
Mathematical and Computer Modelling of Dynamical Systems 1387-3954/02/0802-199$16.00
2002, Vol. 8, No. 2, pp. 199±211 # Swets & Zeitlinger

A Priority Discrete Queueing Model for

Multimedia Multiplexers

HAMED NASSAR1 AND HASSAN AL MAHDY 2

ABSTRACT

Multiplexers have been extensively modeled as discrete time queueing systems. In this article, we model a

multimedia multiplexer handling traf®c of two classes. One class represents real-time traf®c, e.g., packets of

live audio or video transmissions, and the other nonreal-time traf®c, e.g., packets of ®le transfer trans-

missions. These packets arrive into the multiplexer in batches. In each time slot, one batch of each class

arrive. The multiplexer gives service priority to class-1 packets over class-2. The demands of each class are

in con¯ict with that of the other, and thus they are treated by the multiplexer differently.

The multiplexer is thus modeled as a (preemptive) priority discrete queueing system with simultaneous

batch arrivals and geometric service time. The system occupancy is analyzed and the joint probability

generating function (PGF) of the number of packets of each class is derived. From this PGF, marginal PGFs

of interest are obtained. The results for deterministic service time, most suitable for ATM purposes, are

readily obtainable as a special case from the results of this article.

Keywords: multimedia ATM multiplexer, preemptive priority, discrete queueing, system
occupancy.

1. INTRODUCTION

Modern communications networks, such as the Broadband Integrated Services Digital

Network (ISDN), use Asynchronous Transfer Mode (ATM) in their operation [1].

This mode is characterized by encapsulating the traf®c in small, ®xed-size (53 bytes)

packets. Multiplexers are used in these networks to save on communications channels

when the traf®c is bursty [2].

Suppose, for example, that a bank branch is to be connected to the bank

headquarters. The branch has N tellers, each with a computer terminal. The head-

quarter has a central computer having a master data base. It is required to connect the

terminals to the computer, so that the tellers can access the data base. There are two

approaches to attain this connection.
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The ®rst approach is to use N leased lines, one for each terminal. But this solution

is uneconomical, given that the traf®c of each terminal is bursty. Speci®cally, a

terminal will actually transmit every once in a while, leaving the costly line idle

most of the time. The second approach, which is economically better, is to use a

multiplexer and only one leased line. As shown in Figure 1, the multiplexer has N

input lines, a buffer (waiting room), and one output line. The N terminals will then be

connected to the N input lines, and the leased line to the output line. Packets

transmitted by the terminals will ®rst go to the multiplexer, which queues them in its

buffer, and ultimately transmits them one at a time off the output line. It should be

noted that at the receiving end, there is supposed to be a demultiplexer, a device with

one input line, N output lines, and no buffer, which reverses the action of the

multiplexer. Namely, it redistributes the packets arriving on its input line onto its N

output lines.

When multiplexers operate in a multimedia environment, e.g., a Broadband ISDN

[1], they face a challenging problem. In such environments, the traf®c is of two

classes. Class-1 traf®c is made up of packets of real time communications, e.g., live

audio and video. Class-2 traf®c, on the other hand, is made up of packets of nonreal

time communications, e.g., ®le transfer. Each of these two classes should be treated by

the multiplexer differently, since their properties are different. Namely, class-1 traf®c

is loss-insensitive but delay-sensitive, which means that packets of this type should be

served rapidly even if some are lost as a result. On the other hand, class-2 traf®c is

delay insensitive but loss-sensitive, which means that no packet of this traf®c should

be lost even if some, or all, of the packets are delayed as a result.

The solution to this problem is to use a priority scheme in the multiplexer [3]. In

this scheme class-1 packets are assigned higher service priority over class-2 packets.

That is, if it contains packets of both classes in its buffer, the multiplexer will serve

class-1 packets ®rst.

One of two disciplines may be used if a priority scheme is adopted by the

multiplexer, concerning what happens if a class-1 packet arrives while a class-2

Fig. 1. Multiplexer with N input lines.
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packet is in service. In the preemptive discipline, the arriving packet enters service

immediately in the next slot, ejecting the class-2 packet to the buffer. When the

multiplexer has no more class-1 packets to serve, the ejected class-2 packet enters

service again. In the nonpreemptive discipline, on the other hand, the arriving

packet waits until the class-2 packet ®nishes service and then takes its place in the

server.

One of two options may be used if the preemptive discipline is chosen, concerning

how the ejected packet is served after it goes back to the server. In the resume option,

the packet is served from the point it was ejected. In the repeat option, the packet is

served from the start.

