
Published in IET Computers & Digital Techniques
Received on 23rd December 2007
Revised on 19th April 2008
doi: 10.1049/iet-cdt:20070168

ISSN 1751-8601

Multiprocessor platform-based design
for multimedia
A.C. Ammari* A. Jemai†
Institut National des Sciences Appliquées et de Technologie (INSAT) BP676, 1080 Tunis Cedex, Tunisie
*Unité de recherche en Matériaux Mesures et Applications (MMA) INSAT BP676, 1080 Tunis CEDEX, Tunisie
†Laboratoire LIP2, Faculté des Sciences de Tunis, 1060 Belvédère Tunis, Tunisie
E-mail: chiheb.ammari@insat.rnu.tn

Abstract: The computational requirements for embedded applications are increasing exponentially. This
complexity, coupled with constantly evolving specifications, has forced designers to consider intrinsically
flexible implementations. In this paradigm, the digital system-on-a-chip platform-based design environment for
shared memory multiple instructions multiple data architectures (Disydent) is used. Disydent is based on four
tools. The distributed process network is a C library for describing Kahn process network (KPN)-based
applications. The ASIM0 is a multiprocessor target platform running a micro-kernel. The cycle accurate system
simulator is a high-performance cycle accurate simulator, and the user-guided high-level synthesis is a
synthesis tool that may be used to enhance the platform with dedicated coprocessors. The main steps of the
design flow are KPN modelling, functional validation, design space exploration and temporal validation. The
applicability of the Disydent design flow to systems in the multimedia domain is illustrated. The case studied
consists in deploying a motion JPEG decoder onto a configurable prototype of a multiprocessor MIPS
platform. This study explores both the modelling and mapping stages of the Disydent design flow for an
optimal implementation verifying constraints. For this case, the functional constraint consists in achieving a 25
frame-per-second (fps) decoding rate using 50 MHz processors as a non-functional constraint. The sequential
decoder implementation does not meet the constraints. To speed up the decoding, different parallel
implementations are performed on several target platforms. For more design space exploration, the influence
of different scheduling policies, memory cache size and software/hardware mapping are considered.

1 Introduction
Embedded electronic systems are used to carry out specific
tasks and are ‘embedded’ in their environment. This is in
contrast to personal computers or supercomputers which
have a general purpose and interact with users. Embedded
systems typically have strict performance requirements
relating to issues, such as latency, throughput, jitter,
memory usage and energy consumption [1]. Because of
their widespread usage and the critical nature of their
performance, the design of embedded systems is both
relevant and challenging.

The choice of implementation architecture determines
whether designers want to implement a function as a

hardware component or as software running on a
programmable component. In recent years, computational
requirements for embedded applications have been
increasing exponentially. This complexity, coupled with
constantly evolving specifications, has forced designers to
consider intrinsically flexible implementations. For this
reason, and because hardware-manufacturing cycles are
more expensive, software-based implementation has
become more popular [2].

Previously, greater performance for software processing
elements was achieved by increasing the clock frequency,
exploiting instruction level parallelism, introducing deeper
pipelines and carrying out speculative execution. For these
techniques, the amount of performance gain achieved for a

52 IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt:20070168

www.ietdl.org



given increase in energy consumption has recently become
smaller [3]. Since embedded devices are usually constrained
by battery life and/or packaging cost, increased power
consumption cannot be tolerated.

The alternative is to increase throughput by adding more
parallelism to the system in the form of multiple cores.
Each processor can run at a relatively low clock frequency
and perform a portion of the specified application. Greater
parallelism with relatively simple processing elements
running at lower frequencies provides increased
computational capabilities with higher energy efficiency.

Heterogeneous multiprocessor architectural platforms are
gaining prevalence for embedded systems. These platforms
feature multiple processing elements, some of which may
be customised for specific domains. Deploying applications
typical of multimedia domains is difficult because of not
only the heterogeneous parallelism in the platforms, but
also the performance constraints that characterise these
systems.

This study presents the Disydent design flow [4, 5]. This
design flow is based on the platform-based design
methodology for shared memory multiple instructions
multiple data (MIMD) architectures. This work aims to
explore the design flow that addresses modelling and
mapping challenges, by applying it to embedded systems
from multimedia domains. The case study consists of
deploying a motion JPEG decoder application [6] onto the
ASIM0 multiprocessor MIPS R3000 target platform.

