
311

An integrated approach to coordination
description in distributed multimedia
applications

Pierre Gradit∗, Khalil Drira and
François Vernadat
LAAS-CNRS, 7 Av. Colonel Roche, 31077 Toulouse
Cedex 04, France
Tel.: +33 561 336 334; Fax: +33 561 336 411;
E-mail: {gradit,drira,vernadat}@laas.fr

This paper proposes an original integrated approach allowing
coordination rules to be described for resource allocation in
Distributed Multimedia Applications. Our approach has two
major benefits. On the one hand, it allows the scalability
and the dynamicity required for today’s distributed systems.
On the other hand, rather than bringing a new formalism and
rather than making a dialect of an existing formal language
we work on how two existing description techniques may be
integrated to compositionally describe the whole system. An
implementation of our approach is presented.

1. Introduction

The dynamic evolution of topology, the distribution
of components and the complexities of interactions are
important features of Distributed Multimedia Applica-
tions. These features make traditional software archi-
tecture models and existing description techniques to
be likely inappropriate for the design of these emerg-
ing systems [23]. Designers and programmers are now
facing problems in using conventionaldescription tech-
niques to represent the many points of view in Dis-
tributed Multimedia Applications. In such systems,
the behaviour of dynamically created and selected co-
operating agents as well as the topology which enables
and controls their interactions must be able to evolves
to fit the needs of the different agents.

Both recent technical and theoretical studies agree on
the importance of separating communication and coor-

∗Corresponding author.

dination from the other system functionalities. Hack-
man’s research on coordination in group work identi-
fies the central role of the coordination process [13].
The recent standardisation work for Open Distributed
Processing standard (ODP) and the very popular mid-
dleware standard Common Object Request Broker Ar-
chitecture (CORBA) [10] focus on this separation. One
of the most important benefits for this separation is
scalability and evolutivity of the built systems. But
within the scope of formal methods, this separation is
not embedded in a description technique:

– Coordination languages [4] focus on coordination
description for concurrent systems. Linda coordi-
nation language
[3] and Gamma calculus [2] constitute the most
known models in this area. They allow co-
ordinated agents to interact using a shared tuple
space. These works focus on the description of the
semantics of interaction but leave the description
of the coordination process as an exercise for the
modeller.

– Although they have been recognised since a long
time as appropriate to formalise behaviour of agent
models like Petri Nets [20] and Process Alge-
bra [17] lack expressiveness for topology transfor-
mation description.

– Recent research works have demonstrated the ap-
propriateness of graph grammars for modelling the
coordination process in concurrent systems [16,
21]. These works while focusing on describing
the coordination process lack describing its inter-
action with the co-ordinated agents.

Nevertheless, the relevance of this separation has
already produced several extensions or specialisation
of the previous description techniques, handling both
agent behaviour and topology evolution description,
which can be classified into the three following cate-
gories:

Integrated Computer-Aided Engineering 8 (2001) 311–324
ISSN 1069-2509 / $8.00 2001, IOS Press. All rights reserved

312 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

– Those combining formalisms and descriptions: In
the first category, we find traditional description
techniques that have been developed in the eight-
ies and that was devoted to specify point to point
communication protocols [9,22,11,20].

– Those separating descriptions but combining for-
malisms: The second category gathers dialects
developed on the basis of the techniques of the
first category. Approaches of this category aim to
adapt existing techniques to separate (or at least
to identify) topology management-related actions
in agent behaviour description e.g. the “new”
and “delete” operators added to standard LOTOS
in [18] to specify agent creation and deletion, re-
spectively. In such approaches, dependency of
both aspects (topology and behaviour) prevents
reusability of topology management specifications
with different agent behaviours. In the same cat-
egory there are other approaches that describe the
semantics of behaviour-dedicated techniques in
terms of topology-dedicated techniques, e.g. the
semantics of Actors [1] in terms of Graph Gram-
mars proposed in [14]. In both approaches of this
category, the use of an inappropriate technique
leads to a complex and large specification. Again,
we obtain combined descriptions preventing from
reusing models.

– Those separating descriptions and formalisms:
Our work belongs to the third category, which in-
cludes emergent research focusing on coordina-
tion description where topology evolution man-
agement is a critical issue.

