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Abstract: The IEEE 802.15.3 medium access control (MAC) protocol is an emerging standard for high-rate wireless
personal area networks (WPANs), especially for supporting high-quality real-time multimedia applications.
Despite defining quality of service (QoS) signalling mechanisms for interoperability between devices, IEEE
802.15.3 does not specify resource allocation algorithms that are left to manufacturers. To guarantee the QoS
of real-time variable bit rate (VBR) videos and utilise the radio resource efficiently, the authors propose a
dynamic resource allocation algorithm. The proposed bandwidth allocation algorithm is based on a novel
traffic predictor. Recently, the variable step-size normalised least mean square (VSSNLMS) algorithm was
employed for on-line traffic prediction of VBR videos. However, the performance of the VSSNLMS algorithm
significantly degrades due to the abrupt traffic variation occurring at the scene boundary. To tackle this
problem, the authors design a novel traffic predictor based on a simple scene detection algorithm and the
VSSNLMS algorithm. Analyses using real-life MPEG video traces indicate that the proposed traffic predictor
significantly outperforms the VSSNLMS algorithm with respect to the prediction error. The performance of the
proposed bandwidth allocation algorithm is also investigated by comparing several existing algorithms.
Simulation results demonstrate that the proposed bandwidth allocation algorithm surpasses other
mechanisms in terms of channel utilisation, buffer usage and packet loss rate.

1 Introduction
Recently, Ultra-Wideband (UWB) has gained considerable
attentions for its usability in wireless communication
systems. Being able to provide low power consumption,
high data rate transmission and low interference to existing
radio technologies, UWB has become the promising
candidate of high rate wireless personal area networks
(WPANs). UWB-based WPANs can support many novel
applications, such as home entertainments, real-time
multimedia streaming and wireless universal serial bus
(WUSB) that connects computers to peripherals. IEEE
802.15.3 working group is organised to work towards a
common standard for UWB medium access control
(MAC) layer and physical layer. One of the main features
of the IEEE 802.15.3 MAC [1] is to support quality of
service (QoS) guarantee of multimedia applications.

MPEG videos (e.g. MPEG-1 used by VCD, MPEG-2
used by DVD and MPEG-4 used for network streaming)
are expected to be one of the most important indoor
applications for WPANs [2]. However, due to the nature
of MPEG variable bit rate (VBR) videos such as burstiness
and strong long range dependence (LRD), the design of
efficient transport mechanisms that are capable of achieving
high resource utilisation while still preserving the required
QoS of MPEG videos has become a challenging problem
[3, 4]. Furthermore, although IEEE 802.15.3 defines the
QoS signalling mechanism, it does not specify the resource
allocation algorithm which is left to vendor implementations.
Due to the above reasons, reliable transport of MPEG
VBR video and a guarantee of its QoS over 802.15.3
networks have become difficult. To solve this problem,
Tseng et al. [5] proposed an on-line traffic predictor
called the variable step-size normalised least mean square
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(VSSNLMS) algorithm. Based on this predictor, they
proposed a bandwidth allocation algorithm to support real-
time MPEG VBR video transmission on 802.15.3
networks. Nevertheless, as shown in Section 2, the
VSSNLMS algorithm can induce large prediction errors
and yield slow convergence upon the occurrence of scene
changes. If the traffic predictor cannot provide precise
estimation outcomes, the bandwidth allocation algorithm
that dynamically regulates video streams using the
prediction results cannot furnish fast and accurate control
actions in order to achieve high channel utilisation and
satisfy the QoS requirements of VBR videos.

In this paper, we first propose a novel traffic predictor that
aims at providing simple yet accurate online MPEG video
prediction. The proposed predictor is based on a simple
scene detection algorithm and the VSSNLMS algorithm.
Due to its rapid-tracking ability, the VSSNLMS algorithm
is used to predict the traffic within the same scene. Upon
detecting a scene change, we update the filter coefficients
using only the signals belonging to the new scene. This is
done in order to accelerate the re-convergence of the
coefficients and to avoid the creation of a large prediction
error at the scene boundary. Therefore the proposed
predictor offers adaptability not only in the adjustment of
the step size and coefficients but also in the dynamic
update of the inputs. Based on the proposed predictor, we
then design a dynamic bandwidth allocation algorithm to
support the QoS transport of real-time MPEG videos over
802.15.3 networks. By means of simulations using real-life
MPEG video traces, it is shown that the proposed scheme
significantly outperforms other mechanisms with respect to
channel utilisation, buffer usage and packet loss rate.

