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Abstract: H.264 video traffic is expected to account for the majority of multimedia traffic to be carried in future heterogeneous
networks. Modelling video frame sizes is highly useful in simulation studies, mathematical analysis and generating synthetic
video traces for the purpose of testing and compliance. In this study, a statistical analysis is performed to determine an
appropriate distribution of video frame sizes generated by the popular H.264 video codec. The study makes use of a number
of real video traces with the goal of evaluating and fitting their frame sizes with well-known distributions. In the literature, it
is reported that the Gamma and Weibull distributions give the best fit for frame sizes in the most popular video codecs
including H.264. Our statistical analysis shows that both Gamma and Weibull distributions are very close to each other in
terms of goodness-of-fit results and they give the best fit. The authors also show that the Inverse Gaussian distribution is
ranked second after Gamma and Weibull distributions. Finally, they show that the distributions of Pearson Type V and

Lognormal are ranked third and fourth in terms of goodness-of-fit.

1 Introduction

Networks are moving towards the use of Internet Protocol
technology for integrated voice, data and even video
services. Multimedia applications and services have already
possessed a major portion of today’s traffic over computer
and mobile communication networks. Among the various
types of multimedia, video services (transmission of moving
images and sound) are proven dominant in present and future
broadband networks.

Modelling video traffic can be highly useful in mathematical
analysis, simulation and in generating synthetic video traces
for the purpose of performance, testing and compliance. In
addition, traffic models can be used in several practical
purposes including allocation of network resources, design
of efficient networks in streaming services and delivery of
certain quality of service (QoS) guarantees to end users.

Video traffic is produced by imaging devices in frames that
contain both the audio and picture portions of video traffic.
The sizes of the video frames vary both between and within
video formats. After the advent of video coding, two main
encoding schemes have been proposed and are still used: the
constant bit rate (CBR) and the variable bit rate (VBR) modes.
In the CBR mode the quantisation parameters are maintained
constant for the encoding process. So, the deduced video
quality is almost steadily sustained but the derived encoding
bit rate fluctuates around a mean value. On the contrary, in the
VBR mode, a rate-control algorithm dynamically alters the
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quantisation parameters according to the frame complexity to
achieve the required target bit rate.

The most popular and widely used encoding algorithms
are the ones developed by the Moving Picture Experts
Group (MPEG) and the Video Coding Expert Group of
the International Telecommunication Union. In 2003, these
two organisations jointly developed a new codec, the
H.264. Most new videoconferencing products now include
the H.264 compression standard, and the older H.263
and H.261 standards. Although H.263 is primarily used in
videoconferencing and H.261 is an Integrated Services
Digital Network standard developed in 1990, H.264 supports
video compression (coding) in videoconferencing and video-
telephony applications.

With the new compression tools, the H.264 codec typically
compresses video down to roughly half the average bit rate
of the MPEG-4 Part 2 codec [1, 2]. The pervasive use of
H.264/advanced video coding (AVC) and H.264 scalable
video coding (SVC) in compression of networked videos is
promoted by the widespread adoption of these encoding
standards in DVB, ATSC, 3GPP, 3GPP2, Media FLO, DMB,
DVD Forum (HD-DVD) and Blu-Ray Disc Association (BD-
ROM). Owing to the advances in H.264, it is expected that it
will prevail in future networks and mobile application systems,
making traffic modelling and characterisation of H.264 video
streams a useful tool for network managers and designers.

Among the various characteristics of video traffic, there are
specific major interests including the distribution of frame
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sizes, the autocorrelation function (ACF) that captures the
dependencies between frame sizes in VBR traffic and the self-
similarity or long-range dependence (LRD) that describes the
bursty (highly variable) of the video traffic over a wide range
of timescales. Regarding ACF and LRD, several studies have
been done to model the video traffic based on the ACF and to
examine the existence of the LRD in such traffic [3—5]. Some
other studies have focused on the evaluation of the impact of
LRD on the performance of transferring the video traffic over
the network [6, 7]. However, our study specifically focuses on
analysing the H.264 video frame size distributions as a major
characteristic of the video traffic.

This paper studies the video streams generated from an
H.264 codec at the frame level. In particular, the work
focuses on video traffic that is generated by VBR H.264
coding since it offers relatively constant quality and has less
bandwidth and storage capacity requirements. Our study is
based on the available traces in [8] that were initiated in
May 2009. The purpose of this paper is to expand the
knowledge generated in the literature by fitting several
competing statistical distributions with the frame sizes from
several video data sets generated by H.264 encoder.