The paper is organised as follows. The next section
provides an overview of the platform-based design
methodology. Section 3 presents the Disydent design
framework. The case study of a multimedia motion JPEG
decoder multiprocessor implementation is discussed in
Section 4. Section 5 studies aspects and issues of design
space exploration and proposes an optimal implementation.

2 Platform-based design
methodology
To deal with constantly increasing complexity, safety and
time-to-market pressure, embedded system designers are
turning to more rigorous design methods. The platform-
based design [7] paradigm has been proposed to cope with
these difficulties. In this paradigm, a platform is designed
with sufficient flexibility to support the implementation of
an entire set of products. The product design problem then
involves configuring the platform and deciding which parts
of the product’s functionality are to be implemented by
which platform resources. Usually, designers evaluate
several configurations before selecting one that meets
design goals. This process is known as design space
exploration.

2.1 Architecture platforms

In general, platforms are characterised by programmable
components. Thus, each platform instance derived from the
architecture platform maintains enough flexibility to
support an application space that guarantees the production
volumes necessary for economically viable manufacturing.
The library that defines the platform can contain
reconfigurable components. These can be design-time
reconfigurable, such as the Tensilica Xtensa processor [8],
which allows considerable configuration of the instruction
set processor for applications. They can also be run-time
reconfigurable via reconfigurable logic, as with field-
programmable gate arrays. A designer derives an
architecture platform instance from the platform by
choosing a set of components from the platform library or
by setting the parameters of the library’s reconfigurable
components. Programmable components guarantee a
platform instance’s flexibility to support different
applications. Software programmability yields a more
flexible solution.

2.2 Design issues

From an application domain perspective, performance and
size are the constraints that usually determine the
architecture platform. For a particular application, a
processor must meet a minimum speed and the memory
system must meet a minimum size. Because each product
has a different set of functions, the constraints identify
different architecture platforms; more complex applications
yield stronger architectural constraints.

Once an architecture platform has been selected, the
design process involves exploring the design space defined
by that platform’s constraints. These constraints can apply
not only to the components themselves, but also to their
communication mechanism. Application developers first
choose the architectural components they require, yielding a
platform instance. Then, they map their application’s
functions onto the platform instance. This mapping process
includes hardware and software partitioning. For example,
the designers might decide to move a function from
software running on one of the processors to a hardware
block, which could be full-custom logic, an application-
specific integrated circuit or reconfigurable logic. Once the
partitioning and the platform instance selection are
finalised, the designer develops the final and optimised
version of the application software [9].

2.3 Case of Disydent design flow

The Disydent [4] is an open framework for a system-on-a-
chip platform-based design for shared memory MIMD
architectures. The platform-based design problem is
defined according to the following elements: system,
application and constraints. Although the system already
exists, the application is not supported by the system.

IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61 53
doi: 10.1049/iet-cdt:20070168 & The Institution of Engineering and Technology 2009

www.ietdl.org



The application is functionally described as a set of
processes exchanging data. The actual implementation of
the application is physically realised on the platform. The
platform is made of several components, including general-
purpose processors (CPU), processors dedicated to special
tasks (co-processor or hardware accelerator), and memories
to store the application software and data. It also includes
on-chip interconnects to connect the processors, co-
processors and memories. The platform instance is
described in a structural ‘VHDL’ file. This contains cycle
true behavioural models of the hardware components and
the configuration used for their interconnect structure and
capabilities.

Designing an embedded application starts with a high-
level description of the application. This description is
either a report in natural language or a program in an
executable sequential language. There are also non-
functional specifications, usually defined as cost constraint
(area of target hardware), time constraint (maximum
computing durations) and power consumption constraint.
For the application designer, the Disydent top–bottom
simulation-based approach helps to go from the high-level
description to the actual embedded application
implementation verifying the constraints.

3 Disydent design framework
This section presents the Disydent platform-based design
framework. First, components and tools are described;
then, the associated design flow is discussed.

3.1 Disydent components

The distribution of Disydent contains the following
packages. They are presented from higher to lower
conceptual levels, which are, in fact, the order of their use.

