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In this paper, a color image segmentation algorithm and an approach to large-format
image segmentation are presented, both focused on breaking down images to semantic
objects for object-based multimedia applications. The proposed color image segmen-
tation algorithm performs the segmentation in the combined intensity–texture–position
feature space in order to produce connected regions that correspond to the real-life
objects shown in the image. A preprocessing stage of conditional image filtering and
a modified K-Means-with-connectivity-constraint pixel classification algorithm are used
to allow for seamless integration of the different pixel features. Unsupervised operation

of the segmentation algorithm is enabled by means of an initial clustering procedure.
The large-format image segmentation scheme employs the aforementioned segmentation
algorithm, providing an elegant framework for the fast segmentation of relatively large
images. In this framework, the segmentation algorithm is applied to reduced versions of
the original images, in order to speed-up the completion of the segmentation, resulting
in a coarse-grained segmentation mask. The final fine-grained segmentation mask is
produced with partial reclassification of the pixels of the original image to the already
formed regions, using a Bayes classifier. As shown by experimental evaluation, this novel
scheme provides fast segmentation with high perceptual segmentation quality.

Keywords: Image segmentation; image analysis; large-format image segmentation; Bayes
classifier.

1. Introduction

In recent years, the proliferation of digital media has established the need for

the development of tools for efficient representation, access and retrieval of visual

information. These tools, targeted at applications of large image and video
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collections as well as the Web, become increasingly important as the amount of

digital media both on the Web and in proprietary collections increases. While sev-

eral approaches have been proposed to address these issues, most recent approaches

rely on the analysis of the content of the medium in semantic objects. This is true

both for still image manipulation image indexing,2,4,7,19 region-of-interest coding

using the JPEG2000 standard35) and for video representation,23 coding14,44 and

indexing using the MPEG-438 and recently introduced MPEG-729 standards. In

still image indexing. for example, state of the art systems are based on the segmen-

tation of images into regions corresponding to objects and the use of a separate set

of indexing features for each object.2,7

The cornerstone of any such object-based multimedia application is the segmen-

tation algorithm, which for every still image or every frame of an image sequence

produces a corresponding segmentation mask: a gray-scale image in which different

gray levels denote different regions identified by the algorithm. The segmentation

mask is then used, depending on the specific application, for extracting region-

specific indexing features or for identifying regions of interest. The present work

concentrates on addressing the issue of effective segmentation of still color images,

aiming at applications requiring the automatic segmentation of heterogeneous im-

ages, thus excluding the availability of a priori knowledge about the objects con-

tained in each image. Content-based indexing and retrieval of images is a typical

application of this category.

Segmentation methods for 2D images may be divided primarily into region-

based and boundary-based methods.10,15,39,40 Region-based approaches13,21,22 rely

on the homogeneity of spatially localized features such as intensity. The K-means

algorithm26 and evolved variants of it (KMCC22) have been used as the basis of

several region-based approaches. Region-growing and split and merge techniques

also belong to the same category. On the other hand, boundary-based methods

use primarily gradient information to locate object boundaries. Deformable whole

boundary methods,17,41 rely on the values of gradients in parts of an image near

an object boundary. Hybrid techniques which integrate the results of boundary

detection and region growing have also been proposed.9

Other techniques include the segmentation using the Expectation–Maximization

(EM) algorithm2,4 and the segmentation by anisotropic diffusion.1,31 The EM al-

gorithm is used for finding maximum likelihood estimates when there is missing

or incomplete data; the cluster membership for each pixel can be seen as such.

Anisotropic diffusion can be seen as a robust procedure which estimates a piece-

wise smooth image from a noisy input image. The “edge-stopping” function in

the anisotropic diffusion equation, allows the preservation of edges while diff-

using the rest of the image. The Recursive Shortest Spanning Tree (RSST)

algorithm,28,43 starting from a very fine partitioning of the image, performs merg-

ing of neighboring nodes while considering the minimum of a cost function.

Mathematical morphology25,34,37 methods, including in particular the watershed

transformation,12,47 have also received considerable attention for use in image
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segmentation. The watershed transformation determines the minima of the gra-

dients of the image to be segmented, and associates a segment to each minimum.

Conventional gradient operators generally produce many local minima which are

caused by noise or quantization errors, and hence, the watershed transformation

with a conventional gradient operator usually results in oversegmentation. To alle-

viate this problem, the use of multiscale morphological gradient operators has been

proposed.48

In this paper, a region-based approach is adopted. An unsupervised segmenta-

tion algorithm is presented using a combination of conditional image filtering by

a moving average filter and pixel classification by means of a novel variant of the

K-Means-with-connectivity-constraint algorithm (KMCC), in order to form connec-

ted regions that correspond to the objects contained in the image. Performing the

segmentation in the combined intensity–texture–position feature space allows for

effective handling of textured objects, as opposed to most previous algorithms,

including those based on K-means-family pixel classifiers, which do not utilize tex-

ture information.