The rest of the paper is structured as follows. Section
2 introduces the related work. In Section 3, we describe the
methodology followed to evaluate the frame sizes. We also
describe different ways to characterise encoded video and
determine the dedicated distributions and video traces used in
this paper. In Section 4, we present detailed results, analysis and
modelling assessments. We provide our conclusions in Section 5.

2 Related work

The problem of modelling video traffic, in general, and
videoconferencing, in particular, has been extensively studied
in the literature. Heyman ef al. [9, 10] and Xu and Huang [11]
show that H.261 videoconference sequences generated by
different hardware coders, using different coding algorithms,
have Gamma marginal distributions and they used this result
to build a discrete autoregressive (DAR) model of order one,
which works well when several sources are multiplexed.
Krunz and Hughes [12] modelled the frame sizes in MPEG-2
streaming (also known as H.262). In their research, a
Lognormal distribution was found to best fit the frame sizes.

Fitzek and Reisslein [13] have presented an extensive public
available library of frame size traces of MPEG-4, H.263 and
H.263+ encoded video along with a detailed statistical
analysis of the generated traces. In the same study, the use of
movies as visual content lead to frame generation with a
Gamma-like frame-size sequence histogram.

Lazaris ef al. [14] have used four different long sequences of
MPEG-4 encoded videos and they showed that the use of the
Gamma and Lognormal distributions is not the most
appropriate in MPEG-4 videoconference traffic. They showed
that, for modelling single videoconference sources, the best
choice among all the examined distributions is the Pearson
Type V distribution.

Poon and Lo [15] have proposed using a normal mixture
distribution as a method for fitting the sample histogram
generated from H.261 and H.263 encoded videos. It has been
proved that it performs better than the simple Gamma and
Lognormal distributions. Ryu [16] has proposed using the
Weibull instead of the Gamma density for the fit of the sample
histogram in a model of videoconference traffic encoded by
the ViC Intra-H261 encoder.

Koumaras et al. [17] have derived the density functions
of the H.264 frame sizes and it has been shown that the sizes
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can be successfully represented by Gamma distributions.
However, they have not presented the detailed results for the
Gamma distribution such as the Kolmogorov—Smirnov (K-
S) test, the Anderson—Darling (A—D) test or the chi-square
goodness-of-fit test, nor the comparison graphs like quintile—
quintile (Q—Q) plot to show the goodness-of-fit for the
Gamma distribution. Furthermore, they have used only one
film, ‘Spider Man II’, to generate frame size using the H.264
reference encoder to assist their findings.

Auwera et al. [3] and Dai et al [4] have developed a
modelling framework that is able to capture the ACF structure
of H.264 and MPEG-4 VBR video traffic considering the
co-existence of both LRD and short-range dependent (SRD)
properties in the structure of single-layer and multi-layer video
traffic. They used a wavelet transforms to model the
distribution of I-frame sizes based on Gamma distribution and
a time-domain linear model of P/B frame sizes based on intra-
group of pictures (GOP) correlation. Other characteristics have
been studied by Dai and Loguinov [18] including the bit
rate distortion performance, bit rate variability and LRD of the
H.264 codec. They found several distinct characteristics that
distinguish the H.264 codec from the MPEG-4 one as stated in
their work [18]. However, our study focuses on another major
characteristic of the video traffic that is the distribution of
frame sizes by evaluating several distributions that could be
used to model the frame sizes.

Lazarisa and Koutsakisb [5] have investigated the possibility
of modelling multiplexed traffic from H.264 videoconference
streams with quite a few well-known distributions including
Pearson Type V, exponential, Gamma, Lognormal and
Weibull. They have concluded that the best fit among these
distributions is the Pearson Type V. However, the study has
focused on investigating the videoconference traffic; thus they
have only examined two traces of low or moderate motion
(Sony Demo and NBC News).