In this paper, we aim at bringing a trade-off between
the interaction semantics definition and the coordina-
tion process description. To this end, we introduce Ac-
tYve, an integrated technique for distributed multime-
dia applications modelling based on Graph Grammars
(GG) for coordination description and Labelled Transi-
tion Systems (LTS) for individual agent behaviour de-
scription. These LTS can be produced by exploration
of the reachable state graph of a more compact spec-
ification such as Petri Nets or Process Algebras. The
proposed technique, ActYve, allows on the one hand
generic functions of the coordination process to be de-
scribed including topology management (e.g. commu-
nication channels, hierarchical relationships, temporal
dependencies, etc. . . .) independently from the indi-
vidual agents behaviour. And on the other hand it al-
lows both, agents’ descriptions and the coordination
process description to interact with each other. ActYve
description and associated engine are mainly devoted

to coordination issues. A coordination policy can be
written through an ActYve coordination scheme while
different behavioural component corresponding to the
different user strategy can be merged in the final spec-
ification. It allows to check if the combination of user
own strategies and the whole coordination system are
compliant. Moreover, the conception modes induced
by this paradigm are deeply distributed and can be used
to specify more general distributed systems.

The first part of the paper details the ActYve
paradigm through a case study: a resource allocation
coordination problem in Multimedia group conferenc-
ing. This part is divided in two part, the first is devoted
to the specification without insertion/deletion while the
second considers that case. To this purpose transient
behavioural components, which can be inserted and
deleted, are introduced.

The second part presents the general principles of
an implementation of the ActYve paradigm, realised
in MAUDE [5]. Maude is a language that implements
Rewriting Logic [15], and can be consider as a formal
meta-tool. In that logic, a term is a class of terms of
a signature modulo a set of equations. A rewrite rule
is given by a labelled pair of terms. A key feature of
MAUDE is to be reflective, this allows to manipulate
behaviour representations themselves as terms in an-
other specification. This kind of terms can handle both
LTS representation or directly compact representation
of behaviours such as Petri Nets. The key idea is to use
step rewriting both to rewrite the dynamic topology rep-
resentation and the different behavioural component,
using descent functions which allows the use of term
representation of behaviours. The last part details the
different calculus steps needed to produce all the possi-
ble co-ordinated transitions from a given state accord-
ing to the standard gluing condition of graph grammars
and the behaviour synchronisation. This is presented
here only for simulation purpose but it constitutes also
the kernel engine of the computation of the reachable
state graph, entry point of verification techniques.

2. Channel allocation in multimedia dynamic
conferencing

In order to make easier the understanding of the pro-
posed technique, we will use a multimedia group con-
ferencing example to illustrate coordination of resource
allocation with dynamic topology evolution. We will
highlight four distinct topologies and define a set of
coordination rules and agent behaviour which remain

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 313

valid whatever the initial topology is. Dynamicity is
introduced in two steps. First, only systems composed
of a fixed number of behavioural components, called
static, are considered. In such systems, topology can
evolve anyway, but in a fixed set of component ref-
erences. Then in a second phase, we introduce sys-
tems where the number of behavioural components can
evolve, called dynamic.

We consider, in this section, the problem of resource
allocation in Multimedia group conferencing. A group
of n participants shares m � 2 channels. To communi-
cate a participant needs two channels one for the audio
and the other for the video transmission. The different
rules of the system in natural language are listed below:

Static rules
– Enter: A waiting participant (

:-() shall get two
free channels (||) to communicate representing
an audio channel and a video channel. It be-
comes a communicating participant (

:-o) holding
two busy communication channels (

>
 <).

– Leave: A communicating participant (

:-o) stops
communicating by releasing its two busy chan-
nels (

>
 <). The participant becomes idle (

:-o),
while their channels are available for another
communication.

– Ask: An idle participant (

:-)) can become asking
for a communication (

:-().
Dynamic rules

– Join: A participant may join the group bringing
a free communication channel (||), he is consid-
ered to be asking for communication (

:-().
– Quit: An idle participant (

:-)) may quit the
group with a free communication channel.

Conventional modelling approaches of resource al-
location in concurrent systems consider an unique static
topology for this problem, mostly a ring. The nature of
Multimedia group conferencing problem may lead to
different topologies depending on the location of par-
ticipants and communication resources. We propose a
new coordination description technique that takes into
account actions specified by individual agents and re-
lation constraints – e.g. introduced by resources allo-
cation (a participant needs two channels) – whatever
the topology is (chain, grid, ring, tree, . . .) as shown in
Fig. 1.

Moreover, the graph description we handle repre-
sents both the system topology (by the graph structure)
and the state of each agent (by the node labelling) rep-
resenting a participant. Considering again Fig. 1, each
topology is represented by a graph where the node la-

Fig. 1. Different topologies for the cooperating participants problem.

belling provides additional information. These labels
describe agents’ states. The graphical convention used
to represent these states are detailed in the informal
presentation of rules. Furthermore, in this graph, edges
denote dependencies and agent relationships. For in-
stance, edge (

>
 < → :-o) indicates that channel (

>
 <) is

used by participant (

:-o). Finally, the direction of the
edge allows to distinguish different relationships be-
tween the same pair of nodes. This is useful for exam-
ple for the participant situated at the centre of the grid
(Fig. 1(b)) to distinguish channels that are used by this
participant (west and south channels) from those that
are accessible by this participant according to the topol-
ogy but which are used by another participant (north
and east channels). General rules may be established
according to the fan-out of the graph. For our exam-
ple, for both tree and grid topologies – where fan-out
is greater than 2 – directed graph must be used to avoid
ambiguity between the “accessibility” and “ownership”
relationships.

