conducted more vigorous mathematical analysis based

on the GGD statistical model. Our clean result (22) can still be used as good

performance prediction in the DS schemes. Both our analysis and GGD distribution

model reveal the limitations in the DS embedding approaches.
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3. Cover Noise Rejection and Set Partitioning

The shortcoming of the DS schemes lies in the inefficiency in the cover noise sup-

pression. The hiding signal energy is much lower than that of the original cover

noise, resulting in low SNR. As shown in the above discussion, provided embedded

bit value 0 and 1 have equal a priori probabilities, the optimal detector always

faces the following hypothesis problem:

H1: bit value 1 is embedded versus H0 : bit value 0 is embedded , (23)

and an optimum detection is based on the ML ratio.

In a noise free scenario where r = x, how can the ML decoder make a reliable

decision on a given r? Answer is simple and straightforward, just make H0 and

H1 have no element in common. Since the conditional probability P (H0|x) = 0 or

P (H1|x) = 0, correct decision is always expected. In order to increase robustness in

a noisy environment, we can simply keep the elements in H0 and H1 some distance

apart. This simple idea thus extends to set partitioning approach. Two separate sets

are constructed on the real axis (Fig. 3). The coefficient after embedding should be

kept in a set according to the hidden bit value. To embed bit value 1, the coefficient

x should be kept in set 1. If the value of the original coefficient c is already in set 1,

no alteration needed. Otherwise it is replaced by the nearest element in set 1 to

minimize distortion. Similarly the value of x is kept in set 0 to embed bit value 0.

We may define signal patterns to represent bit values embedded into a vector.

For example, to embed 1 bit into a vector c, an antipodal signaling pattern can be

defined as follows,
{

Pattern A (bit 1) : [set 1, set 0, set 1, set 0, set 1]

Pattern −A (bit 0) : [set 0, set 1, set 0, set 1, set 0]
. (24)

The resulting vector x should comply with Pattern A for bit value 1, or Pat-

tern −A for 0. For instance, the resulting sequence should be x0 ∈ set 1, x1 ∈ set

0, x2 ∈ set 1, x3 ∈ set 0 and x4 ∈ set 1 in order to embed bit value 1.

To calculate the distortion introduced, c is assumed uniformly distributed in

the limited range (−a, a). It should be mentioned that this assumption is not very

d1 d

Set 0 Set 0 Set 1Set 1 Set 1 Set 0

Fig. 3. Set partitioning scheme.

Set 0 Set 1Set 1Set 0Set 1

A B C D

d d1d1

Fig. 4. Average distortion calculation.
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accurate in many transform domains. However it is a good compromise between

accuracy and ease of analytical work. This assumption is justified in our experi-

ments. As depicted in Fig. 4, suppose the bit value 1 is to be embedded, and denote

the error introduced in embedding as e = x − c, consider the typical region AD:

If c is in the range AB, no modification is needed, thus e = 0. If c is in the

range BD, e is uniformly distributed in the range (−d − d1/2, d + d1/2). With the

conditional probabilities P (c ∈ AB|c ∈ AD) = d1
2d1+2d and P (c ∈ BD|c ∈ AD) =

2d+d1
2d1+2d , the average distortion yields as

D =
(2d + d1)

(2d1 + 2d)
· (2d + d1)2

12
=

1

12

(2d + d1)3

(2d + 2d1)
. (25)

The result holds if a bit value 0 is embedded instead.

4. Set Partitioning Detection and Performance

4.1. ML ratio calculation and suboptimal detection

Given the received coefficient ri after the AWGN channel transmission, the ML

ratio is obtained as16

R =
P (xi ∈ set 1|ri)

P (xi ∈ set 0|ri)
=

∑

xi∈ set 1 P (xi)f(ri|xi)
∑

xi∈ set 0 P (xi)f(ri|xi)
, (26)

where f(ri|xi) is the Gaussian noise conditional probability function,

f(ri|xi) =
1√
2πσ

· exp

[−(ri − xi)
2

2σ2

]

. (27)

Further mathematical analysis does not lead to a closed-form result because (26)

involves infinite elements in the two sets. This greatly increases the computational

cost and no practical detector can be obtained. In the following discussions, we

explore some heuristic detectors employable in practice.