The remainder of this paper is organised as follows.
Section 2 discusses related works on real-time VBR video
traffic prediction and the deficiencies in previous proposals.
Section 2 also presents the proposed traffic predictor and
compares the outcomes with the VSSNLMS algorithm.
Section 3 provides descriptions of the 802.15.3 MAC and
the proposed dynamic resource allocation algorithm.
Simulation results validating the claimed performance
improvements are presented and discussed in Section
3. Section 4 concludes the paper.

2 Related work on MPEG
traffic perdiction and proposed
traffic predictor
2.1 MPEG traffic prediction and
related work

An MPEG video consists of a sequence of group of pictures
(GOPs). Each GOP is composed of three types of frames
arranged in a repetitive structure. These three types of
frames are, I-frame (Intra-frame), P-frame (Predictive-frame)
and B-frame (Bidirectional-Predictive-frame), each with

different encoding methods. A GOP pattern is denoted by
GOP(M, N ), where M is the frame distance from one
I-frame to the next I-frame and N is the frame distance
between two successive P-frames. For instance, GOP (12, 3)
represents the frame sequence ‘IBBPBBPBBPBB’. Traffic
generated by MPEG and observed at the frame level exhibits
a highly fluctuating and nonlinear bit-rate variation resulting
from the encoding algorithm itself and the complex content
of the audiovisual data, such as camera motion, scenes of high
activity and scene changes. Moreover, recent studies using
complete video traces reveal that MPEG videos possess
strong LRD (i.e. self-similarity) [6–8].

For VBR video, a methodology commonly used to tackle
the effects of burstiness and strong LRD is the dynamic
resource allocation. The aim of dynamic resource allocation
is to adaptively allocate resources to capture the traffic
characteristics of VBR video. One of the popular
techniques in dynamic resource allocation is the use of
traffic prediction, which anticipates the dynamics of future
traffic in order to provide faster and more efficient traffic
management mechanisms. Several works have been
proposed to predict MPEG VBR video [9]. Among these
works, Adas [10] presented a traffic predictor which
separates the MPEG video sequence into subgroups I, P
and B and forecasts each type of frame using the
normalised least mean square (NLMS) algorithm which is
explained as follows: Given an input vector with p samples
X(n) ¼ [x(n), x(n – 1), . . . , x(n 2 pþ 1)]T and a coefficient
vector of p coefficients Wn ¼ [wn(0), wn(1), . . . ,
wn(p 2 1)]T, the estimated signal of a pth-order linear
predictor is calculated as follows

x̂(nþ k) ¼
Xp�1

l¼0

wn(l )x(n� l ) ¼ W T
n X (n) (1)

The prediction error, e(n), is

e(n) ¼ x(nþ k)� x̂(nþ k) ¼ x(nþ k)�W T
n X (n) (2)

The coefficient vector is recursively updated as follows

Wnþ1 ¼ Wn þ
me(n)X (n)

jjX (n)jj2
(3)

where jjX (n)jj2 ¼ X (n)TX (n): m is a constant called step size.
Using a large m leads to faster convergence and a quicker
response to traffic changes; whereas, after convergence, the
predicted traffic exhibits significant fluctuations. In
contrast, the use of a small m results in slower convergence
with less fluctuation thereafter.