To the best of our knowledge, the subject of modelling
H.264 video traffic has been addressed in the literature only
in [5, 17, 19]. Koumaras et al. [17] have studied the density
function in the video traffic generated from H.264 using
only one trace that is ‘Spider Man II’ and the only
examined distribution is the Gamma distribution. If other
films were studied using common probability distributions,
the results might have been quite different. On the other
hand, Domoxoudis ef al. [19] presented measurement and
modelling results of H.264 encoded traces. They concluded
that H.264 traffic can be reasonably represented by a D/G/oo
queue with deterministic arrivals according to the video
frame rates and service times that can be fitted by a
histogram-based model wusing a Gamma distribution.
However, the study considered only the videoconference
traffic generated by the H.264 encoder included in the
videoconference software tools: VCON Vpoint HD [20] and
Polycom PVX [21]. In addition, the contribution in our
paper is a clear extension of [5, 17, 19]. Our research work
presented in this paper examines more than one specific
distribution (including Gamma, Weibull, Inverse Gaussian,
Lognormal, LogLogistic and Pearson Type V distributions)
done on more than one type of video traces (i.e. most of the
available traces in [8]).

3 Methodology

Our study focuses on modelling video frames sizes generated
by H.264 encoders. We use the video traces as a data source
to be evaluated. In the literature, there are many video traces
generated by H.264. We decided to select four traces that are
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available online at [8]. These four traces include three movies
and one news channel: Star Wars IV, Silence of the Lambs,
NBC news and Matrix III videos. The Star Wars IV movie,
described as science fiction/action, was used popularly in
the literature [3, 13, 18, 22, 23] to characterise the
properties of the video traffic generated by MPEG-4 and/or
H.264 encoders. The Silence of the Lambs movie, which is
a drama/thriller, was used in [3, 18, 24] to study the
performance of single-layer video traffic of the H.264 and
MPEg-4 encoders. NBC News, described as news video,
was also used in [3, 5, 24].

We follow the recommended approach by Law and Kelton
[25] for fitting statistical distributions to a given data set
that starts with hypothesising families of distributions that
appear to be appropriate on the basis of their shapes. Then,
for each distribution type, a first guess of parameters is
made using maximum-likelihood estimator (MLE). Then,
the fit is optimised using the Levenberg—Marquardt method
(described in Section 4). Finally, the goodness-of-fit is
measured in the optimised function to decide how well the
sample data fit a hypothesised probability density function.
This approach has been implemented using the MATLAB
programming language in data analysis and to estimate
parameters and to create graphs to visualise the data and
distributional fits.

We investigate a variety of distributions including those
that have been used often in video traffic modelling in
the literature, like Gamma, Weibull, Inverse Gaussian,
Exponential, Pareto, Lognormal, Pearson Type V and
LogLogistic distributions. Table 1 presents the set of all
distributions used in this study. The parameters for these
distributions are estimated initially using the MLE. In fact,
there are many other ways to specify the form of an estimator
for a particular parameter of a given distribution [26].
However, we used the MLE for the following three reasons.
First, MLE has several desirable properties not enjoyed by
alternative methods of estimation, for example, method-of-
moment (MOM). Second, the use of MLE turns out to be
important in justifying the chi-square goodness-of-fit test.
Third, the central idea of the MLE has a strong intuitive
appeal as it is stated by Law and Kelton [25].

To test the goodness-of-fit, we used the common three
tests discussed in the literature on data fitting [27, 28], which
are the chi-square test, the K—S test and the A—D test. The
chi-square test is the most common goodness-of-fit test. It
can be used with any type of input data (raw sample data or
frequency data) and any type of distribution (discrete or
continuous). A weakness of the chi-square test is that there
are no clear guidelines in selecting intervals that is, the
numbers of classes. In some situations a different conclusion
can be reached from the same data depending on how many
intervals were specified. In contrast, K—S test does not
depend on the number of intervals (which makes it more
powerful than the chi-square test). The K—S can be used
with any type of input data but cannot be used with discrete

Table 1 Distributions used for fitting the frame size

Beta Logistic Pearson Type V
Erf Log-Logistic Rayleigh
Exponential Lognormal Student’s t
Extreme Value Normal Triangular
Gamma Pareto Uniform
Inverse Gaussian Pearson Type V Weibull
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distribution functions. A weakness of the test is that it does
not detect tail discrepancies very well since it gives the same
weight to the difference between the actual data and the fitted
distribution of all values of data. However, the A—D test is
very similar to the K—S test but places more emphasis on tail
values by highlighting the differences between the tails of
the fitted distribution and requires the input data based on a
weighted average of the squared difference between the
observed and expected cumulative densities.