Although this segmentation algorithm is quite fast when applied to images of

relatively small dimensions, its efficiency degrades quickly as the dimensions of

the image increase. This is in fact the case for any segmentation algorithm with

computational complexity proportional to the number of pixels of the image to

be segmented. Since large-format images are becoming increasingly popular, partly

as a result of recent advances in storage and communication technologies, time-

efficient methods for their segmentation become essential. For this reason, a novel

framework for the fast segmentation of relatively large images employing a Bayes

classifier is proposed. This effectively addresses the issues of time efficiency and

perceptual segmentation quality and, as will be seen, can also be combined with

most segmentation algorithms found in the literature.

The paper is organized as follows. The proposed segmentation algorithm is

presented in Sec. 2. In Sec. 3, the framework for the fast segmentation of large-

format images using the segmentation algorithm presented in the previous section

is developed, and the issues of time efficiency and perceptual segmentation quality

are discussed. Section 4 contains experimental evaluation and comparisons of the

developed methods, and finally, conclusions are drawn in Sec. 5.

2. Color Image Segmentation

2.1. Segmentation system overview

The segmentation system described in this section is based on a novel variant of

the K-Means-with-connectivity-constraint algorithm (KMCC),21,22 a member of the

popular K-Means family. The KMCC algorithm is an algorithm that classifies the

pixels into regions taking into account not only the intensity information associated

with each pixel but also the position of the pixel, thus producing connected regions

rather than sets of chromatically similar pixels. The novel variant presented in this
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paper introduces the use of texture features in combination with the intensity and

position features; this, along with the texture-dependent filtering of pixel intensi-

ties (conditional filtering), endow the segmentation algorithm with the capability

to handle textured objects effectively, by forming large, chromatically nonuniform

regions instead of breaking down the objects to a large number of chromatically uni-

form regions, as was the case in a previous preliminary version of the algorithm.3,22

In addition, in the proposed algorithm the required initial values are estimated using

a novel initial clustering procedure, based on breaking down the image to square

blocks and assigning an intensity feature vector and a texture feature vector to each

block. This automated initial clustering procedure makes any user intervention at

this stage unnecessary, thus facilitating the processing of large image collections.

The overall segmentation algorithm consists of the following stages:

Stage 1. Extraction of the intensity and texture feature vectors corresponding to

each pixel. These will be used along with the spatial features in the fol-

lowing stages.

Stage 2. Estimation of the initial number of regions and their spatial, intensity and

texture centers, using a novel initial clustering procedure. These values

are to be used by the KMCC algorithm.

Stage 3. Conditional filtering using a moving average filter.

Stage 4. Final classification of the pixels, using the KMCC algorithm.

The result of the application of the segmentation algorithm to a color image

is the segmentation mask, i.e. a grayscale image in which different gray values

correspond to different regions formed by the KMCC algorithm.

2.2. Color and texture features

For every pixel p = [px py], px = 1, . . . , xmax, py = 1, . . . , ymax, where xmax, ymax are

the image dimensions in pixels, a color feature vector and a texture feature vector

are calculated. The color features used are the three intensity coordinates of the

CIE L*a*b* color space. What makes CIE L*a*b* more suitable for the proposed

algorithm than the widely used RGB color space is perceptual uniformity: the CIE

L*a*b* is approximately perceptually uniform, i.e. the numerical distance in this

color space is approximately proportional to the perceived color difference.24 The

color feature vector of pixel p, I(p) is defined as

I(p) = [IL(p)Ia(p)Ib(p)] . (1)

In order to detect and characterize texture properties in the neighborhood of

each pixel, the Discrete Wavelet Frames (DWF) decomposition, proposed in Ref. 45,

is used. This is a method similar to the Discrete Wavelet Transform (DWT), that

uses a filter bank to decompose each intensity component of the image to a set of

subbands (Fig. 1). The main difference between the two methods is that in the DWF

decomposition the output of the filter bank is not subsampled. The DWF approach
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Fig. 1. 1-D discrete wavelet frames decomposition of V levels.

has been proven to decrease the variability of the estimated texture features, thus

improving classification performance.45

The filter bank used is based on the lowpass Haar filter H(z) = 1

2
(1 + z−1),

which satisfies the lowpass condition H(z)|z=1 = 1. The complementary highpass

filter G(z) is defined with respect to the lowpass H(z) as G(z) = zH(−z−1). The

filters of the filter bank, HV (z), Gi(z), i = 1, . . . , V are generated by the prototypes

H(z), G(z), according to equations presented in Ref. 45. Despite its simplicity, the

above filter bank has been demonstrated to perform surprisingly well for texture seg-

mentation in Ref. 45 and is, for this reason, a good choice for our system. The use of

such simple filters has the additional advantage of correspondingly reduced compu-

tational complexity. The texture of pixel p is then characterized by the standard de-

viations of all detail components, calculated in a square neighborhood Φ of pixel p.