† Distributed process network (DPN) is a C library
implemented on top of the POSIX threads of the FIFO
communications of the Kahn model [10] for inter-process
communication with bounded storage, blocking reads and
blocking writes.

† ASIM0 target platform (Fig. 1): this platform is
basically composed of one or more MIPS R3000
processors with instruction and data caches, an interrupt
controller, a peripheral interconnect (PI) bus [11], RAM
and ROM devices, a FIFO interface and direct memory
access controllers. For multiprocessor architectures, the
memory coherence is ensured by the use of a write-
through cache with bus snooping. The RAM and ROM
sizes are parameters that should be adjusted depending
on the application. This basic ASIM0 platform can
optionally be extended by adding FIFOs and HW
coprocessors.

† Cycle accurate system simulator (CASS) allows building a
cycle accurate simulator [12] of a given hardware. Once the
simulator is generated, one loads it with embedded
software and then performs cycle precise simulations of a
system (embedded hardware and software).

† An open embedded system: this provides an environment
to design and simulate embedded systems. It contains CASS
modules that are cycle true behavioural models of the
embedded hardware, a MUTEK micro-kernel (basic
operating system) to run on the processors of the
embedded hardware and tools to generate the embedded
software being composed of the embedded MUTEK
micro-kernel plus the software dedicated to the embedded
system [13].

† User-guided high-level synthesis (UGH) is a synthesis
tool [14]. Its inputs are a C or VHDL program and the

Figure 1 ASIM0 target platform

54 IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt:20070168

www.ietdl.org



clock frequency. It produces both a synthesisable VHDL
model and a cycle precise ‘C’ description that can be used
as a coprocessor in CASS simulations.

3.2 Disydent design flow

The current flow for Disydent is typically an adaptation of the
uniprocessor design flow. The uniprocessor flow typically
involves manual implementation of code for the processor
in a low-level language such as assembly code or C
followed by extensive simulation to debug and meet
performance constraints [15]. The adaptation of this
strategy for parallel platforms usually adds an initial
partitioning step and parallel specification for the
application model in the form of process networks, where
concurrently executing processes communicate with each
other using explicit messages.

The applicability of the Disydent tools to the multimedia
domain comes essentially from the use of the Kahn process
network (KPN) [10] model of computation. The KPN
model of computation is implemented by the C DPN
library. This consists of concurrent processes that
communicate with each other through one-way point-to-
point FIFOs. Read actions from these FIFOs block until at
least one data item becomes available. The write actions
block when the FIFOs are full. The execution of a KPN is
deterministic and independent of process interleaving. This
means that for a given input always the same output is
produced and the same workload is generated, irrespective
of the execution schedule. The key characteristic of the
KPN model is that it specifies an application in terms of

distributed control and distributed memory which allows us
to map the application onto a multiprocessor platform in a
systematic and efficient manner.

For this framework, the hardware of the embedded system
is described in a ‘VHDL’ file. This file represents the
description of the platform instance. It contains cycle true
behavioural RTL models of the embedded hardware
components (MIPS processors, memories, text terminals
etc.), and the configuration used for their interconnect
structure and capabilities. Once the platform instance is
defined, the designer should use the CASS tool to build a
cycle accurate simulator for this platform. Next, the
software part of the application is cross-compiled and
linked with the MUTEK embedded kernel. Finally, the
generated binary files are loaded into the target platform
simulator.

To transform an application from a sequential specification
to an optimal implementation verifying constraints, four
main phases are used in the design flow, as shown in
Fig. 2. This design flow is not fully automated in that the
designer plays a central role. At each phase, Disydent
provides information that guides the designer to the
appropriate solution. The design flow starts by a sequential
implementation of the application on a simulated platform.
This step will help obtain profiling information for the next
phases. For this, the designer has to modify the initial C
description, particularly the input/output (I/O) functions
for general-purpose computers, to adapt them to the I/O
components of the target platform.

Figure 2 Disydent design flow

IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61 55
doi: 10.1049/iet-cdt:20070168 & The Institution of Engineering and Technology 2009

www.ietdl.org



If constraints are not met, the designer moves up to the
next step to implement the parallel specification based on
the KPN model. To describe the KPN, the C DPN library
implements the KPN communications, with the restriction
that the FIFOs have a finite depth. The user defines a C
KPN specification of the application using the sequential
execution profiling information and his knowledge of the
application. The parallelising process is performed by
modifying and restructuring manually the original
sequential source. There is no tool which can help with this
process.