Multiplexers handling uniclass traf®c have received much research attention, since

the advent of digital communications in the seventies. Buffered, they have typically

been modelled as a discrete time queueing system. A large number of these models

are available in the literature (see, e.g., [4±8]). The differences among the models of

these works are usually in the assumptions, but sometimes are in the solution

technique.

Multiplexers handling biclass traf®c, on the other hand, have gained research

attention in recent years due to the proliferation of multimedia traf®c over

communications networks. They have typically been modelled as a discrete priority

queueing system. A number of these models are available in the literature (see e.g.,

[9±13]).

In this article, we model a multimedia multiplexer operating under the assumptions

given in Section 2. These assumptions can be thought of as the union of the three sets

of assumptions given in [9], [10] and [11]. The multiplexer is modeled as a (preemp-

tive) priority discrete time queueing system.

The article is organized as follows. We start by formally introducing the model

assumptions in Section 2. In Section 3, we derive the joint PGF of the output

multiplexer occupancy. In Section 4, we apply the results to a special case, and in the

last Section we draw conclusions.

2. MODEL ASSUMPTIONS AND NOTATIONS

First of all, it is assumed that the multiplexer operates in a discrete time manner. That

is, the time axis is divided into slots, each exactly equal to the transmission time of

one packet. Nonnegative integers k � 0; 1; . . . ; are assigned to the individual slot

boundaries. Time interval �k; k � 1� is referred to as slot k � 1.

In the following, we formally state the multiplexer assumptions, which are largely

re¯ected by the diagram in Figures 1 and 2.

1. The multiplexer has a single buffer of in®nite capacity to host arriving packets in

the form of a queue.
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2. In each slot k, two independent batches must arrive into the multiplexer,

one containing Ak
1 � 0; 1; . . ., class-1 packets and one containing Ak

2 � 0; 1; . . .,
class-2 packets. This may look as a restrictive assumption, but the fact that

the batches could be of zero size shows that there can be slots with no arrivals. The

Ak
1 are independent and identically distributed (iid) RVs, and so are the Ak

2. Let

r1, and r2 denote the arrival rates (packets per slot) at the multiplexer of

class-1 packets and class-2 packets, respectively. If r denotes the packet arrival

rate regardless of class, then r is related to r1 and r2 through the relation

r � r1 � r2.

3. A packet may enter queue or service only at the beginning of a slot. This implies

that if a packet arrives into the multiplexer in a given slot, it enters either queue or

service (if the queue is empty) at the beginning of the next slot. That is, the packet

is not regarded to be in the multiplexer throughout its arrival slot.

4. The multiplexer has a single server, e.g., a register, to host the packet under

transmission. Service time is the time the packet spends in this register.

5. A packet may end service only at the end of a slot.

6. In each slot k, either Dk
1 � 0; 1 class-1 packets or Dk

2 � 0; 1 class-2 packets are

served. The Dk
1 are independent and identically (Bernoulli) distributed (iid) RVs,

and so are the Dk
2. Let s denote the service rate (packets per slot) of the multiplexer.

As the Dk
1 and Dk

2 are Bernoulli distributed, a packet being served in a certain slot

will end service by the end of that slot with probability s and will not with

probability s � 1ÿ s. This implies that the service time is geometrically distri-

buted with expectation 1
s
.

7. Class-1 packets have service priority over class-2 packets. That is, no class-2

packet can start service while a class-1 packet is in the multiplexer. Thus we can

look at the multiplexer as having two logical queues, one of class-1 packets and

one of class-2 packets. With the priority scheme adopted, no class-2 packet can

enter service unless the class-1 queue is empty.

8. An arriving batch of a given class is placed at the end of its appropriate queue on a

®rst come ®rst serve (FCFS). As for the packets inside that batch, they are placed in

Fig. 2. System occupancy evolution.
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the queue in random order. The packets in each queue then enter service on a FCFS

basis.

9. The priority discipline adopted is that of the preemptive type. Note that the option

of preemption (resume or repeat) is irrelevant here, due to the memoryless property

of the geometric distribution of service time.

One of the features of this article is assuming geometric service time. Most of the

published works consider deterministic time of one slot, with the perception that in

ATM applications the packet service time is just its transmission time (i.e., one slot).