In a sequence embedding, the simplest detection rule is majority vote. This

is a hard decision based on individual coefficients. Given a received coefficient ri,

if it has closer minimum distance to the set 1 than to the set 0, it is assumed

that transmitted signal xi originates from set 1. With the embedding (24), if a

received sequence pattern is obtained as [set 0, set 0, set 1, set 0, set 0], which

is more similar to the pattern A (2 coefficient difference) than the pattern −A (3

coefficient difference), the decision is made in favor of the bit value 1. More elaborate

approaches make some heuristic simplifications in (26). Our first approximation

assumes merely those signals at the centers of the set segments as the transmitted

signals. Our second approximation assumes that the end points in those two sets are

the only signal candidates because they have much higher transmission probabilities

(any coefficient not in the desired set is replace by those values). Hence we have

two signal patterns xoxo and xxoo as depicted in Fig. 5.
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X O X O X

Set 1 Set 0 Set 1 Set 0 Set 1

(a) Suboptimal Detection 1

X X X X X XO O O O

Set 1 Set 1 Set 0 Set 1Set 0

(b) Suboptimal Detection 2

Fig. 5. Sub-optimal detection in set partitioning.

Given a received coefficient ri, we can merely consider the “leader” ui and vi,

of the signal candidates in those two sets, the ML ratio is reduced to

R ≈ P (ri|xi = ui)

P (ri|xi = vi)
. (28)

In the case where one bit is embedded into a vector, a minimum distance detector

can be deployed. With embedding signaling (24), suppose a 5-coefficient sequence

r is received, and the nearest x and o points to ri are denoted as ui (in set 1) and

vi (in set 0). Two sequence candidates are constructed as follows,
{

Pattern A type : a = [u0, v1, u2, v3, u4]

Pattern −A type : b = [v0, u1, v2, u3, v4]
. (29)

If ‖r− a‖ < ‖r− b‖, r is more similar to the Pattern A, bit value 1 is decided,

or bit value 0 otherwise.

4.2. BER-DNR performance

To evaluate the performance, BER is measured versus SNR in AWGN environment

and the BER-SNR curve is used as a distortion-robustness benchmark. As data

hiding signal energy is equivalent to the distortion introduced, we replace SNR

with distortion noise ratio (DNR) which is defined as the ratio of distortion energy

D to noise variance σ2, i.e. DNR = D
σ2 .

Our simulation studies take the following steps. A Laplacian random sequence c

is generated which is composed of N i.i.d components with zero means and variance

value σ2
c = 502. A bit value b is embedded into c, generating an embedding result

x, then an AWGN vector n is added x to simulate channel transmission. The bit is

decoded given a received vector r = x+n. To validate the algorithms, this procedure

is repeated for different values of sequence length N , signaling parameters d, d1,

and noise variance σ2.

Figure 6 displays the simulation result for the three different decoders. The

sequence length N = 11, and signaling d/d1 = 1 are chosen. It is evident that
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Fig. 6. Detection performance comparison.
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the suboptimal detectors outperforms the majority vote detector. This is intuitive

because of the superiority of the soft decision decoder. In addition, the results

demonstrate that the suboptimal detector II offers remarkable decoding improve-

ments over Detector I. It should be emphasized though, this does not mean the

detector II always outperforms detector I. The latter may have better performance

for some d/d1 signaling schemes. In the following discussions, the detector II is used

as the default detector.