The description approach we present in this paper,
uses Graph Grammars [8] to describe topology evo-
lution. In the Graph Grammar production, nodes are
labelled by actions performed by agents. To allow
Graph Grammars to describe Distributed Multimedia
Applications topologies with synchronised actions, we
define ActYve interface, a specialisation of Goettler’s
Y-interface [12].

Extending the standard approach which models a
complex system as a static configuration of perma-
nent agents, our approach describes a Distributed Mul-
timedia Applications as a dynamic graph, whose nodes
represent dynamically activated and deactivated co-
operative agents and vertices represent relationships be-

314 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

Fig. 2. LTS as behavior representation.

Fig. 3. Instance of rule Leave over a grid topology.

tween agents, including: geographical & spatial infor-
mation (e.g. the “accessibility” of a channel to a par-
ticipant), architectural information (which computer is
connected to which computer through which communi-
cation protocol), causal dependency (e.g. two consec-
utive versions of a document) and application-related
relationships (e.g. which channels are used by which
participant).

Each reactive node is associated with a behaviour, for
the simplicity of the presentation, we use LTS. Without
loss of generality, we assume that label sets of the
different LTS are pair-wise disjoint, hence each kind of
node (channel or participant in our example) may be
identified by state or action labels. We assume that LTS
have a “silent action” called ε which does not change
their state.

Coordination rules: As in Graph Grammar produc-
tions, coordination rules are described again by a graph
and each rule graph describes a coordination rule. A co-
ordination rule is defined as a labelled graph, where la-
bels have particular types: they represent triggering ac-
tions performed by agent. We define Graph Grammar
productions with Goettler’s Y-Interfaces [12]. Thus,

the rule graph is surrounded by an Y (bold lines), defin-
ing which edges are removed (left-sided edges) and
which edges are added (right-sided edges), while edges
situated in the Y remains unchanged after applying the
rule. Figure 4 details the interface with the different
“regions” highlighted by the Y.

Coordination rule application: A rule is applicable
when the following conditions hold:

– As required for applicability of standard graph
grammar productions, the graph rule matches a
sub-graph of the system graph through a graph
morphism l. This morphism satisfies the gluing
condition [8]:

Identification l is injective for the deleted part.
Binding Neighbouring edges of a deleted node

are deleted by the rule application.

– Each automaton identified by graph morphism l
must be able to perform the action labelling its
associated node in the rule graph. Rules act on
agents as follows: every time a rule is applied, in-
volved agents change state as specified by the tran-

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 315

Fig. 4. ActYve Interface.

Fig. 5. ActYve specification of channel allocation in multimedia group conferencing applications.

sition labelled by the associated action, according
to graph morphism l.

To illustrate rules and their application, we will first
focus on rules that modify topology without manag-
ing creation/deletion of agents, in our example Enter
and Leave. In a second step, we will consider all the
rules, and specially those managing insertion/deletion
of agents, as Join and Quit.

2.1. Basic coordination rules

In a first step, we focus on coordination.
Considering again our channel allocation specifica-

tion, rule Leave specifies the possibility for a commu-
nicating participant to stop communicating: p.release
action allows to apply the rule with communicating (

:-o)
participant, while p.release actions specifies that used
(

>
 <) channels shall surround it. Figure 3 summarises

316 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

Fig. 6. Extended LTS.

Fig. 7. ActYve specification of channel allocation in multimedia dynamic group conferencing applications.

the effect of this coordination: system states before and
after synchronisation are represented. Shaded part of
picture gives the coordination rule instance and high-
lights the “region” of the system affected by the trans-
formation. According to their respective behaviour
(given in Fig. 2), the two used channels (triggering ac-
tion c.released) become free (||) and the communicating
participant (triggering action c.release) becomes idle
(

:-)).
As in a graph grammar [8,12,14,16] writing coor-

dination rules does not require a global knowledge of
the whole system topology. The previous rules remain
valid whatever the system topology is (chain, ring, grid,
tree . . .). The comparison with CCS [17] is interesting
as on one side it can be considered as prosing a pre-
defined class of pattern of synchronization while our
approach allow to define any pattern. On the other side
its hierarchical facilities to define these patterns are not
yet supported by our paradigm.