For images of relatively small dimensions, e.g. 150×100 pixels, a two-dimensional

DWF decomposition of two levels has been chosen, thus V = 2. Since three detail

components are produced for each level of decomposition and each one of the three

intensity components, this results in a 9×V = 18-component texture feature vector

T(p):

T(p) = [σ1(p)σ2(p) . . . σ9×V (p)] . (2)

Moving towards larger images, or large-format versions of the same image, any

given texture becomes coarser-grained, in terms of the size of its basic structural

element, calculated in pixels. Thus, for images of significantly larger dimensions,

more levels of decomposition may be required to effectively characterize texture.

In the experiments where the segmentation algorithm of this section was applied

directly to large-format images, four levels of decomposition were used instead of

two, resulting in a 36-component texture feature vector.

2.3. Initial clustering

Similarly to any other variant of the K-Means algorithm, the KMCC algorithm

requires initial values: an initial estimation of the number of regions in the image

and their spatial, intensity and texture centers (all these initial values can and are
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expected to be altered during the execution of the algorithm). In order to compute

them, the image is broken down to square, nonoverlapping blocks of dimension

f ×f . In this way, a reduced image composed of a total of L blocks, bl, l = 1, . . . , L,

is created. A color feature vector Ib(bl) = [Ib
L(p)Ib

a(p)Ib
b (p)] and a texture feature

vector Tb(bl) are then assigned to each block, as follows:

Ib(bl) =
1

f2

∑

p∈bl

I(p) , (3)

Tb(bl) =
1

f2

∑

p∈bl

T(p) . (4)

The distance between two blocks is defined as follows:

Db(bl, bn) = ‖Ib(bl) − Ib(bn)‖ + λ1‖Tb(bl) −Tb(bn)‖ , (5)

where ‖Ib(bl)− Ib(bn)‖, ‖Tb(bl)−Tb(bn)‖ are the Euclidean distances between the

block feature vectors. In our experiments, λ1 = 1, since experimentation showed

that using a different weight λ1 for the texture difference would result in erroneous

segmentation of textured images if λ1 � 1, respectively nontextured images if

λ1 � 1. As shown in the experimental results section, the value λ1 = 1 is appro-

priate for a variety of textured and nontextured images; small deviations from this

value have little effect on the segmentation results.

The number of regions of the image is initially estimated by applying a variant of

the maximin algorithm to this set of blocks. This algorithm consists of the following

steps:

Step 1. The block in the upper left corner of the image is chosen to be the first

intensity and texture center.

Step 2. For each block bl, l = 1, . . . , L, the distance between bl and the first center

is calculated; the block for which the distance is maximized is chosen to

be the second intensity and texture center. The distance C between the

first two centers is indicative of the intensity and texture contrast of the

particular image.

Step 3. For each block bl, the distances between bl and all centers are calculated

and the minimum of those distances is assigned to block bl. The block that

was assigned the maximum of the distances assigned to blocks is a new

candidate center.

Step 4. If the distance that was assigned to the candidate center is greater than

γ · C, where γ is a predefined parameter (γ ∈ [0, 1]; γ = 0 results in all

nonidentical blocks being identified as region centers, while γ = 1 restricts

region centers to the two already identified in Step 2), the candidate center

is accepted as a new center and Step 3 is repeated; otherwise, the candidate

center is rejected and the maximin algorithm is terminated.

In the experimental results section, the values of parameters L, γ that were
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used throughout the experiments and the effect of using values deviating from the

employed ones are presented.

The number of centers estimated by the maximin algorithm constitutes an

estimate of the number of regions in the image. Nevertheless, it is not possible

to directly determine whether these regions are connected or not. Furthermore,

there is no information regarding their spatial centers. In order to solve these

problems, a simple K-Means algorithm is applied to the set of blocks, using the

information produced by the maximin algorithm for its initialization. When the

K-Means algorithm converges, the connectivity of the regions that were formed

is evaluated; those that are not connected are easily broken down to the min-

imum number of connected regions using a recursive four-connectivity compo-

nent labelling algorithm,16 so that a total of K ′ connected regions sk, k =

1, . . . ,K ′ are identified. Their intensity, texture and spatial centers, Is(sk) =

[Is
L(sk)Is

a(sk)Is
b (sk)], Ts(sk) = [T s

1 (sk) . . . T s
9×V (sk)] and S(sk) = [Sx(sk)Sy(sk)],

k = 1, . . . ,K ′, must now be calculated. Let Mk be the number of pixels belong-

ing to region sk: sk = {p1,p2, . . . ,pMk
}; the region centers to be used for the

initialization of the KMCC are calculated as follows:

Is(sk) =
1

Mk

∑

p∈sk

I(p) , (6)

Ts(sk) =
1

Mk

∑

p∈sk

T(p) , (7)

S(sk) =
1

Mk

∑

p∈sk

p . (8)

2.4. Conditional filtering

Images may contain parts in which intensity fluctuations are particularly pro-

nounced, even when all pixels in these parts of the image belong to a single object

[Fig. 2(a)]. In order to facilitate the grouping of all these pixels in a single region

based on their texture similarity, it is useful to reduce their intensity differences.

This is achieved by applying a moving average filter to the appropriate parts of the

image, thus altering the intensity information of the corresponding pixels.