Once functionally validated, the KPN specification is
implemented on the multiprocessor platform using the
MUTEK multiprocessor multithread kernel. MUTEK
provides a standard-based KPN communication API
allowing suitable abstraction of the platform. Using this
API at this level makes the implementation straightforward
and enhances software portability and reuse across different
platforms. Mapping the KPN processors to the target
processors is managed by the MUTEK kernel using three
different scheduling policies. This includes the symmetric
multiprocessor (SMP), non-SMP-centralised and non-
SMP-distributed schedulers. In the SMP kernel, there is
only one scheduler allowing the KPN processes to migrate
between processors. The asymmetric centralised scheduler
(CS) (non-SMP-centralised) is the only one scheduler
statically affecting processes to processors and the
asymmetric distributed scheduler (non-SMP-distributed)
instantiates one scheduler to every processor and, thus, the
processes are statically affected to processors [13].

If the software implementation of the implemented
multiprocessor KPN model still does not meet the
constraints, then the designer looks for a suitable
hardware/software mapping of the application. At this
third step, groups of tasks to migrate in hardware must be
identified for suitable HW/SW partitions among
the processes of the parallel specification. The last step
is the synthesis which consists of an automated synthesis of
the hardware-mapped processes using the UGH tool [14],
and the temporal validation of the final implementation.

4 Motion JPEG decoder case
study
In this section, the applicability of the Disydent design flow
to systems in the multimedia domain will be illustrated.
Multimedia systems deal with computation carried out on
streams of data [16]. Data streaming applications such as
audio, video and image codecs as well as wireless
communication, all characterised as multimedia systems, are
predominant in many consumer electronics. The model of
computation most often used for these systems is a
specialisation of KPN, where actors consume data from
input streams, carry out computation and produce data on
output streams.

The case study consists in developing a motion JPEG
decoder application onto the configurable prototype of the
ASIM0 platform architecture. The JPEG decoder is a
multimedia application whose building blocks are used in
many image and video processing algorithms. In particular,
the DCT, quantisation and Huffman blocks are utilised in
several other image/video compression applications,
including the new generation H.264 standard [17].

For this study, the objective is to explore both the
modelling and mapping stages of the flow for an optimal
implementation of the MJPEG decoder verifying
constraints. The functional constraint consists in achieving
a 25 fps decoding rate using 50 MHz processors as a non-
functional constraint. Thus, the monitored parameters are
representative only of temporal performance aspects such as
the thread computing time, bus transfer rate and primitive
transfer latency.

4.1 Motion JPEG decoder

The block diagram for the used motion JPEG decoder is
shown in Fig. 3. The input for the application is a stream
of JPEG images from a traffic generator (TG) input
peripheral. The first functional block, DEMUX, dispatches
the input stream to the other blocks. VLD performs a
Huffman variable length decoding. ZZ reorders the stream
of coefficients. IQ performs the inverse quantisation.
IDCT performs the inverse discrete cosine transform.
LIBU is not a JPEG operation, but it is necessary to adapt
the pixel stream to a given RAMDAC peripheral controller
output.

4.2 Sequential program implementation

The sequential implementation of the JPEG decoder consists
in executing the initial C source application on the simulated
ASIM0 platform. For this, we first adapted the I/O original
functions to the target platform. We used a TG and a
RAMDAC (screen) to replace the I/O files. The CASS
simulator has been used to execute the sequential
application on the target platforms. We obtained an
execution computing time of n ¼ 103 � 106 cycles for a
25-frame decoding. At 50 MHz, this represents a duration
of 2.05 s. This decoded number of frames per second is
fps ¼ 25/d ¼ 12.2. Thus, the sequential implementation
does not meet the constraints, and a speedup of 2.6 is needed.

Figure 3 Motion JPEG figure block diagram

56 IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt:20070168

www.ietdl.org



To achieve the required performance for real-time operation,
it is necessary to explore multiple ways of parallelisation.
Profiling the execution of the sequential application shall
identify the major bottlenecks and the main subcomponents
candidate for efficient parallelisation. The obtained profiling
results are given in Table 1. These results confirm that the
IDCT is the most computationally expensive critical task.