Until now, we have seen how the coordination prob-
lem can be described as a graph matching between the
“rule graph” and the “system graph”, we now develop
the remaining coordination functions relative to agent
creation and deletion management.

2.2. Complete coordination rules

To manage the dynamic case, we first introduce how
we manage transient component by refinement of the
automaton-related conventions. In order to model cre-
ation and deletion of nodes, a particular state (⊥) is
added to the set of states, which can be interpreted as
“absent”. Transition leading to ⊥ makes the agent van-
ishing (deletions), whereas transitions coming from ⊥
makes a new agent (creations). Figure 6 details the
extended behaviour of agents: A channel enters and
leaves the system in state free (||), while a participant
enters the system in state waiting (

:-() and leaves it in
state idle (

:-)).
The second extension concerns the possibility to add

nodes in removed and deleted parts of the graph gram-
mar production. Such actions label shall be deletions
for left sided nodes and creations for right sided nodes.
The central part represents context part which remains
topologically unchanged and associated node labels are
actions.

Rule Join expresses the arrival of two connected ob-
jects: a participant (p.join) and a channel (c.in). The
coming participant will be connected to a free channel
(c.free) already present in the system. Now consider

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 317

Fig. 8. Addition of a connected pair participant/channel in a ring.

Fig. 9. MAUDE module for static behavioral components.

a node which was connected to this channel: the link
between this node and the channel is deleted and re-
placed by a link to the introduced channel. Conversely,
rule Quit expresses the departure of a connected pair
participant/channel.

3. Simulator overview

This section presents the encoding in MAUDE [5]
of an ActYve specification and the general features of
our dedicated simulator. As presented in the previous
section, an ActYve specification is composed of two
kinds of specifications: Behavioural component spec-
ifications and ActYve coordination scheme. Then this
specification is interpreted through a step-by-step sim-
ulator. Computation aspects are developed in the last
section.

3.1. Behavioural component specifications

Behavioural component specifications are MAUDE
modules without any added restriction. For example,
Fig. 9 gives the MAUDE specifications of both be-

havioural components of our case study: participant
and channel. These modules are very simple due to the
simplicity of the case study.

In order to specify transient components we build a
common ancestor to all transient module called TRAN-
SIENT. Following the frame introduced in Section 2.2,
this ancestor is very simple, it has a single sort (All)
and a single operator ⊥ which is an All constant. In
order to be transient a module shall include the tran-
sient module, rule starting from⊥will be interpreted as
apparition while rule going to ⊥ will be interpreted as
vanishing. As both left hand side and right hand side of
a rule must be of same sort, possible sort for the current
state of the component must be subsorts of All. In the
frame of our use case, Fig. 10 gives the behaviour of
Participants and Channels as transient automata.

3.2. ActYve coordination scheme

ActYve coordination scheme is written in a dedicated
syntax. An ActYve coordination scheme is composed
of:

– Sort Declaration
Sort Participant Channel.

318 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

– Tuple Declaration

notice that in graphical form, edges are unla-
beled (i.e. can-access and is-used-by
are forgotten) as the edge direction is sufficient
to determine the corresponding label.

tuple (can-access): Participant

Channel.

tuple (is-used-by): Channel

Participant.

– Variable Declaration:

var participant incoming former:

Participant.

var left right: Channel.

– set of Labelled Rules

A rule specification can be divided in three
parts: 1. the rule label (i.e. enter), 2. the
topological rewriting and 3. the synchroniza-
tion of the components involved in the topo-
logical rewriting.

– Static rules

A variable occurs in the left hand side if and
only if it occurs in the right hand side. For
such variables, a <synchro > tag is used to
describe synchronisation process. Such syn-
chronisation can be gathered by using | op-
erator inside the tag. Synchronisation is op-
tional. Notice that for rule ask, the only used
variable only occurs in the synchronisation
pattern, it highlights the fact that this action is
local.

rule [ask]: empty => empty

with <synchro participant[wait]>.

rule [enter]: (participant

can-access left) (participant

can-access right)

=> (left is-used-by participant)

(right is-used-by participant)
with <synchro participant[get] |

left[got] | right[got]>.

rule [leave]: (left is-used-by

participant) (right is-used-by

participant)
=> (participant can-access left)

(participant can-access right)

with <synchro participant

[release] | left[free] |

right[free]>.

– Dynamic rules

Some variables occurs in a single side.
For each left-only occurring variables (resp.
right occurring), a < delete > tag (resp.
< create >) a must be associated to handle
initial and final state.

rule [join]: (participant
can-access left)
=> (participant can-access right)
(incomer can-access left)
(incomer can-access right)
with <create incomer[join] |
right[in]> <synchro left[free]>.
rule [quit]: (participant
can-access right)
(former can-access left)
(former can-access right)
=> (participant can-access left)
with <synchro left[free]>
<delete former[quit] |
right[out]>.