The decision of whether the filter should be applied to a particular pixel p or

not is made by evaluating the norm of the texture feature vector T(p) (Sec. 2.2);

the filter is not applied if that norm is below a threshold τ . The output of the

conditional filtering module can thus be expressed as:

J(p) =











I(p) if ‖T(p)‖ < τ

1

f2

∑

I(p) if ‖T(p)‖ ≥ τ .
(9)

Correspondingly, region intensity centers calculated similarly to Eq. (6) using

the filtered intensities J(p) instead of I(p) are symbolized Js(sk).



June 7, 2004 10:15 WSPC/115-IJPRAI 00339

708 V. Mezaris, I. Kompatsiaris & M. G. Strintzis

(a) (b)

Fig. 2. (a) Original image “zebra, 150 × 100 pixels. (b) Filtered image.

An appropriate value of threshold τ was experimentally found to be

τ = max{0.65 · Tmax, 14} (10)

where Tmax is the maximum value of the norm ‖T(p)‖ in the image. The term

0.65 ·Tmax in the threshold definition serves to prevent the filter from being applied

outside the borders of textured objects, so that their boundaries are not corrupted.

The constant bound 14, on the other hand, is used to prevent the filtering of images

composed of chromatically uniform objects; in such images, the value of Tmax is

expected to be relatively small and would correspond to pixels on edges between

objects, where filtering is obviously undesirable.

The output of the conditional filtering stage [e.g. Fig. 2(b)] is used as input by

the KMCC algorithm.

2.5. The K-Means with connectivity constraint algorithm

Clustering based on the K-Means algorithm, originally proposed by McQueen,26 is

a widely used region segmentation method20,33,36 which, however tends to produce

unconnected regions. This is due to the propensity of the classical K-Means algo-

rithm to ignore spatial information about the intensity values in an image, since

it only takes into account the global intensity or color information. Furthermore,

previous pixel classification algorithms of the K-Means family do not take into ac-

count texture information. In order to alleviate these problems, we propose the use

of a novel variant of the KMCC algorithm. In this algorithm the spatial proximity

of each region is also taken into account by defining a new center for the K-Means

algorithm and by integrating the K-Means with a component labeling procedure.

In addition to that, texture features are combined with the intensity and position

information to permit efficient handling of textured objects.

The KMCC algorithm applied to the pixels of the image consists of the following

steps:

Step 1. The region number and the region centers are initialized, using the output

of the initial clustering procedure described in Sec. 2.3.

Step 2. For every pixel p, the distance between p and all region centers is calcu-

lated. The pixel is then assigned to the region for which the distance is
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minimized. A generalized distance of a pixel p from a region sk is defined

as follows:

D(p, sk) = ‖J(p) − Js(sk)‖ + λ1‖T(p) −Ts(sk)‖ + λ2

M̄

Mk

‖p− S(sk)‖ ,

(11)

where ‖J(p)−Js(sk)‖, ‖T(p)−Ts(sk)‖ and ‖p−S(sk)‖ are the Euclidean

distances between the pixel feature vectors and the corresponding region

centers; pixel number Mk of region sk is a measure of the area of region sk,

and M̄ is the average area of all regions, M̄ = 1

K

∑K

k=1
Mk. The regular-

ization parameter λ2 is defined as λ2 = 0.4 · C√
x2
max

+y2
max

, while the choice

of the parameter λ1 has been discussed in Sec. 2.3.

In (11), normalization of the spatial distance, ‖p − S(sk)‖ divided by

the area of each region Mk

M̄
, is necessary in order to encourage the creation

of large connected regions; otherwise, pixels would tend to be assigned

to smaller rather than larger regions due to greater spatial proximity to

their centers. In this case, large objects would be broken down to more

than one neighboring smaller regions instead of forming one single, larger

region. The regularization parameter λ2 is used to ensure that a pixel is

assigned to a region primarily due to their similarity in intensity and texture

characteristics, even in low-contrast images, where intensity and texture

differences are small compared to spatial distances.

Step 3. The connectivity of the formed regions is evaluated; those which are not

connected are easily broken down to the minimum number of connected

regions using a recursive four-connectivity component labeling algorithm.16

Step 4. Region centers are recalculated [Eqs. (6)–(8)]. Regions with areas below

a size threshold ξ are dropped. In our experiments, the threshold ξ was

equal to 0.5% of the total image area. This is lower than the minimum

accepted region size ψ, which in our experiments was equal to 0.75% of the

total image area. The latter is used to ensure that no particularly small,

meaningless regions are formed. Here, the slightly lower threshold ξ is used

to avoid dropping, in one iteration of the KMCC algorithm, regions that

are close to threshold ψ and are likely to exceed it in future iterations.

The number of regions K is also recalculated, taking into account only the

remaining regions.