But it is very likely that prior to transmission the packet will undergo some processing,

such as error encoding and decoding or encryption and decryption. In this case service

time is not just transmission time. Also, if the multiplexer does not dispose of the

packet before an acknowledgement is returned from the receiving end in the next slot,

retransmitting the packet at the end of that slot, service time is not just transmission

time. In fact, in this latter case, retransmission can go on and on inde®nitely, making

the geometric distribution assumption perfect for service time. Additionally, if we

were modelling a ®leserver, rather than a multiplexer, where the requests for

(geometrically long) ®les arrive from N work stations, get stored in a queue, and are

dismissed only when the requested ®les have been transmitted, the geometric

distribution assumption becomes perfect for service time.

In the sequel we will analyze the occupancy of the multiplexer under the above

assumptions. Most of the variables in the analysis are random variables (RVs), all of

which are nonnegative and integral valued.

3. SYSTEM OCCUPANCY

Due to the biclass nature of our system, we may identify three types of system

occupancy. First, class-1 system occupancy refers to the number of class-1 packets in

system at an arbitrary slot. Second, class-2 system occupancy refers to the number of

class-2 packets. Third, system occupancy refers to the number of packets in system,

regardless of class. We will obtain results for all three types in steady state.

Let Pk
1 � 0; 1; . . ., be a RV denoting the class-1 system occupancy at slot k, i.e., the

number of class-1 packets in system at the end of slot k. In a similar manner let

Pk
2 � 0; 1; . . ., be a RV denoting the class-2 system occupancy at slot k. Since Dk

1 is the

number of class-1 packets served in slot k, it clearly depends on Pk
1 with the following

conditional distribution

Pr�Dk�1
1 � njPk

1 � i� �
s if n � 1; i > 0

�s if n � 0; i > 0

1 if n � 0; i � 0

0 otherwise:

8>><>>: �1�
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Similarly, since Dk
2 is the number of class-2 packets served in slot k, it clearly depends

on Pk
1 and Pk

1 with the following conditional distribution

Pr�Dk�1
2 � njPk

1 � i;Pk
2 � j� �

s if n � 1; i � 0; j > 0

s if n � 0; i � 0; j > 0

1 if n � 0; i � 0; j � 0

or n � 0; i > 0; j � 0

0 otherwise:

8>>>><>>>>: �2�

Figure 2 re¯ects the evolution of the system occupancy. Referring to it, we can easily

write the following two stochastic recursive equations.

Pk�1
1 � Pk

1 ÿ Dk�1
1 � Ak�1

1 �3�
and

Pk�1
2 � Pk

2 ÿ Dk�1
2 � Ak�1

2 : �4�
Let pk

i; j be the joint distribution of Pk
1 and Pk

2. That is pk
i; j � Pr Pk

1 � i; Pk
2 � j

� �
.

And let Pk z1; z2� � be the PGF of pk
i; j. That is

Pk z1; z2� �,
X1
i�0

X1
j�0

pk
i; jz

i
1z

j
2 � E z

Pk
1

1 z
Pk

2

2

h i
: �5�

where the operator E �� � indicates the expectation of the expression between brackets.

Now utilizing (3) and (4), and recognizing the independency of Ak�1
1 and Ak�1

1 from

one another and from the RVs Pk
1;D

k�1
1 ;Pk

1; and Dk�1
1 ; we write

Pk�1 z1; z2� � � E z
Pk�1

1

1 z
Pk�1

2

2

h i
� E z

Pk
1
ÿDk�1

1
�Ak�1

1

1 z
Pk

2
ÿDk�1

2
�Ak�1

2

2

h i
� A1 z1� �A2 z2� �E z

Pk
1
ÿDk�1

1

1 z
Pk

2
ÿDk�1

2

2

h i
�6�

where

Ai z� �,
X1
n�0

Pr Ak
i � n

� �
zn � E zAk

i

h i
; i � 1; 2: �7�

are the common PGFs of the Ak
i . Note from this de®nition that the class-1 and class-2

arrival rates r1 and r2 are related to the Ai z� � through the relation

ri � A
0
i 1� �, d

dz
Ai�z�jz�1; i � 1; 2: �8�
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Now, using (1) through (7) and with some algebraic and probabilistic (especially

conditional and unconditional) manipulation, we can ®nd that

E z
Pk

1
ÿDk�1

1

1 z
Pk

2
ÿDk�1

2

2

h i
� Pk z1; z2� � s� sz1� �

z1
� Pk 0; z2� � s z1 ÿ z2� �

z1z2

� pk
0;0

s z2 ÿ 1� �
z2

�9�

Substituting in (6), we get

Pk�1 z1; z2� � � A1 z1� �A2 z2� � Pk z1; z2� � s� sz1� �
z1

� Pk 0; z2� � s z1 ÿ z2� �
z1z2

� pk
0;0

s z2 ÿ 1� �
z2

� �
�10�

For system stability, the total packet arrival rate r should be strictly less than the