This coordination scheme is a textual form for Figs 5
and 7.

3.3. Step-by-step simulation

The standard applications of rewriting techniques are
traditionally devoted to compact representation of con-
fluent and terminating computations. Here, we will
use the same theoretical framework but for an orthog-
onal purpose: exploring a reactive system that is not
expected to end and for which any intermediate state
can be matter of interest, rather than the “last one”. So
we are more interested in the step-by-step specifica-
tion unfolding than the output of a specific terminating
sequence. In consequence, the default loaded mod-
ules used to manage ActYve data allows a step-by-step
exploration:

– Show all one-step reachable state of the ActYve
system from the current state. It indicates also the
rule triggered in the ActYve coordination scheme
with the substitution used to reach each reachable
state.

– User chooses among these states the next current
state.

3.4. General set-up

First of all, ActYve coordination scheme has to be
compiled as MAUDE module, then following modules
has to be loaded in the interpreter:

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 319

Fig. 10. MAUDE modules for transient automata components.

Fig. 11. MAUDE module for transient Place/Transition Petri net participant.

– compiled ActYve specification;
– behavioural modules, one for each sort in the Ac-

tYve specification. The name of the model is the
name of the sort;

– step-by-step simulator.

At that stage the commands of the simulators allow
to: define a state, choose a possible step in the list,
and go to previous reached state. Offering the list of
possible steps is done after any of these commands.

3.5. Simulation Use case

With the ActYve coordination scheme previously de-
fined, and behavioural component given in Fig. 9, con-
sider the following current state depicting a single wait-
ing Participant which can access two Channels. Topol-

ogy and behaviour descriptions of the state are given in

separate squares.

State 0

Topology mod= session
state= Participant(1) can-access Channel(1))
(Participant(1) can-access Channel(2))

Behaviour mod= Participant
id = 1 state=

:-(

Behaviour mod= Channel
id = 1 state= ||

Behaviour mod= Channel
id = 2 state= ||

Then from current state 0 , the simulator proposes

a list one-step accessible results, [1 , 2] given in

Fig. 12. Each numbered one-step reachable result is

320 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

Fig. 12. Enumerated one-step reachable state.

composed of a rule label, a state and the substitution
used to reach it. User may choose the next current state
by striking its corresponding number: 1 or 2.

Here, by striking 1 or 2, the user will reach the same
state through two different substitutions. Then, the
simulator will propose two different transitions leading
to the state where an idle participant can access two
channels.

From state 0 , if the user strikes three times 1, the

current state will be 0 again. Notice that, as striking
always 1 can be interpreted as the default strategy for
rewriting computations, interpreting the specification
in a standard rewriting way will not be terminating.

3.6. Different modules leads to different systems

We will consider in that paragraph three configu-
rations differing only by the behavioural components
involved in the specification. It follows that all these
configurations are built with the session ActYve coor-
dination scheme given before.

– Standard automata configuration The behaviour
components are those given in Fig. 9. Participant
module does not include “absent” state. So when
performing the first stage of the ActYve step, no
Participant can rewrite ⊥, so no Participant inser-
tion is possible. Conversely, the step 4.1 is never
validated as ⊥ is unreachable. It results from these
considerations that reference dynamism is inhib-
ited by the behaviour of the component. The iconic
layout of these modules is a consequence of the
use of LaTeX to display them, for example

:-) is
written in the specification as the \idle LaTeX
command. It makes the textual form as near as
possible of the graphical one (c.f. Fig. 2).

– Transient automata configuration Just loading
transient modules in place of static ones will give
to the whole system a dynamic behaviour.

– Transient Place/Transition configuration If the
modelled system allows a Participant to have more
than a communication at a time, simply replace the
behavioural component of Fig. 10 by the transient
Place/Transition Petri Net [20] given in Fig. 11.
This module corresponds to the net given on the
right where the indicated marking corresponds to
the marking of the component when it appears.
To vanish, a transient Place/Transition participant
needs to have an empty net. This remark highlights
the key difference between the empty marking (0)
and the “absent” state (⊥).

This last example and its use of a Place/Transition
Petri Net shows how the use of MAUDE extends the
use of LTS as proposed in the presentation section.

4. ActYve step computation in MAUDE

This section presents the actual computations per-
formed by our simulator engine. First, the reflectivity
of MAUDE that enables the building of our simulator
is presented. Then, the different step rewritings used
to gather relevant information throughout the specifi-
cation are detailed. The last part is devoted to the
overall strategy used to perform the computation of the
possible ActYve steps.