Step 5. Two regions are merged if they are neighbors and if their intensity and

texture distance is not greater than an appropriate merging threshold:

Ds(sk1
, sk2

) = ‖Js(sk1
) − Js(sk2

)‖ + λ1‖Ts(sk1
) −Ts(sk2

)‖ ≤ µ . (12)

Threshold µ is image-specific, defined in our experiments by

µ =







7.5 if C < 25

15 if C > 75

10 otherwise

(13)
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where C is an approximation of the intensity and texture contrast of the

particular image, as defined in Sec. 2.3.

Step 6. Region number K and region centers are reevaluated.

Step 7. If the region number K is equal to the one calculated in Step 6 of the

previous iteration and the difference between the new centers and those in

Step 6 of the previous iteration is below the corresponding threshold for all

centers, then stop, else goto Step 2. If index “old” characterizes the region

number and region centers calculated in Step 6 of the previous iteration,

the convergence condition can be expressed as K = Kold and

‖Js(sk) − Js(soldk )‖ ≤ cI ,

‖Ts(sk) −Ts(soldk )‖ ≤ cT ,

‖S(sk) − S(soldk )‖ ≤ cS ,

for k = 1, . . . ,K. Since there is no certainty that the KMCC algorithm will

converge for any given image, the maximum allowed number of iterations

was chosen to be 20; if this is exceeded, the method proceeds as though the

KMCC algorithm had converged.

3. Fast Large-Format Image Segmentation

The approach presented in the previous section is considerably fast when the algo-

rithm is applied to images of relatively small dimensions, e.g. 150×100 pixels. When

the image size increases, time efficiency degrades quickly, since the computational

complexity of the algorithm is approximately proportional to the number of pixels

of the image. In order to provide a more efficient scheme for the segmentation of

relatively large images, one could take advantage of a reasonable assumption already

made in the previous section, namely that regions falling below a size threshold ψ,

that was defined to be equal to 0.75% of the total image area in Sec. 2.5, are

insignificant for the multimedia applications where segmentation is required. For

relatively large images, this threshold corresponds to a large number of pixels. This

reveals the potential of applying the segmentation algorithm of the previous section

to reduced versions of the original images.18,32,42 These would be large enough for

even insignificant objects to be detectible, yet significantly smaller than the original

ones, thus faster to segment.

In this paper, the reduced image is derived from the original image by associating

each R × R block of the original image with a pixel of the reduced one (Fig. 3),

where R is the reduction factor. A necessary condition for all significant objects to

be detectible in the reduced image is that the size threshold for the reduced image,

expressed as the minimum number of pixels, be much greater than one; otherwise,

even significant objects could be difficult or even impossible to detect. Thus,

ψ

R2
� 1 (14)
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Fig. 3. Three-layer segmentation scheme.

where ψ has been defined as ψ = 0.75
100

· ymax · xmax and xmax, ymax are the origi-

nal image dimensions. A graphical representation of this three-layer segmentation

scheme is presented in Fig. 3. The segmentation algorithm proposed in Sec. 2 is

applied to Layer 1 image. Consequently, its initial clustering process described in

Sec. 2.3 is performed on Layer 2 image.

The use of a reduced image improves the time efficiency of the segmentation

process, but does so at the expense of the quality of the segmentation result; edges

between objects are crudely approximated by piecewise linear segments, lowering

the perceptual quality of the result. To alleviate this problem, the use of the Bayes

classifier for the reclassification of pixels is proposed. Reclassification of all pixels of

the original image is unnecessary, since only those close to the edges of each region

may have been misclassified due to the use of a reduced image. Thus, reclassification

is restricted to the latter. The proximity of pixels to edges is evaluated using the

output of the segmentation algorithm: the segmentation mask corresponding to

Layer 1 image. If a pixel of that mask, assigned to one region, is neighboring to

pixels of Γ other regions, Γ 6= 0, the assignments of all pixels of the original image

represented by that pixel of Layer 1 image must be reevaluated, since each of

them may belong to any one of the possible Γ + 1 regions. In this way, G sets

g
p
i , i = 1, . . . , G of disputed pixels are formed, each associated with a different set

gs
i , i = 1, . . . , G of possible regions (Fig. 4).

The reclassification of the disputed pixels is then performed using their intensity

values only, as follows: let ωk be the class of pixels of region sk. According to the

Bayes classifier,8,11 a disputed pixel p, p ∈ g
p
i , is assigned to region sk if

p(ωk|I(p)) > p(ωq |I(p)) , ∀ sk, sq ∈ gs
i , k 6= q . (15)

Using the Bayes theorem, Eq. (15) can be rewritten as:

p(I(p)|ωk) · p(ωk) > p(I(p)|ωq) · p(ωq) , ∀ sk, sq ∈ gs
i , k 6= q . (16)
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The probability p(ωk) is the a priori probability of class ωk, whereas probability

p(I(p)|ωk) is the density function of the intensities of pixels belonging to class ωk.