packet service rate s. If this condition is met, the system will reach, steady state after a

suf®ciently large number of slots (i.e., as k!1), in which case the Pk z1; z2� � will

converge to a common PGF P z1; z2� �. As a result, (12) in steady state yields

P z1; z2� � � A1 z1� �A2 z2� �s P 0; z2� � z1 ÿ z2� � � z1 z2 ÿ 1� �p0;0

ÿ �
z2 z1 ÿ A1 z1� �A2 z2� � s� sz1� �� � : �11�

where p0; 0 denotes the steady state probability that the system is empty.

Since the probability that a queueing system, regardless of whether uniclass or

biclass, is empty is always the complement of the probability that it is busy, and since

the latter is known (see e.g., [14]) to be just the utilization r, de®ned as the ratio of

packet arrival rate to packet service rate, then in our case we have

p0;0 � sÿ r

s
: �12�

Thus (11) becomes

P z1; z2� � � A1 z1� �A2 z2� � P 0; z2� � z1 ÿ z2� � � z1 z2 ÿ 1� � sÿ r� �� �
z2 z1 ÿ A1 z1� �A2 z2� � s� sz1� �� � �13�

Equation (13) does not give the ®nal form of P z1; z2� �, since P 0; z2� � is still

unknown. However, it can be used to obtain the PGF of several interesting subsystem

occupancies.

For example, the marginal PGF P1 z� � of class-1 system occupancy P1 can be

obtained from (13) as follows:

P1 z� � � P z; 1� �

� A1 z� � zÿ 1� �P 0; 1� �
zÿ A1 z� � s� sz� � :
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We note that P 0; 1� � � p10
can be obtained using the normalization condition

P1 1� � � 1. Doing that, we ®nd P 0; 1� � � sÿ r1, and therefore

P1 z� � � A1 z� � zÿ 1� � sÿ r1� �
zÿ A1 z� � s� sz� � : �14�

This result is identical to that obtained in [14] in a uniclass context. This identity is

natural since we are assuming here preemptive priority for class-1, which makes the

class-1 system occupancy indifferent to class-2 packets.

Also, (13) can be used to obtain the PGF P z� � of the total system occupancy

P � P1 � P2, disregarding the class of the packets, as follows:

P z� � � P z; z� � � A1 z� �A2 z� � zÿ 1� � sÿ r� �
zÿ A1 z� �A2 z� � s� sz� � �15�

Note that we are adopting polymorphism as far as function notation is concerned. So,

the P in P z� � is different from the P in P z; z� �.
Finally, (13) can be manipulated to yield the system occupancy of the equivalent

uniclass system, i.e., the system with all our assumptions except that all the arriving

batches become of one class of size A � A1 � A2 having PGF A z� �. The occupancy P

of that system would have PGF P�z� that can be obtained from (13) as follows:

P�z� � P z; z� �jA�A1�A2
� A z� �2 zÿ 1� � sÿ r� �

zÿ A z� � s� sz� � �16�

This result is identical to that in [15], which is obtained for a uniclass system.

Going back to the unknown function P 0; z2� � in (13), we can show, using RoucheÂ's

theorem [16], that the factor

z1 ÿ A1 z1� �A2 z2� � s� sz1� � � 0

in the denominator has exactly one zero on the unit disk z1 � 1. Denoting this zero by

x, it can be found (as a function of z2) by Lagrange's theorem [16] as follows:

x �
X1
i�1

A2 z2� �� �i
i!

diÿ1

dziÿ1
1

A z1� � s� sz1� �� �i
�����
z1�0

:

But since P z1; z2� � is a PGF, it should have no poles on the unit disk [17], and

therefore x must also be a zero of the numerator of (13). That is, if we substitute z1 � x
in the numerator of (13), we should get a 0, which enables us to ®nd P 0; z2� � to be

P 0; z� � � x z2 ÿ 1� � sÿ r� �
z2 ÿ x

; z2 6� x �17�

206 H. NASSAR AND H. AL MAHDY



Substituting from (17) into (13), yields

P z1; z2� � � A1 z1� �A2 z2� � z2 ÿ 1� � z1 ÿ x� � sÿ r� �
z2 ÿ x� � z1 ÿ s� sz1� �A1 z1� �A2 z2� �� � ; �18�

which is the ®nal form of the joint PGF of class-1 and class-2 occupancies.