4.3 Parallel specifications

We used three parallel schemes for the motion JPEG decoder
algorithm, one is based on pipelining the processing steps as
shown in Fig. 4a, and the other uses data parallelism to
perform the IQ , ZZ and IDCT in parallel, as shown in
Fig. 4b. The last model presented in Fig. 4c is based on
parallel processing of the IDCT as it is the most complex
module. For all these models, the macro block level
granularity has been used for the communication
granularity between tasks.

The implementation of these parallel schemes has been
performed by restructuring the original sequential source.
This code is modified and structured by hand to describe
the KPN in C for varying levels of parallelism. Each Kahn
process is described by a C function that has DPN FIFOs
as parameters, and inter-process communication is
performed using only the DPN I/O primitives. Using
global variables for this purpose is not allowed. The
proposed high-level parallel model of Fig. 4 has been
validated. The correctness of the parallelised code is proved
by comparing both execution results of sequential and
parallelised codes using the same testbenches.

4.4 Parallel multiprocessor
implementation

Once the parallel KPN specifications have been functionally
validated, they are cross-compiled with the MUTEK
operating system for effective implementation on several

Table 1 Motion JPEG decoder sequential profile

Module IDCT VLD IQ ZZ Others

time percentage 67% 13.3% 7.8% 6.1% 5.8%

Figure 4 Motion JPEG decoder parallel specifications

a KPN pipeline model of motion JPEG decoder
b First parallel scheme
c Second parallel scheme

IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61 57
doi: 10.1049/iet-cdt:20070168 & The Institution of Engineering and Technology 2009

www.ietdl.org



target platforms. The platforms differ by the number of
MIPS processors used. This MUTEK kernel proposes a
FIFO-based KPN communication layer. Mapping the
KPN processes to the target processors is managed by the
MUTEK kernel using various scheduling policies. For this
case, we first used the SMP scheduler.

The pipeline KPN model of Fig. 4a has been implemented
on the ASIM0 target and the execution has been simulated
using CASS. ASIM0 is first configured with one MIPS
processor, and then enhanced by adding one, two, three
and four processors. The MIPS processors have been used
with 2 KB cache memory. For each simulation, CASS
provides the duration in number of cycles, and so the
decoded number of frames per second is calculated. The
obtained results are presented in Fig. 5a.

It is shown that using only one MIPS processor, the
computing time (6.72 fps) is worse than that obtained with
the sequential implementation (12.2 fps). This is because of
the computing overhead obtained by the inter-process
communication. Using two, three and four processors has
speeds up the computing, but this acceleration is saturated
with the fourth processor to 13.86 fps. Thus, such a model
implementation is far from achieving the 25 fps functional
constraint.

The parallel implementation of the IQ , ZZ and IDCT,
shown in Fig. 4b, has given a notable acceleration.
Actually, with five MIPS processors we obtained a speedup
of 2 and a decoded number of frames per seconds of 23.35.
For this model the performance saturates with five
processors. Using the double IDCT model of Fig. 3c, we
obtained the same performance with five processors;
however, with only four processors we obtained 22.09
decoded fps. As reflected in Table 1, the IDCT represents

the most complex module. It is anticipated that using more
data parallelism for the IDCT will help better verify the
functional constraints with minimal processors.

5 Design space exploration
The multiprocessor implementation of the proposed parallel
models of Fig. 4 has been performed on several ASIM0
target platforms using several MIPS processors with 2 KB
cache memory along with a MUTEK SMP scheduler. The
performance obtained did not meet the constraints. For
further design space exploration, the influence of the
non-SMP-CS along with the memory cache size and
software/hardware mapping are considered.

5.1 Memory cache influence

It is demonstrated in [4] that the KPN communications
increase access to the bus and consequently, the number of
cache misses. A cache miss usually increases the bus-load and
induces large system latencies. To see the influence of the
memory cache on the decoding performance, we simulated
again the execution of the pipeline KPN model of Fig. 4a
using processors with larger 4 and 32 KB data and instruction
caches. The obtained results are shown in Fig. 5b.