Another way of interpreting the results from the fitting
process is to visually assess how well a distribution agrees
with the input data. The statistical test was made with the use
of Q—Q graphs, which is a powerful graphical goodness-of-
fit procedure [9, 25]. The Q—Q is used to plot the percentile
values of the fitted distribution against percentile values of
input data. If the fit is good the points of the plot should fall
approximately along a 45° reference line. In additional to the
Q-—Q plot, the probability—probability (P—P) plot is used in
further assessment as it plots the empirical distribution of the
input data against the fitted distribution. If the fit is good, the
P—P plot will be nearly linear.

4 Results of the analysis and modelling
assessment

We begin our study by investigating a set of well-known
distributions listed in Table 1. With these distributions, we
have investigated the possibility of modelling the frame size
generated by H.264 in the four chosen video traces described
above. The initial results showed that among these
distributions, only six distributions (Gamma, Weibull,
LogLogistic, Pearson Type V, Inverse Gaussian and
Lognormal) were valid to model all given traces, and they
occupied the first six ranks among others according to the
goodness-of-fit results. The Exponential and Pareto2
distributions were only valid fits in the Star Wars IV trace.
Thus, in our study, we chose the first six distributions as
fitting candidates in order to compare their results in the case
of H.264 video streams.

After determining the candidate distributions, the values of
their parameters were estimated from the given observational
data using the MLE. As defined by Law and Kelton [25], the
MLE of a distribution are the parameters of that function that
maximise the likelihood of the distribution given a set of
observational data. Given a set of observational data x, and
a probability density function (PDF) f, the likelihood
function is

n
I = | | f(x;, parameters)
i=1

MLE tends to determine the values of the parameters that
maximise the function 1. We implemented the MLE using
MATLAB programming language.

The Gamma distribution has two parameters, which are the
shape parameter « (>0) and the scale parameter 8 (>0). Its
density function is given by

e—x/Bxa—l

S, o, B) ZW’

x>0, a>0, >0

The MLE for estimating the parameters of the Gamma
distribution can be obtained by satisfying the following two
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equations that are solved numerically by Newton’s method

g+ a) = ==+

where (&) is the digamma function.

In the Weibull distribution with a shape parameter of
a (>0) and a scale parameter of B (>0), the density
function, f, and the corresponding parameters derived from
the MLE are given by the following equations

fx, a, B) = af % e WA

Yo XX, 137 I

Y X a n
n Z?:l Xvi& -
B (>=

where the first equation of the MLE can be solved for &
numerically by Newton’s method and the second equation
then gives B directly.

The Inverse Gaussian distribution has two parameters,
which are the location parameter, u, and the scale

x>0, a>0, >0

parameter A. The distribution function, f, and the
8
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Fig. 1 LM method optimisation for fitting Star Wars IV with
Inverse Gaussian
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corresponding parameters derived from the MLE are given
by the following equations

Fo. o 3y = AT

where X; is the ith sample in the observational data.
The PDF of a Lognormal distribution is

I w2

xo/ 2

S, 0) =

where w and o are the scale and the shape parameters. The
MLE parameters of the Lognormal distribution are

Q=
n

i InX, b = \/271 (InX; — ll)z
’ n

In the Pearson Type V, the density function is

1 e B/

1 B i

where « is the shape parameter and 3 is the scale parameter.

However, there is no closed-form solution for estimating
the a using the MLE. Thus, a numerical solution was
proposed by Law and Kelton [25] using the Newton’s
method to approximate « and 3 as follows

3— T+ /(T —3)7+24T

«= 12T
T= 1n(n_1 Zx,-) —n! Zln(xi)
i=1 i=1
. &
P=%m

where X (n) is the mean of the given samples.
The LogLogistic distribution has two parameters, which
are the shape parameter « (>0) and the scale parameter

S=histec(d, edges);
0=S(1l:end-1);
x2=sum( (E-0) ."2./E;

Chi-S K-S A-D
E=cdf (‘lognormal’, edges,p_fit); y=cdf (‘lognormal’',data ,p_ fit); y=cdf ( 'lognormal',fdata ,p_£fit);
Ed=diff (E); K_s=kstest(d, [d y]); ADsum = 0;
E=Ed. *N;

for jj = 1:N

Indexl = jj;

Index2 = N = jj + 1;

Ql = log(Z(1l,Indexl));