The latter can be easily determined using the normalized histogram histk of each

intensity component for the nondisputed pixels of region sk:

p(I(p)|ωk) =
∏

x∈{L,a,b}

histx
k(Ix(p)) . (17)

Regarding class prior probabilities, it can be assumed that among the pixels

of group g
p
i the a priori probability of class ωk, sk ∈ gs

i , is equal for all regions

sk ∈ gs
i . The fact that reclassification is restricted to disputed pixels, i.e. pixels

on edges between regions, along with the fact that each pixel of group g
p
i belongs

to a block that is on the edges of all regions of group gs
i , make the size of each

(a) (b) (c) (d)

Fig. 4. A magnified 14 × 14 pixel area of a layer 1 segmentation mask. If black, gray and white
pixels belong to regions s0, s1 and s2 respectively, then the marked areas denote (a) pixel set
g

p
1
, associated with region set gs

1
= {s0, s1}, (b) pixel set gp

2
, associated with region set gs

2
=

{s0, s1, s2}, (c) pixel set gp
3
, associated with region set gs

3
= {s0, s2}, (d) pixel set gp

4
, associated

with region set gs
4

= {s1, s2}.

reduced
segmentation
mask

original image

final fine-grained
segmentation mask

reduced
image

original image

coarse-grained
segmentation mask
of original dimensionsimage

reduction

transition to
CIE L*a*b*

disputed pixel
detection

histogram
calculation

disputed pixel
classification

component
labeling

small region
appending

Segmentation
Algorithm

segmentation
mask increase

Fig. 5. Block diagram of the proposed framework for fast segmentation of large-format color
images.
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region sk ∈ gs
i irrelevant to the employed methodology (Fig. 4); therefore, using

region size for estimating prior probabilities would be unjustifiable. Consequently,

the classification criterion of Eq. (16) is simplified to: pixel p, p ∈ g
p
i , is assigned

to region sk if
∏

x∈{L,a,b}

histx
k(Ix(p)) >

∏

x∈{L,a,b}

histx
q (Ix(p)) , ∀sk, sq ∈ gs

i , k 6= q . (18)

The block diagram of the pixel reclassification scheme is presented in Fig. 5.

4. Experimental Results

The segmentation algorithm described in Sec. 2 was applied to a variety of synthetic

and natural color images of typical dimensions 150 × 100 and 192 × 128; these

were mainly selected from the Corel gallery6 and the MIT Vision Texture (VisTex)

database,27 while some were collected from the web. Results for natural images are

presented in Fig. 6, along with results obtained using two simpler variants of the

proposed algorithm: one that neither uses texture features nor enforces connectivity

constraints during pixel classification (denoted KM1), and one that differs from the

proposed algorithm in that texture is used only by the conditional filtering module

and not by KMCC (denoted KM2). Figure 6 illustrates the shortcomings of such

simpler variants and the improvement attained using the proposed algorithm.

Additional results for 192× 128 pixel images6,27 are presented in Figs. 7 and 8,

along with the corresponding results of the Blobworld segmentation algorithm2,4

(obtained using source code from http://elib.cs.berkeley.edu/src/blobworld/). The

Blobworld algorithm is one that has been extensively tested, and has produced very

satisfactory results. It is based on modeling the joint distribution of color, texture

and position features with a mixture of Gaussians; the Expectation–Maximization

(EM) algorithm is employed to estimate the parameters of this model. From the

results presented here it can be seen that the proposed algorithm tends to produce

more accurate region boundaries. This, along with the fact that every pixel of

the image is assigned to a region, make the proposed algorithm suitable not only

for content-based image retrieval but also for region-of-interest coding, a task for

which the Blobworld algorithm is not suited. A comparison, using an 800Mhz Intel

PIII PC, of the time efficiency of the algorithm of Sec. 2 and Blobworld (uses mostly

Matlab code) can be seen in Table 1.

Objective evaluation of segmentation quality was performed using synthetic

images, created using the reference textures of the VisTex database,27 and nat-

ural images of the Corel gallery6; reference masks for the latter were manually

generated. The employed evaluation criterion is based on the measure of spatial

accuracy proposed in Ref. 46 for foreground/background masks. For the purpose

of evaluating still image segmentation results, each reference region rq of the ref-

erence mask is associated with a different created region sk on the basis of region



June 7, 2004 10:15 WSPC/115-IJPRAI 00339

714 V. Mezaris, I. Kompatsiaris & M. G. Strintzis

(a) (f) (k) (p)

(b) (g) (l) (q)

(c) (h) (m) (r)

(d) (i) (n) (s)

(e) (j) (o) (t)

Fig. 6. Image segmentation examples: (a)–(e) Original images of approximate dimensions 150×
100 pixels. (f)–(j) Segmentation masks, produced by a variant of the algorithm of Sec. 2, that
neither uses texture features nor enforces connectivity constraints. (k)–(o) Segmentation masks,
produced by a variant of the algorithm of Sec. 2, that uses texture features only by the conditional
filtering module and not by KMCC. (p)–(t) Segmentation masks, produced by the algorithm of
Sec. 2.
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Fig. 7. Segmentation results for images belonging to various classes of the Corel gallery. Results of
the proposed algorithm are shown below each original image; below these, results of the Blobworld
algorithm are shown.
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Fig. 8. Segmentation results for images belonging to various classes of the Corel gallery, and
MIT’s VisTex database. Results of the proposed algorithm are shown below each original image;
below these, results of the Blobworld algorithm are shown.
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Table 1. Average segmentation time for 192 × 128 pixel images.