It is shown from this figure that using 4 KB of memory
cache has accelerated the execution by about 5% compared
with that obtained with 2 KB. The execution with 32 KB
did not give substantial gain with one or two processors.
On the contrary, with four processors, we obtained a
performance deceleration compared with what had been
obtained with 2 KB. This is because of the fact that the
more the number of processors increases, the more memory
consistency and cache coherency problems [18] will arise.
For our platform, the MUTEK kernel uses software
solutions to insure cache coherency. The execution time

Figure 5 Multiprocessor performance and memory cache influence

a Parallel multiprocessor performance
b Pipeline model memory cache influence

58 IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt:20070168

www.ietdl.org



needed to resolve these coherency problems will cause an
added overhead and complexity to the system. Thus, for an
optimal implementation a sort of compromise in the size of
the memory cache is needed.

5.2 Non-SMP-centralised scheduling
influence

Using an SMP kernel, the KPN processors can run on any
processor and, thus, may migrate between processors. This
allows theoretically a better distribution of the load on all
CPUs and a more efficient resource utilisation [10] is
obtained. However, the task migration has a high cost in
terms of cache misses. Thus, the interest in the SMP
might become less for large data exchange applications as is
the case of the motion JPEG decoder.

For the JPEG decoder, the IDCT process is the most
computationally expensive process. Hence, it is anticipated that
using the centralised non-SMP-CS scheduler with dedicated
processors computing the IDCT may give a potential
decoding acceleration. The double IDCT parallel execution of
Fig. 4c has been evaluated with three and four processors
using, respectively, the mapping scenarios of Figs. 6a and 6b.
Three processors are used for the case of Fig. 6a with the
IDCT2 and LIBU statically mapped to processor P3, IDCT1
and ZZ to processor P2 and the rest to processor P1. The
fixed scenario with four processors is shown in Fig. 6b.

The obtained performance results of these implementations
are presented in Fig. 7a. This figure clearly indicates that the
static non-SMP scheduler did not give too much acceleration.
For the same number of processors, the performance obtained
is comparable with the dynamic SMP case. To obtain a better
idea about the efficiency of each scheduling policy, we
reported in Fig. 7b the processor cycles spent in the idle loop.
It appears from Fig. 7b that the SMP kernel spends much
more less time in idle loops than the non-SMP-centralised.
This outlines the capacity of a dynamic SMP scheduler to use

the CPU cycles more efficiently. However, for the SMP
scheduler, the task migration caused a very high cost in terms
of cache misses leading to less interest in the SMP policy.
Finally, for these cases, the obtained performances with the
SMP and non-SMP strategies are comparable. Nevertheless,
to more effectively put the accent on performance
improvement with static non-SMP scheduling for large data
exchange applications as in the case of the motion JPEG
decoder, a better static mapping scenario should have been
considered with better utilisation of the CPU cycles of each
processor used.

5.3 Hardware/software mapping

Hardware-manufacturing cycles are more expensive and so prior
to opting for hardware design, it is necessary to be sure that it will
be useful. The problem is to find one or more groups of processes
that are good candidates for HW mapping. To estimate the
appropriate selection, Disydent proposes an exploratory
migration approach. To obtain a system with processes

Figure 7 Obtained performance results of the
implementations are presented

a Non-SMP-centralised/SMP performance
b Processor cycles spent in Idle loop

Figure 6 Static centralised scheduling scenario with

a Three processors
b Four processors

IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61 59
doi: 10.1049/iet-cdt:20070168 & The Institution of Engineering and Technology 2009

www.ietdl.org



migrated to HW, the designer has to select the appropriate
candidate processes for HW implementation and perform
some modifications on the platform description and on the
software parallel specification [4].

The selection of the appropriate processes for HW
implementation is performed using solely profiling results
and intuition of fitness of a particular function for HW
implementation. For our case, the profiling results
presented in Table 1 indicate that the IDCT is the most
computationally expensive critical task. The IDCT process
should, thus, be hardwired. The VLD and IQ processes are
also good candidates. Therefore three process groups have
been selected for hardware implementation: (IDCT),
(IDCTþ VLD) and (IDCTþ VLDþ IQ ).