Q2 = log(l-Z(1,Index2));

ADsum = ADsum + (2*3jj-1)*(Q1 + Q2);
end

AD(1,ii) = -N - ADsum/N;

Fig.2 MATLAB code to implement goodness-of-fit tests

IET Commun., 2011, Vol. 5, Iss. 14, pp. 1978-1986
doi: 10.1049/iet-com.2010.0868

1981
© The Institution of Engineering and Technology 2011



www.ietdl.org

B (>0). Its density function is given by solving the following two equations of & and b
CY()C/.B)DH1 4 (Inx,—&)/b n
f(x:aﬂﬁ)zia’ X>O,C(>O, B>O [1_‘_e ! ]:_
Bl + (x/B)°T ; 2
"y, — &\ 1 — e/

The MLE of the LogLogistic distribution can be obtained by ; < b ) 1 + e(nx—ay/b =n

Table 2 Goodness-of-fit statistics

Trace Distributions Rank | value Distribution parameters
Chi-square A-D K-S
Star Wars IV Gamma 1 2 4 @ 1.0485
2650.8 93.2 0.0365 B 6581.5
Weibull 2 1 6 « 31266
2984.6 80.7 0.04759 B 3.0779
Inv-Gaussian 3 3 1 ” 7697.53
5364 105.4 0.03313 A 7183.09
LogNormal 4 4 3 " 7613.97
5607 113.3 0.03410 o 9869.69
Pearson Type V 6 5 2 @ 2.22
8157 164.6 0.03379 B 11 448.25
LogLogistic 5 6 5 y —66.35
6620 182.1 0.03858 B 4385.39
@ 1.56
Matrix Il Gamma 3 2 5 @ 0.95374
11 491 570.4 0.083677 B 3310.9
Weibull 1 1 3 « 3046.4
9042.7 436.1 0.072881 B 0.93221
Inv-Gaussian 2 3 1 ” 4146.80
9576 603.2 0.05046 A 2160.64
LogNormal 5 5 4 " 4079.03
15628 994.4 0.07373 o 6355.85
Pearson Type V 4 4 2 @ 1.27
13032 706.0 0.05131 B 1985.78
LoglLogistic 6 6 6 y —837 729 086.00
198 917 7102 0.2271 B 837 732 200.56
a 356 264.91
Silence of the Lambs Gamma 1 1 2 « 0.82285
1621.5 467.8 0.065085 B 9092.4
Weibull 2 2 1 « 7007.2
1966.3 603.9 0.042265 B 0.87747
Inv-Gaussian 4 5 4 " 8089.42
15690 684.4 0.08308 A 4526.19
LogNormal 3 4 3 I 9122.01
13802 662.0 0.07861 o 19 643.04
Pearson Type V 5 3 5 @ 1.60
22 693 660.2 0.09160 B 6931.95
LogLogistic 6 6 6 y —18 46 211 858.90
92 971 2225 0.1868 B 18 46 217 974.18
@ 445 655.22
NBC news Gamma 4 4 4 « 9.9594
6607.2 694.5 0.084221 B 2809.3
Weibull 5 5 5 « 31266
20616 1067.3 0.099981 B 3.0779
Inv-Gaussian 1 1 3 “w 20 314.36
2097 1241 0.04119 A 93 306.64
LogNormal 2 3 2 I 19 580.58
2284 134.2 0.04110 o 9633.06
Pearson Type V 3 2 1 @ 7.37
2433 125.5 0.03552 B 149 710.00
1982 IET Commun., 2011, Vol. 5, Iss. 14, pp. 1978-1986
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Then the MLE of the LogLogistic distribution are & = 1/&
and 8 = e’.

Once all the parameters associated to the candidate
distributions have been estimated using MLE, as described
above, the Levenberg—Marquardt (LM) method has been
implemented to further optimise the parameters estimated
by the MLE. The purpose of such optimisation is to
maximise the goodness-of-fit between a data set and a
distribution function. Simply stated, the LM method takes a
first guess of the parameters of the distribution function

www.ietdl.org

(i.e. the MLE is the first guess), and then varies each
parameter slightly until it finds a good fit using a least-
square criterion for the convergence, as described by
Levenberg [29]. To show the improvement resulting
from using the LM method, Fig. 1 shows an example
of fitting the Star Wars IV video with the Inverse
Gaussian distribution, a case without using the LM method
and the other one using the LM method. It is evident
from the figure, how the LM method optimises the fitting
process.
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Fig. 3 Frame-size histograms against fitted distributions along with their respective Q—Q and P—P plots