4.1. MAUDE modules and reflection

In MAUDE system, a module encompasses the defi-
nition of the signature, the variable declaration and a set
of rewrite rules that can either be silent rule or labelled
rule. The set of silent rules are expected to be Church-

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 321

Rosser and terminating while there is no expectation on
labelled rules as they will be controlled step-by-step.

The effective use of a control is a consequence of the
most important feature of MAUDE [5], reflectivity [7].
This notion can be formally depicted as follows: it
exists a finitely represented rewriting theory called U
that is universal in the sense of we can represent in
U any finitely presented rewrite theory R (including U
itself) as a term R, any term t, t′ in R as term t, t′ and
any pair (R, t) as term 〈R; t〉, in such a way that we
have the following equivalence [5]:

R
 (t a→ t′) ⇐⇒ U

(
〈R; t〉 a→ 〈R; t′〉

)
(1)

In MAUDE, you can access very efficiently to this
reflective feature by the use of descent functions [6],
accessible through the META-LEVEL module in the
standard library of MAUDE. These functions allow to
use module representation to rewrite term representa-
tion according to Eq. 4.1.

MAUDE provides an another class of functions
that allow to automatically produce term meta-
representation from a standard input and conversely,
to perform this feature it uses module representation
as grammar for parsing or pretty-printing meta-terms.
These features allow us to present our ActYve engine
without going too deeply in the MAUDE encoding of
it.

4.2. Step rewritings and information gathering

By combining descent functions and pretty-printing
functions, we consider the steps rewriting which for
a given module and a state belonging to this module,
gives all the one-step rewrite successors according to a
rule label.

We introduce in the step definition the possibil-
ity in MAUDE to constraint the substitution used to
perform the step rewriting, and get back the complete
substitution for each possible one-step rewrites. For-
mally, a step term is composed of a module, a state,
a rule name and a start substitution. Its confluent and
terminating rewriting leads to a list of result pairs [6]
composed of a state and a final substitution.

– Behavior rewriting step
steps (Participant,

:-(,get,none)

-> [<

state︷︸︸︷:-o ;
subst︷ ︸︸ ︷
none>]

In previous rewriting step, the substitution is empty
(i.e. none) because the rewriting only involves con-
stants. In the general case, the possibility to constraint

and extract the substitution is a key feature for the link-
ing of the dynamic topology with behavioural compo-
nents.

The ActYve coordination scheme is compiled in
MAUDE in order to allow two kinds of rewriting, a
topological rewriting which gives the one-step acces-
sible topologies together with their substitution, a syn-
chronization rewriting which gives for a rule label the
different synchronisation needed over component vari-
able. Both rewritings are detailed below for our use
case (c.f. 3.5).

– Topological rewriting step
steps (session, (Participant(1) can-access
Channel(1)) (Participant(1) can-access
Channel(2)), enter, none)
-> [<<(Channel(1) is-used-by Participant(1))
(Channel(2) is-used-by Participant(1));
participant <- Participant(1);,
left <- Channel(1);, right <- Channel(2),
<(Channel(1) is-used-by Participant(1))
(Channel(2) is-used-by Participant(1));participant
<- Participant(1);, left <- Channel(2);,
right <- Channel(1)

– Synchronisation extraction step
steps(session,synchro,enter,none)->
[<|(Participant(participant), get) |(Channel(left),
got) |(Channel(right), got);none>]

4.3. Producing all ActYve steps

From information gathered by the different step
rewritings detailed in the previous section, we can pro-
duce the set of possible ActYve steps. In the static
case, step rewritings occurs before the ActYve com-
putation, but in the dynamic case, the different step
rewriting occurs in a more sophisticated algorithm, in
order to take into account different constraints raising
from reference management issues.

4.3.1. Linking the two levels in the static case
In the static case, an ActYve rewriting step is com-

posed of two steps. First a topological rewriting is per-
formed. Then it performs the synchronisation rewriting
to deduce the different rules needed to be trigger over
each behavioural component.

Then, according to the synchronisation information
and the extracted substitution of the topological rewrit-
ing, it performs the step command over each involved
component.

This intermediate stage of the calculus is represented
in Fig. 13 while underlined items in rewriting steps pick

322 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

Fig. 13. Enumerated intermediate states including state Lists.

up relevant items for the computation of the Partici-
pant(1).

Finally it builds the list of ActYve states according to
the different possibilities of involved components given
in Fig. 12.

4.3.2. Linking the two levels in the dynamic case
This stage is more complicated because it needs a

reference management. First of all, we say that a state
binds if any references cited in the topology has a be-
haviour and conversely. As all considered states bind,
we have to manage a single set of references because
topological reference set and behavioural component
reference set are identical. In the dynamic frame, an
ActYve rewriting is performed in four stages, static
case being embedded by a reference allocation stage
and a reference deletion stage.