Hardware implementation of the (IDCT) has realised
11.55 fps with three processors on the platform. By
mapping the group (IDCTþ VLD) into hardware, the
constraint was almost satisfied using two processors on the
platform (24.07 fps). In this case, a code optimisation and a
suitable configuration of the platform are necessary to reach
25 fps. The (IDCTþ VLDþ IQ ) group had given as
execution performance 24.12 fps with only one processor
on the platform. To conclude, there are two potential
solutions: (IDCTþ VLD) with two processors and
(IDCTþ VLDþ IQ ) with one processor. For these
design solutions, the final decision will depend more on
area than on delay optimisation.

5.4 Result synthesis

With a memory cache size of 4 KB, the design space
exploration synthesis using the SMP, non-SMP scheduling
policies and the software/hardware mapping are presented
in Table 2. Using Table 2, the optimal architecture will use
two MIPS processors, RAM memory, PI-bus and an
interruption controller. The MIPS processors are dedicated
to execute DEMUX, IQ , ZZ and LIBU processes with an
SMP scheduling policy. In addition, an input peripheral is
needed for reading video stream (TG) and an output
peripheral (RAMDAC) for displaying. To achieve the
25 fps functional constraint, hardware implementation of
the VLD and IDCT processes is necessary.

6 Conclusions
The platform-based design paradigm has been proposed to
cope with the constantly increasing embedded system
design complexity, safety and time-to-market pressure. In
this paradigm, the Disydent is used. In this paper, the
applicability of the Disydent design flow to systems in the
multimedia domain has been illustrated. This comes
essentially from the use of the KPN model of computation
to express the behaviour of such systems. The case study
consists in deploying a motion JPEG decoder application
onto the configurable prototype of a multiprocessor MIPS
platform architecture.

The motion JPEG decoder is a multimedia application
whose building blocks are used in many image and video
processing algorithms. This study has explored both the
modelling and mapping stages of the Disydent design flow
with an optimal implementation for verifying constraints.
The functional constraint consists in achieving a 25 fps
decoding rate using 50 MHz processors as a non-functional
constraint. The sequential decoder execution did not meet
the constraints. To speed up the decoding, different parallel
implementations have been performed on several target
platforms. We first tried the MUTEK kernel SMP
dynamic scheduling using MIPS processors with 2 KB of
memory cache. For more design space exploration, the
influence of the static non-SMP-CS, the memory cache
size and the software/hardware mapping have been
considered. This has given an optimal architecture for the
decoder multiprocessor implementation.

In summary, we find the Disydent design approach
efficient. The input is a C program using parallel KPN
model primitives. The platform instance is described at the
RTL level in an appropriate ‘VHDL’ file. The temporal
validation on the target is straightforward and obtained very
fast. This is one to two orders of magnitude faster than
classical RTL-level simulators [12]. The functional
validation at the KPN level is sufficient to ensure the
functionality of the application on the target platform. In
addition, the integrated MUTEK operating system provides
a standard-based KPN communication API allowing
suitable abstraction of the platform. Using this API makes

Table 2 Implementation performance of the decoder MJPEG

Proc SMP-CS Non SMP-CS SMP-CS

Sequential KPN ZZþ IQþ IDCT Double
IDCT

ZZþ IQþ IDCT Double
IDCT

IDCT
hard

IDCTþ VLD
hard

IDCTþ VLDþ IQ
hard

1 12.6 6.72 – 6.78 – – 7.7 17 24.12

2 12.6 12.17 12.16 12.86 12.68 – 11.49 24.07 32.45

3 12.6 14.12 17.65 18.63 – 17.19 11.55 36.73 32.56

4 12.6 13.86 22.35 22.09 – 20.56 – – –

60 IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt:20070168

www.ietdl.org



the implementation straightforward and enhances software
portability and reuse across different platforms.

Nevertheless, Disydent design flow is not a fully
automated approach in that the designer plays a central role
in each phase. Particularly, the definition of the system for
a new platform is a somewhat complicated task. This
requires the design of the needed hardware components at
the RTL level and the definition of the corresponding
CASS files for cycle accurate simulation. In addition, the
version of the MUTEK micro-kernel used is ported only
for an R3000 MIPS processor limiting the ways of
featuring multiple processing elements and targeting
heterogeneous platform architectures. To enhance the use
of Disydent for heterogeneous platforms, the micro-kernel
has to be further ported on other multiple specialised cores.