The advantage of Adas’s method is that it neither demands
any prior information regarding video statistics nor assumes
the signal to be stationary. Moreover, it is easy to
implement. Thus this method is particularly suitable for
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on-line VBR video prediction. However, its performance
significantly deteriorates for applications with rapid traffic
variations and frequent scene changes (e.g. entertainment
and broadcast videos). This is because the NLMS
algorithm converges slowly when there is highly fluctuating
traffic caused by scene changes, thus resulting in large
prediction errors at the scene boundaries. To overcome this
problem, Tseng et al. [5] proposed a traffic predictor by
modifying the variable step-size least mean square
(VSSLMS) algorithm [11]. The idea of VSSLMS is that a
large prediction error increases the step size in order to
provide faster tracking, whereas a small prediction error
decreases the step size to reduce the misadjustment. The
VSSLMS is the same as the LMS algorithm with the
exception of the dynamic adjustment of the step size, mn,
as follows

m0n ¼ amn�1 þ ge2
n�1 (4)

with 0 , a , 1, g . 0 and

mn ¼

mmax if m0n . mmax

mmin if m0n , mmin

m0n otherwise

8<
: (5)

where 0 , mmin , mmax. The constant mmax is chosen to
ensure that the mean square error (MSE) is bounded; mmin

is selected as a compromise between the desired level of
steady-state misadjustment and the required tracking
capability. The parameter a is selected from the range
(0, 1) to provide exponential forgetting; usually, a small
value of g is chosen in order to control the convergence
speed and the level of misadjustment. Tseng et al. [5]
normalised the coefficient vector of VSSLMS as (4) and
used VSSNLMS to denote their predictor.

Although the VSSNLMS can automatically adjust the
step size to accommodate the rapid traffic variation at scene
boundaries, it still has some shortcomings. Fig. 1 shows the
traffic prediction of VSSNLMS for a part of ‘Soccer’ [12]
I, P, and B subsequence, respectively. In this experiment,
we set p ¼ 5, mmax ¼ 0.58, mmin ¼ 0.03, a ¼ 0.98 and
g ¼ 6 � 1029. All these parameters are selected by
exhaustive search in order to give the minimal MSE. From
Fig. 1, we have the following observations: First, for I- and
B-frame, the bit rate varies steeply at the points of scene
change, while within the scenes, the traffic fluctuates within
a limited range. Moreover, VSSNLMS produces large
prediction error and converges slowly when scene changes
happen. This is because the step size increases drastically
due to the abrupt traffic variation at scene boundaries.
Although larger step size helps the coefficients move
towards the optimum faster, an extreme change of step size
may make the coefficients jump over the optimum. This
can produce large misadjustment and excess MSE, which
further necessitates the re-convergence of coefficients.
Although one can choose a small value of mmax to relieve
the effect of drastic increase of step size, a small mmax will

reduce the predictor’s ability to track scene changes.
Furthermore, the selection of g and a values also affects
the convergence speed and the degree of prediction error.
A small value of g makes the predictor unable to detect
scene change and produce large prediction error at scene
boundary. Oppositely, a large value of g increases the value
of step size even through there is actually no scene change,

Figure 1 Prediction results for VSSNLMS and the proposed
traffic predictor

a VSSNLMS prediction result of I-frame
b VSSNLMS prediction result of P-frame
c VSSNLMS prediction result of B-frame
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leading to a large traffic fluctuation within a scene. The value
of a depends on the autocorrelations of VBR videos. Since
different videos have distinct traffic-variation characteristics,
it is difficult to pre-determine proper values of mmax, g and
a so as to guarantee the fast convergence and the creation
of small prediction errors when scene changes happen,
particularly for real-time VBR videos. Second, for P-frame,
the bit rate varies as a spike with a scene change, whereas
traffic fluctuates within a certain extent inside a scene. We
observe that VSSNLMS produces large prediction error at
the frame next to a scene change and converges slowly
subsequent to the spike. This is because the spike makes
the step size vary violently and makes coefficients overleap
the optimum. After a sharp increase in the bit rate of the
frame corresponding to the scene change, the traffic of
the next frame decreases. However, VSSNLMS increases
the bit rate of the frame next to the scene change with
large coefficients, leading to large prediction error.
Furthermore, it also requires the re-convergence of
coefficients following the spike to accommodate the traffic
variation of the new scene, resulting in slow convergence.

2.2 Proposed traffic predictor

In this section, we propose a novel traffic predictor for I-, P-,
B-frame based on the discussion in the previous section. The
objective of the proposed predictor is to rapidly track the
traffic variation as well as produce smaller prediction errors,
especially when scene changes occur. We apply the same
predictor to I- and B-frames since the traffic variations in
these two types of frames are similar. Another predictor is
developed for sub-sequence P because of its unique
characteristics regarding bit-rate variation.