1. Allocation stage According to the synchroniza-
tion rewriting, the engine allocates new references
for the corresponding variables, and perform the
one-step rewriting of ⊥ for the corresponding
modules. The result of the step is twice:

– A set of added behavioural components, which
have to be inserted anyway to any solution at
the end of the process.

– A kernel substitution associating to each ap-
pearing component a reference which is not
cited in the current state.

2. Topological rewriting stage Rewriting rules with
free variable (i.e. cited in the right hand side
without being cited in the left hand side) are for-
bidden in standard rewritings. But, as noticed in
the step definition, MAUDE engine allows to

constraint the substitution used for perform one-
step rewrites, this feature can be used to instan-
ciate free variables [6]. Equation 3 summaries
informally the use of the step rewriting for the
topology rewriting.

steps(topology, state, rule, kernel

subs .) → (2)

“listof′′(newstate, completesubs .)

3. Synchronization rewriting stage This stage is very
near from the static case. According to the com-
plete substitution (i.e. larger than the kernel one),
the rewriting rule of all preserved and deleted
components are triggered using the step com-
mand. The list of reachable ActYve state is then
expanded according to the state list of each in-
volved component. If a behaviour component has
an empty list of possible rewrites, it makes the
whole list of reachable ActYve state empty. A
particular case has to be discussed, when a node
out of the topology rewriting triggers a behaviour
rewriting, as for example in rule ask. Any com-
ponent of the corresponding sort, out of the topol-
ogy substitution, can trigger that rule, and the
complete substitution is updated in consequence.

4. Deletion stage In order to validate both binding
and standard gluing condition for graph rewriting
we check at that stage three conditions:

– The state of any deleted component is the “ab-
sent” state (⊥).

– The reference of any deleted component is no
more cited in the resulting topology, this con-
dition is also called binding condition in the
standard terminology [8].

P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications 323

– The substitution is locally injective for any
deleted component (i.e. no other variable of the
complete substitution maps to the same map-
ping reference). This condition is called iden-
tification condition in the standard terminol-
ogy[8].

Condition 4.2 and 4.3 form the gluing condition
in the standard terminology [8].

To be used as a tool to verify non-confluent and non-
terminating systems, and not only simulate them or use
it to drive other software, we need to be able to gen-
erate exhaustive exploration of reachable state graph
and not only a single path. A difficulty raises from the
allocation stage, which can allocate different reference
values when several allocations are interleaved. It is
known in the Graph Grammar [8] approach that a result
of a graph rewrite rule is unique, but only up to isomor-
phism. A state explorer dedicated to ActYve specifi-
cation must take into account this unicity. Such state
explorer is under development in MAUDE, it relies on
the possibility to associate to the set of known states
a rewriting module mapping each state to a rule. If a
one-step is possible from a new state in that module,
we can check the substitution bijectivity to find out if
this new state was already reached, up to isomorphism.

5. Conclusion

This paper has proposed, ActYve, an integrated ap-
proach to describe distributed multimedia applications
as a co-ordinated behaviour of co-operative agents. Ac-
tYve uses different formalisms for interaction and coor-
dination description. The implementation in MAUDE
of our paradigm takes advantage of this separation.
Behavioural components are MAUDE module of any
complexity and without any restriction. ActYve coor-
dination scheme are written in a specific syntax, near
from the MAUDE one. Such specification has to be
translated in a MAUDE module which allows topo-
logical rewriting and also a synchronisation rewriting
for synchronisation information retrieval. Notice that
ActYve coordination scheme can have free variable as
long as they are associated to a behaviour component
apparition. Even if the simulator attempted to man-
age the whole in a single language, MAUDE [6], the
way topology rewriting is managed makes it closer to
Graph Grammar [8] than Rewriting Logic [15] through
a rewriting control based on a precise filtering of the
substitution involved in the rewriting. Both formalisms,

Graph Grammar and Rewriting Logic, have solid for-
mal foundations allowing co-ordinated system correct-
ness to be proved.

With respect to ActYve specification, two exten-
sions can be considered. First, the subtyping feature
of MAUDE allows recursive specification: an ActYve
specification being itself as a behavioural component of
another ActYve specification. This makes the another
extension more critical: allowing behavioural compo-
nent to synchronise over more structured information
than label, namely terms. Different strategies can be
founded in the literature to perform that kind of ex-
change: sharing a tuple space [3], defining which com-
ponent propose information in the term, and which can
catch it [22], allow an unification over synchronisation
terms [19].

References

[1] G. Agha, ACTORS: A model of Concurrent computations in
Distributed Systems, The MIT Press, Cambridge, Mass., 1990.

[2] J.P. Banâtre and D. Le Métayer, Introduction to Gamma,
in: Research Directions in High-Level Parallel Programming
Languages, J.P. Banâtre and D. Le Métayer, eds, Springer
Lecture Notes in Computer Science 574, June 1991, pp. 197–
202.