In our simulations, it is also established that the BER-DNR curve is only related

with the ratio of d/d1, not the individual values of d and d1. Figure 7 depicts the

result of embedding one single bit into an 8-coefficient sequence. It shows that the

smaller d/d1 performs better at lower DNR. However at higher SNR, larger d/d1 is

more advantageous. Because data hiding distortion is not expected to be more than

moderate or severe compression distortion in practice, resulting in a lower DNR, a

smaller d/d1 signaling is advisable.

5. Multimedia Application Experiments

Because of the efficient cover noise rejection property, the set partitioning approach

can be employed in oblivious multimedia data hiding in place of the DS schemes.

In our image data embedding experiments, information bits are embedded into the

Discrete Fourier Transform (DFT) amplitude domain. Since the DFT amplitude is

assumed less significant perceptually21 thus more embedding energy is tolerable.

Information is embedded into the DFT domain by modifying a set of the DFT

amplitude coefficient in an image. In our experiments, the 256× 256 Lena image is

first divided into 64 sub-images, and DFT transform is taken for each sub image.

Second, the bits are embedded into some selected medium-frequency DFT ampli-

tude coefficients. The embedding is applied to the first half of the DFT coefficients

and a mirror operation is applied to the second half to keep the DFT symmetric

property. Our experiments demonstrates successful extraction and robustness to

the JPEG compression, (Fig. 8).

(a) Original Lena (b) Marked Lena

Fig. 8. Lena image before and after embedding.



December 16, 2004 9:52 WSPC/164-IJIG 00172

Cover Noise Interference Suppression in Multimedia Data Hiding 203

Though the above algorithm is resistant to the additive noise, it is vulnerable to

the scaling attacks. Data embedding in the phase domain can enhance robustness

against these attacks. Another advantage is that the DFT phase is perceptually

more significant, implying potential resistance again malicious attacks. Our follow-

ing discussion is on DFT phase embedding in audio signals and the approach can

be easily extended to images.

Bender et al.2 proposed a scheme to convey messages in the DFT phase. An

audio signal is divided into frames and DFT is applied to each frame. The DFT

phases are modified from the second frame but keep the phase difference between

frames intact. The underlying justification is human auditory system is more sensi-

tive to the relative phase rather than the absolute phase. In the above scheme the

frame continuity is destroyed when the next bit is to be embedded. This may result

in a beat pattern. Moreover, the abrupt phase also may alter the signal spectrum.

Informal listening tests show that small modifications in DFT phase are inaudible.

This property is exploited for data embedding.

The set partitioning scheme can be applied in the DFT phase domain, provided

an predefined signal pattern, the original DFT phase value θi at one frequency bin

is replaced by the nearest element in the set 1 or set 0 accordingly. It is obvious that

the DFT phase noise tends to have larger variance if the corresponding amplitude

is smaller. After all, large phase noise has little perceptual effect if the ampli-

tude at this frequency bin is sufficiently small. Our heuristic fix-up is a weighted

minimum distance detector. Denote the received DFT amplitude and phase as

ri and φi respectively, employing suboptimal detector I or II, two phase signal

candidates can be constructed as a and b. This distance detector statistic becomes

q =
∑N−1

i=0 ri[(φi − ai)
2 − (φi − bi)

2].

We use a 512-point DFT in our experiments. The phase modification is applied

to the frequency bands ranging from 2 kHz to 8 kHz and the modification range

is chosen from π/12 to π/4. To measure the embedding performance, a normalized
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Fig. 9. Normalized output distribution in phase modulation.
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correlation output is defined as

q =

∑N−1
i=0 ri[(φi − ai)

2 − (φi − bi)
2]

‖r‖ . (30)

The statistical distribution of q is shown in Fig. 9. q has different statistical

properties after embedding bit value 1 or 0. Experimental results indicate that

this scheme is effective in oblivious applications. The audio quality can preserved

at lower SNR. Our experiments demonstrate robustness to MP3 compression and

other attacks.