a Star Wars IV, H.264
b Matrix I1I, H.264
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We followed the approach described by Law and
Kelton [25] to implement the goodness-of-fit tests
discussed above in the Methodology section. The
goodness-of-fit statistic tells how probable it is that a
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given distribution function, produces the data set. The
goodness-of-fit statistic is normally used in a relative sense
by comparing these values with the goodness-of-fit of
other distribution functions.
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Fig. 4 Frame-size histograms against fitted distributions along with their respective Q—Q and P—P plots

a Silence of the Lambs, H.264
b NBC News, H.264
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The implementation of chi-square is straightforward as it is
described in [25] as

, &0, -E)
X = _—
; E;

where O; is the observed probability value of a given
histogram bar and E; is the theoretical probability that a
value will fall with the X range of the histogram bar.

The K-S statistic has been implemented as defined in [25]

D, = sup[F,(x) — F(x)]

where sup of a set of members A4 is the smallest value that is
greater or equal to all members, F(x) is the cumulative
distribution function of x and F,(x) = i/n in which i is the
number of samples less than x.

The A—D Statistic is defined in by

+o00
A = nj [F,(x) — F0)PP () £ (x) dx

—00

where the weight function y(x) = {F(x)[1 — F(x)]} .

Fig. 2 shows the implementation of these three tests in the
MATLAB language. Table 2 shows the statistical results of
the implemented goodness-of-fit tests (chi-square, A—D and
K-S) along with the rank of the fits for all evaluated traces.
The results show that both Gamma and Weibull
distributions are very close to each other in terms of
goodness-of-fit results and they give the best fit for all the
evaluated traces except for the NBC news where
the Inverse Gaussian ranks first. The results also show
that the Inverse Gaussian distribution performed well in
most of the traces and it ranks second after Gamma and
Weibull distributions, among the other examined
distributions, and this is true in all the evaluated traces
except in the Silence of the Lambs trace as the Lognormal
distribution outperforms the Inverse Gaussian distribution.
On the contrary, the LogLogistic is the worst fit among the
other fitted distribution examined in this paper since it ranks
last in all the studied traces and moreover, it was invalid
for fitting the NBC news video. The tests also show that
the Lognormal distribution performed well in some of the
traces and generally, among the analysed movies, it ranks
after the Inverse Gaussian.

For further assessments of the results showed in Table 2,
the Q—Q and P—P plots are presented in Figs. 3 and 4. The
plots confirm our claims regarding the Gamma, Weibull and
the LogLogistic distributions as it is evident from the Q—Q
plots that the Gamma and Weibull have the best plots close
to the a 45° reference line (see Figs. 3a, b and 4a, b) and
the LogLogistic has more deviation from the reference line
compared with the others as depicted clearly in Fig. 3b. In
addition, the Q-Q plots show that all the examined
distributions performed well at the lower tail of the
evaluated samples and not fit well at the upper tail. The
plots also showed that Gamma and Weibull behave
similarly and they are close to each other in all Q—Q and
P—P plots. The plots in Figs. 3a, 4a and b showed that the
Pearson Type V is comparable with the Lognormal
distribution in fitting the frame sizes generated by H.264 in
the Star Wars 1V, Silence of the Lambs and the NBC new
videos.
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5 Conclusion

In this paper, we have investigated modelling the frame
sizes H.264 encoded video with well-known distributions.
Modelling video traffic can be highly useful in mathematical
analysis, simulation and in generating synthetic video traces
for the purpose of performance, testing and compliance.
In our study, we have considered different types of video
sequences that included a science-fiction movie, action
movie, drama and news. Our results show that the Gamma
and Weibull distributions give appropriate statistical
distributions of video frame sizes. The Inverse Gaussian
distribution performs well in most of the traces but not as
well as Gamma and Weibull distributions. The Pearson Type
V was shown to be comparable with the Lognormal
distribution of fitting the frame sizes. The LogLogistic
distribution was found to be much less appropriate in
modelling the frame sizes generated by the H.264 encoded
video. As a future study, we plan to develop a software
plugin that can be used in the popular NS2 simulation for the
purpose of generating synthesised video traffic traces.
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