Segmentation Scheme Average Time (sec.)

Direct application of the segmentation algorithm of Sec. 2 65.5

Application of the blobworld algorithm 226.2

Table 2. Numerical evaluation of the segmentations of Fig. 9.

Images KM1 KM2 RSST Blobworld KMCC

synth1 142.923679 6.453033 105.339744 12.188144 1.260071

synth2 205.812701 15.309401 187.123016 40.027074 1.787774

synth3 66.207026 39.597181 105.995881 45.812201 2.167452

synth4 226.903358 16.022338 78.353790 56.613260 42.442787

synth5 147.495911 70.91871 136.206447 34.720163 50.283481

synth6 127.208613 1.898975 73.851239 10.601577 1.197819

butterfly1 85.742792 11.218476 57.476854 29.533668 9.940959

butterfly2 71.658535 62.490798 22.572128 48.468529 7.800168

sunset 44.383718 44.386698 68.794582 89.307062 5.722744

bear 61.268402 62.992715 86.269010 55.090216 60.948571

overlapping (i.e. sk is chosen so that rq ∩ sk is maximized). Then, the spatial ac-

curacy of the segmentation is evaluated by separately considering each reference

region as a foreground reference region and applying the criterion of Ref. 46 for

the pair of {rq , sk}; during this process, all other reference regions are treated as

background. A weighted sum of misclassified pixels for each reference region is the

output of this process. The sum of these error measures for all reference regions

is used for the objective evaluation of segmentation accuracy; values of the sum

closer to zero indicate better segmentation. The test images used for objective eva-

luation are presented in Fig. 9, along with their reference masks and results of the

algorithm proposed here (KMCC), the Blobworld algorithm4 and a modified RSST

algorithm.30 The latter is based on adding to the original RSST algorithm28 a

second stage of region merging, using a distance function that does not discourage

the creation of large regions. The values of the evaluation metric for the images

of Fig. 9 are shown in Table 2; results for the simpler variants KM1 and KM2

of the proposed algorithm are also shown. These results clearly demonstrate that

algorithms using only color features (KM1, RSST) perform poorly on synthetic or

natural images containing textured regions; however, they may be useful in interac-

tive applications requiring some degree of over-segmentation.5 Both the Blobworld

and the proposed KMCC algorithm produce significantly better results. The supe-

riority of the proposed algorithm in producing accurate region boundaries without

over-segmentation is demonstrated in Fig. 9 and is numerically verified.

The efficiency of the fast large-format image segmentation framework of Sec. 3

was also evaluated, by comparing its time-efficiency and perceptual segmentation
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Fig. 9. Segmentation results for synthetic and natural images used for numerical evaluation.
Synthetic images were created using the reference textures of MIT’s VisTex database. Reference
masks are shown in the second column; results for a modified RSST, the Blobworld algorithm and
the proposed algorithm are shown in columns 3 to 5, respectively.
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Table 3. Average segmentation time for 730 × 490 pixel images.

Segmentation Scheme Average Time (sec.)

Direct application of the segmentation algorithm of Sec. 2 to
730 × 490 pixel images 2494.28

Application of the segmentation algorithm of Sec. 2 to reduced
images (reduction factor R = 8) 18.92

Application of the large-format image segmentation framework
of Sec. 3 (reduction factor R = 8) 47.55

quality with two other segmentation schemes: the direct application of the algorithm

of Sec. 2 to the large-format images and the application of the same algorithm to

reduced images, as in Sec. 3, without the subsequent application of the quality

improvement stage that employs the Bayes classifier. The time-efficiency of the

three aforementioned segmentation schemes was evaluated on an 800MHz Intel

Pentium III PC, using a set of 100 730× 490 pixel images from the Corel gallery.6

The average image segmentation time for the images of this set is presented in

Table 3. The perceptual quality of the three schemes can be evaluated using the

segmentation examples of Fig. 10. As can be seen, the perceptual quality of the

proposed fast large-format image segmentation scheme is generally higher than that

of the direct approach, due to superiority of the Bayes classifier, compared to the

Euclidian distance classification used by the KMCC algorithm. The quality of the

reduced image approach is clearly lower, due to the fact that regions are composed

of blocks of pixels rather than pixels. Note that the three different schemes do not

necessarily produce the same number of regions for a given image. This is due to

the fact that the segmentation algorithm of Sec. 2 is applied to different images

under each of the three schemes.

To test the sensitivity of the proposed algorithms to variations of the threshold

values, additional tests were conducted using threshold values deviating from those

described in the previous sections and summarized in Table 4. The values used for

these tests and the corresponding results for the images of Fig. 10 are illustrated in

Table 4; in all cases the results are satisfactory. Note that, with the exception of the

results presented in Table 4, all results were produced using the original threshold

values reported in Sec. 2 and Table 4. The plethora of heterogeneous images shown

in Figs. 6–10 are seen to be properly segmented without changing any threshold

values, which is another indication of the low threshold dependency of the proposed

algorithms.