6. Comparison with Existing Schemes

A very effective oblivious scheme, Quantization Index Modulation (QIM)4 is a

special case of the set partitioning with d1 = 0. The resulting coefficient x is a

quantized value in that scheme. In contrast, the set partitioning scheme provides

us the flexibility to choose different values of d/d1. In most applications where DNR

is low, signaling with d/d1 = ∞ (QIM) is not a very good choice.

In Fig. 10(a), one single bit is embedded into a 4-coefficient sequence. Several

d/d1 selections demonstrates substantial improvements over the QIM scheme. The

performance gain is remarkable at lower DNR. At higher DNR, the QIM scheme

only performs slightly better than the signaling scheme d/d1 = 1/1 as shown in

Fig. 10(b). The set partitioning scheme offers the designer an improvement over the

QIM scheme by selecting an appropriate d/d1 ratio. The reason to select a smaller

d/d1 ratio is twofold; first, data hiding operates at lower DNR at practice; second,

this selection guarantees a fair performance at severe compressions or tampering

attacks. In comparison, QIM approach does not survive very noisy channel. This

conclusion rules out QIM in applications. It should be noted that given the same

distortion energy, the maximum error e in d/d1 = 1 signaling is larger than that in
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the QIM scheme. However, even under the same maximum error constraints, which

implies less distortion energy in d/d1 = 1 signaling, other signaling selections still

demonstrate significant improvements over the QIM scheme at lower DNR.

Chen et al.5,6 suggested post-quantization processing to improve the achievable

distortion-robustness trade-offs in the QIM scheme. The compensation term, on the

one hand, increases the noise disturbance; on the other hand, reduces the distortion

injected. A properly chosen scaling factor α can achieve the optimal distortion-

robustness trade-off. Borrowing the distortion compensation idea, a linear post

processing can be similarly applied in set partitioning x̂ = x + (1−α)(c−x) where

x is the embedding output before post-processing, and x̂ is the result after distortion

compensation.

We have found in our simulations that with a proper value of α, the set parti-

tioning performance can be further boosted. d/d1 = ∞ is often a good choice with

the post processing. Some other signaling schemes achieve as well as the DC-QIM.

As a general case of DC-QIM approach, the set partitioning scheme has some room

to improve performance further.

The challenge in the set partitioning scheme (QIM included) is that accurate

mathematical analysis is quite elusive. Up to now, there is not available any accurate

results to predict the performance in practice. Some recent theory research6,18,19

are based on oversimplified assumptions. Much theoretical work addresses the the

hiding capacity. Though important in theory, it does not shed much light on the

practical data hiding applications. Perez-Gonzalez et al.19 have conducted rigorous

analysis on the QIM and DC-QIM schemes. Still more serious work needs to be

done, especially the performance analysis where DNR is low. We have observed the

performance gap between QIM-alike schemes and the regular signal constellation

modulation techniques in practice. The inherent periodic nature in the former tech-

nique involves infinite signal points in BER calculation while the latter deals with

limited signal points. Therefore the analysis results4 often deviate from the simula-

tion output. Our data embedding and detection is very heuristic, and performance

analysis is crude and needs further refinement. More elaborate detection algorithm

is one line of our future research.

7. Future Work and Conclusions

In this paper, the problem of cover noise rejection in oblivious data hiding is

addressed in detail. At the beginning, we analyzed the performance in a commonly

used DS embedding. Then we derived optimal detectors to boost performance. Both

the analytical and simulation results expose the inherent insufficiency in the cover

noise suppression. To facilitate the ML ratio decoding, a nonlinear algorithm, set

partitioning is proposed. And several heuristic detectors are proposed. Though lack

of rigorous mathematical work, the practical approach proposed has been shown

promising in the cover noise rejection and offers encouraging results in the oblivious
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multimedia data hiding applications. Our future research will focus on the more

serious performance analysis, improved detection, and appropriate post processing.

Another line of future work is integration of DS scheme with set partitioning.
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