The marginal PGF P2 z� � of class-2 system occupancy can be obtained from (22) as

follows:

P2 z� � � P 1; z� �

� A2 z� � zÿ 1� � 1ÿ x� � sÿ r� �
zÿ x� � 1ÿ A2 z� �� � : �19�

The PGFs derived above can be used to obtain the expected values of the corre-

sponding occupancies. For example, the expected class-1 occupancy can be obtained

as follows:

E P1� � � P01 1� �

� A01 1� � � A001 1� � � 2A01 1� �s
2 sÿ A01 1� �ÿ � : �20�

This result is identical to that obtained in [14] for a uniclass system.

Also, the expected class-2 occupancy can be obtained as follows:

E P2� � � P02 1� �

� sÿ r� � 2r2 r2 xÿ 1� � � x0� � � 2 1ÿ x0� �r2 � 1ÿ x� �A002 1� �� �ÿ �
2 1ÿ x� �r2

2

: �21�

where x0 � d
dz2

x
���
z2�1

.

4. SPECIAL CASE

In this section, we consider the case where the service time of each packet is

deterministically one slot, typical of normal ATM applications, and where the arriving

batches of class-1 and class-2 packets have Poisson distributed sizes. This implies that

s � 1, which, by the way, means that there is no difference between preemptive and

nonpreemptive priority. It also implies that A1 has distribution Pr Ak
i � n

� � � r1eÿr1

n! and

the PGF A1 z� � � er1 zÿ1� �, and that A2 has distribution Pr Ak
i � n

� � � r2eÿr2

n! and the

PGF A2 z� � � er2 zÿ1� �. Clearly, then, A01 1� � � r1; A001 1� � � r2
1, A02 1� � � r2 and

A002 1� � � r2
2:
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Substituting for A01 1� �, A001 1� � and s � 1 in (20), we get the expected class-1

occupancy as follows:

E P1� � � r1 2ÿ r1� �
2 1ÿ r1� � �22�

That is identical to (4.85) in [14] when s � 1. Equation (22) shows that E P1� � is not

affected by r2, which is assuring since class-2 packets are invisible to class-1 packets

when it comes to service. In Figure 3, we plot E P1� � against r1. The Figure shows what

we expect ± the occupancy increases as the arrival rate increases.

The PGF P z� � of the system occupancy regardless of the packet class, i.e., of the

RV P1 � P2 , can be obtained by substituting for s; A1 z� �, A2 z� �, A01 1� � and A02 1� � in

(15), to get

P z� � � e r1�r2� � zÿ1� � zÿ 1� � 1ÿ r1 ÿ r2� �
zÿ e r1�r2� � zÿ1� � �23�

The expectation E PT� � can be obtained as follows:

E P� � � P
0

1� � � r 2ÿ r� �
2 1ÿ r� � : �24�

Fig. 3. Expected class-1 occupancy versus class-1 arrival rate r1 for s � 1.
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From this result, we can get the expected class-2 occupancy as follows:

E P2� � � E P� � ÿ E P1� �

� r 2ÿ r� �
2 1ÿ r� � ÿ

r1 2ÿ r1� �
2 1ÿ r1� � �25�

In Figure 4, we plot E P2� � against r1 for two values of r2. The ®gure shows again

what we expect ± the class-2 occupancy increases as the class-2 arrival rate increases.

More interesting is that the class-2 occupancy increases as the class-1 arrival rate

increases, which is also to be expected, because class-1 packets have service priority

over class-2 packets.

5. CONCLUSION

In this article, we have modeled a multimedia multiplexer handling biclass traf®c as a

priority, discrete time, single server, batch arrival queueing system with geometric

service. We have obtained the joint PGF of the system occupancy, and used it to derive

Fig. 4. Expected class-2 occupancy versus class-1 arrival rate r1 for s � 1, and for two values of r2.
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some useful marginal PGFs. We have applied the model to a special case suitable for

ATM environments. Namely, we assumed a deterministic service time of one slot and

Poisson batch sizes. The numerical results indicate that the expected class-1 occupancy

is not affected by the class-2 arrival rate, while the expected class-2 occupancy is

affected by the class-1 arrival rate (in addition, of course, to the class-2 arrival rate). This

is intuitively clear, since the class-2 packets are invisible as far as the class-1 packets are

concerned, thanks to the preemptive priority of the latters over the formers.

This work can be extended in various ways. For example, the buffer may be

assumed ®nite, instead of in®nite, the service time general, instead of geometric, and

the arrival process renewal, instead of Bernoulli. Also, two different service rate s1

and s2; instead of one, may be assumed.
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