Finally, an important observation regarding the proposed large-format image

segmentation methodology is that it requires nothing of the employed segmentation

algorithm, apart from an image as its input and a segmentation mask of the same

dimensions as the input image as its output. Thus, this methodology can be used

in combination not only with the proposed segmentation algorithm but also with a

variety of other segmentation algorithms described in the literature.
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Table 4. Threshold dependency experiments.

Original Threshold

New Values Outcome

Initial clustering parameter
γ = 0.4

0.3, 0.5

Using γ = 0.5, no changes were ob-
served; γ = 0.3 resulted in an additional
small region being formed in the “zebra”
image, due to the imperfect texture ho-
mogeneity of the “zebra” object

33

TABLE IV

Threshold Dependency Experiments
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Outcome
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of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT
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max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

In the first case (τ = max{0.6 ·
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in the second case, an extra region was
formed in the “cat” image

33

TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed;

γ = 0.3 resulted in an additional small re-

gion being formed in the “zebra” image,

due to the imperfect texture homogeneity

of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT

Size thresholds {ξ, ψ} = {0.5%,
0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

In the first case ({0.4%, 0.6%}), no
changes were observed; in the second
case, one region of the “cat” image was
rejected for being too small

33

TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed;

γ = 0.3 resulted in an additional small re-

gion being formed in the “zebra” image,

due to the imperfect texture homogeneity

of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT

Merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

In the first case (µ′ = 0.8 · µ), an extra
region was formed in the “cat” image;
in the second case, no changes were ob-
served

33

TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed;

γ = 0.3 resulted in an additional small re-

gion being formed in the “zebra” image,

due to the imperfect texture homogeneity

of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT

Number of blocks for initial
clustering L ≈ 75

50, 100, 150

Using 50 blocks had no effect on the
segmentation results; using 100 or 150
blocks resulted in an additional small re-
gion being formed in the “zebra” image,
due to the imperfect texture homogene-
ity of the “zebra” object

33

TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed;

γ = 0.3 resulted in an additional small re-

gion being formed in the “zebra” image,

due to the imperfect texture homogeneity

of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT

λ1 = 1.0

0.8, 1.3

Using λ1 = 0.8 had no effect on the re-
sults; using λ1 = 1.3 resulted in an addi-
tional small region being formed in the
“zebra” image

33

TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed;

γ = 0.3 resulted in an additional small re-

gion being formed in the “zebra” image,

due to the imperfect texture homogeneity

of the “zebra” object

τ = max{0.65 · Tmax, 14}

max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}),
no changes were observed; in the second

case, an extra region was formed in the

“cat” image

size thresholds {ξ, ψ} = {0.5%,

0.75%} of the image area

{0.4%, 0.6%},

{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes
were observed; in the second case, one re-

gion of the “cat” image was rejected for

being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,

µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra

region was formed in the “cat” image; in

the second case, no changes were observed

number of blocks for initial clus-

tering L ≈ 75

50, 100, 150

using 50 blocks had no effect on the seg-

mentation results; using 100 or 150 blocks

resulted in an additional small region be-

ing formed in the “zebra” image, due to

the imperfect texture homogeneity of the

“zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results;

using λ1 = 1.3 resulted in an additional

small region being formed in the “zebra”

image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX ,X ∈ {I, T, S},
c′X = 1.5 · cX ,X ∈ {I, T, S}

in both cases, no changes were observed

April 28, 2004 DRAFT

Convergence thresholds
cI , cT , cS

c′X = 0.5 · cX , X ∈ {I, T, S},

c′X = 1.5 · cX , X ∈ {I, T, S}

In both cases, no changes were observed



June 7, 2004 10:15 WSPC/115-IJPRAI 00339

Still Image Segmentation Tools 721

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Segmentation examples: (a and e) Original large-format images. (b and f) Direct appli-
cation of the segmentation algorithm of Sec. 2. (c and g) Application of the same algorithm on
reduced images (reduction factor R = 8). (d and h) Results of the large-format image segmentation
framework.

5. Conclusions

A methodology was presented for the segmentation of color images using intensity,

position and texture features to facilitate the formation of regions corresponding

to the objects contained in the image. Furthermore, a framework for the fast seg-

mentation of large-format color images was presented, to improve the time efficiency

of the segmentation process. This framework combines the segmentation algorithm

of Sec. 2 with a Bayes classifier and, as discussed in Sec. 4, features improved time-

efficiency and higher perceptual segmentation quality compared to the algorithm of

Sec. 2, when applied to large-format images. Not only the proposed segmentation
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algorithm but also others could be easily combined with the fast large-format image

segmentation framework to their benefit.

The proposed algorithms are appropriate for use as part of an object-based

multimedia application, such as object-based image querying, or for defining regions

of interest for content-based coding of still images, in the context of the JPEG2000

standard.
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