[3] N. Carriero and D. Gelernter, Generative communication in
Linda, Communications of the ACM 32(4) (1989), 444–458.

[4] P. Ciancarini and C. Hankin, eds, Coordination languages and
models: First International Conference COORDINATION
’96, Cesena, Italy, April 15–17, 1996: proceedings, number
1061 in Lecture Notes in Computer Science, Berlin, Germany /
Heidelberg, Germany / London, UK / etc., Springer-Verlag,
1996.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer and J.F. Quesada, The Maude system, in:
Proceedings of the 10th International Conference on Rewrit-
ing Techniques and Applications (RTA-99), P. Narendran and
M. Rusinowitch, eds, Springer-Verlag LNCS 1631, System
Description, Trento, Italy, July 1999, pp. 240–243.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J.
Meseguer and J.F. Quesada, Maude: Specification and pro-
gramming in rewriting logic, Technical report, SRI Interna-
tional, March 1999.

[7] M. Clavel and J. Meseguer, Reflection and strategies in rewrit-
ing logic, in: Proceedings of the First International Workshop
on Rewriting Logic and its Applications(RWLW96), Pacific
Grove, CA, 3–6 September 1996.

[8] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel and
M. Löwe, Algebraic approaches to graph transformation I:
Basic concepts and double pushout approach, in: Handbook of
Graph Grammars and Computing by Graph transformation,
(Vol. 1) G. Rozenberg, ed., Foundations, World Scientific,
1997.

[9] M. Diaz and J.-P. Ansart et al., The formal description Tech-
nique Estelle, North-Holland, 1989.

[10] K. Drira, F. Gouezec and M. Diaz, Design and Implementation
of coordination protocols for distributed cooperating objects:

324 P. Gradit et al. / An integrated approach to coordination description in distributed multimedia applications

a general graph-based technique applied to CORBA, in: Proc.
3rd IFIP Workshop on Formal Methods for Open Object-based
Distributed Systems (FMOODS), P. Ciancarini, A. Fantechi
and R. Gorrieri, eds, 1999, pp. 89–104.

[11] J. Ellsberger, D. Hogrefe and A. Sarma, SDL – formal object-
oriented language for communicating systems, Prentice Hall,
1997.

[12] H. Göttler, Attributed graph grammars for graphics, in:
Graph Grammars and their application to Computer Science,
G. Rozenberg, H. Ehrig and M. Nagl, eds, LNCS 153, 1982,
pp. 130–142.

[13] J. Hackman and R. Walton, Leading groups in reorganisations,
in: Designing effective work teams, P. Goodman, ed., Jossey-
Bass New York, 1986.

[14] S. Kaplan, J. Loyall and S. Goering, Specifying concur-
rent languages and systems with δ-GRAMMARS, in: Re-
search Directions in Concurrent Object-Oriented Program-
ming, (Vol. 99), G. Agha, P. Wegner and P. Yonezawa, eds,
MIT Press, 1993.

[15] J. Meseguer, Conditional rewriting logic as a unified model
of concurency, Theoretical Computer Science 96 (1992), 73–
155.

[16] D. Le Métayer, Describing software architecture styles using
graph grammars, IEEE Transactions on Software Engineering

24(7) (July 1998).
[17] R. Milner, Communication and Concurrency, International

Series in Computer Science, SU Fisher Research 511/24, Pren-
tice Hall, 1989.

[18] E. Najm, J.-B. Stefani and A. Fevrier, Towards a mobile lo-
tos, in: Proceedings of the International Workshop on For-
mal Description Techniques VIII, G. Bochman, R. Dsouli and
O. Rafiq, eds, Chapman & Hall, October 1995.

[19] P. Azéma, F. Vernadat and P. Gradit, A workflow specification
environment, in: Workshop Workflow Management: Net-
based Concepts, Models, Techniques, and Tools (WFM’98),
June 1998, pp. 5–21.

[20] W. Reisig, Petri Nets, An introduction, (Vol. 4), EATCS,
Monograph on theoritical Computer Science, Springer Verlag,
1985.

[21] H. Schneider, Graph grammars as a tool to define the behavior
of process systems: From petri nets to linda, in: Fourth
International Conference on Graph Grammars, 1993.

[22] P.H.J. van Eijk, C.A. Vissers and M. Diaz, The Formal De-
scription Technique LOTOS: Results of the ESPRIT/SEDOS
Project, North-Holland, New York, 1989.

[23] P. Wegner, The Paradigm Shift from Algorithms to Interaction,
Communication of the ACM, May 1997.

Copyright of Integrated Computer-Aided Engineering is the property of IOS Press and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