7 References

[1] DAVARE A., DENSMORE D., MEYEROWITZ T., ET AL.: ‘A next-
generation framework for platform-based design’. Design
and Verification Conf. (DV-CON), San Jose, CA, 21 – 23
February 2007

[2] CASPI P., SANGIOVANNI-VINCENTELLI A.: ‘Guidelines for a graduate
curriculum on embedded software and systems’, ACM Trans.
Embedded Comput. Syst., 2005, 4, (3), pp. 587–611

[3] OLUKOTUN K., HAMMOND L.: ‘The future of
microprocessors’, ACM Queue, 2005, 3, (7), pp. 26–34

[4] AUGÉ I., PÉTROT F., DONNET F., GOMEZ P.: ‘Plateform based
design from parallel C specification’, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 2005, 24, (12), pp. 1811–1826

[5] SMIRI K., MOALLA M., HARBEGUE H., JEMAI A., AMMARI A.C.: ‘Kahn
based performance model within a co-design flow’.
ESM’2007, 22–24 October 2007, St. Julian’s, Malta

[6] JPEG committee: ‘Standardized in ISO/IEC IS 10918-1/2’.
http://www.jpeg.org/

[7] KEUTZER K., MALIK S., NEWTON A.R., RABAEY J., SANGIOVANNI-

VINCENTELLI A.: ‘System level design: orthogonolization of
concerns and platform-based design’, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 2000, 19, (12), pp. 1523–1543

[8] www.tensilica.com/products/x7_processor_generator.
htm

[9] SANGIOVANNI-VINCENTELLI A., MARTIN G.: ‘Platform-based
design and software design methodology for embedded
systems’, IEEE Des. Test Comput., 2001, 18, (6), pp. 23–33

[10] KAHN G.: ‘The semantics of a simple language for
parallel programming’. Proc. IFIP Congress 74, North-
Holland Publishing Co, 1974

[11] NIEDERMEIN T., ET AL.: ‘Draft standard OMI 324: PI-bus’.
Technical Report, Open microprocessor initiative,
December 1996, Rev. 0.3d

[12] PÉTROT F., HOMMAIS D., GREINER A.: ‘Cycle precise core
based hardware/software system simulation with
predictable event propagation’. Proc. 23rd Euromicro
Conf., Budapest, Hungary, September 1997, pp. 182–187

[13] SENOUCI B., BOUCHHIMA A., ROUSSEAU F., PETROT F., JERRAYA A.:
‘Fast prototyping of POSIX based applications on a
multiprocessor SoC architecture: hardware-dependent
software oriented approach’. 17th IEEE Int. Workshop on
Rapid System Prototyping (RSP’06), 2006, pp. 69–75

[14] AUGÉ I., BAWA R.K., GUERRIER P., GREINER A., JACOMME L., PÉTROT F.:
‘User guided high level synthesis’. VLSI: Integrated Systems
Very Large Scale Integration, Brazil, August 1997,
pp. 464–475

[15] WOLF W.: ‘Computers as components: principles of
embedded computing system design’ (Morgan Kaufmann,
2005)

[16] TSANG T., LAI R.: ‘Specifying multimedia QoS parameters
and synchronization using time-estelle’, Int. J. Comput.
Internet Manage., 2005, 13, (3), pp. 11–32

[17] KRICHENE H., AMMARI A.C., JEMAI A., ABID M.: ‘Performance/
complexity analysis of a H264 video encoder’.
International Review on Computers and
Software(IRECOS), July 2007

[18] PÉTROT F., GOMEZ P.: ‘Lightweight implementation of the
POSIX threads API for an on-chip MIPS multiprocessor with
VCI interconnect’. Proc. DATE’03, 2003, vol. 2, pp. 51–56

IET Comput. Digit. Tech., 2009, Vol. 3, No. 1, pp. 52–61 61
doi: 10.1049/iet-cdt:20070168 & The Institution of Engineering and Technology 2009

www.ietdl.org

http://www.jpeg.org/
www.tensilica.com/products/x7_processor_generator.htm
www.tensilica.com/products/x7_processor_generator.htm