2.2.1 I- and B-frame predictor: The procedure of the
proposed I- and B-frame predictor is shown is Fig. 2.

In L1, we set the initial value for scene_mark. In L3, we
identify a scene change if the traffic variation between two
consecutive frames exceeds a certain multiple of the average
frame size within a scene, where scene_mark denotes the
starting frame of the current scene, i is the index of the

current frame, x(i) is the size of the ith frame, gap is a
constant selected based on the traffic characteristics. This is
based on the observation that the scene change corresponds
to the frame with a sharp variation in the bit rate. In L4, if
the scene change is identified, we assign the frame at which
the scene change occurs to scene_mark (i.e. the start of a new
scene). In L7, we check whether the number of frames
belonging to the new scene is less than the order (i.e. p). If
yes, we forecast the traffic as L5 and L8, where x̂(i þ 1) is
the frame size averaged over the sizes of the first frame to
the current frame corresponding to the new scene. It is
noteworthy that in L5 and L8, we predict the first p frames
according to their average. There are two reasons for
considering this: (1) within a scene, the traffic varies within
a limited range and (2) the MPEG traffic demonstrates a
high degree of self-similar behaviour. Hence, a significant
correlation exists between the variability in the sizes of
adjacent frame of the subgroups I, P and B [6–8]. Indeed,
L5 and L8 can eliminate the generation of a large prediction
error caused by a drastic change in the step size. In L10,
once there are p frames that relate to the new=scene, we
update the coefficients and inputs and then predict the
successive frames using VSSNLMS until the next scene
change occurs. (When a scene change is detected, we update
coefficient vectors as Wn ¼ [1/p 1/p . . . 1/p]T. This is the
same as taking the average value). More specifically, we
remove all the coefficients generated by the frames of the
previous scene and use only the frames corresponding to the
new scene to train the VSSNLMS algorithm. This is
because the frames belonging to the same scene have similar
traffic-variation properties (i.e. traffic fluctuates within a
limited range), while the characteristics of interscene bit-rate
variation are different. Hence, using the frames of the same
scene to train the filter helps in the rapid re-convergence of
the coefficients and self-adaptation to different traffic-
variation properties.

2.2.2 P-frame predictor: Since the spike makes
the VSSNLMS produce large prediction errors at both the
frame corresponding to the spike and the frame next to
the spike and slows the re-convergence rate of coefficients,
it is important to eliminate the effect of the spike on
P-frame prediction. Therefore, we modify the scene
change detection algorithm used in predicting I and B
subsequences, and the manner of updating VSSNLMS
inputs when scene changes occur. The procedure of the
proposed P-frame predictor is shown in Fig. 3.

In L1 and L2, we set the initial value for scene_mark and
d(i), respectively. In L4 and L5, if the frame belongs to the
same scene, we update the average frame size within the
scene. When computing the average frame size, we exclude
the bit rate of the frame corresponding to the spike (i.e.
x(scene mark), scene mark is used to mark the frame at
which a spike occurs). In L8 and L9, if a scene change is
decided upon, we assign the starting frame of the new
scene (i.e. the spike) to scene_mark. In L10, we assign
x̂(scene markþ 1) as x̂(scene mark) instead of x(scene mark)

Figure 2 Procedure of the proposed I- and B-frame
predictor

4 IET Commun., 2009, Vol. 3, Iss. 1, pp. 1–9

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-com:20080015

www.ietdl.org



to eliminate the effect of the spike on traffic prediction. In L7
and L12, prior to having p frames that relate to the new
scene (i.e. from the (scene_markþ 1)th frame to the
(scene_markþ p)th frame with the exception of the
x(scene_mark), which is discarded), we predict traffic by
the average frame size. In L14, on obtaining the p frames,
we update the coefficients and train the filter using the new
set of signals. (When a scene change is detected, we update
coefficient vector as Wn ¼ [1/p 1/p . . . 1/p]T. This is the
same as taking the average value).

2.3 Performance results and comparisons

In this section, we evaluate and compare the performance of
the proposed predictor with that of VSSNLMS. For the
purpose of simulations, we use MPEG-4 video traces
generated by the Technical University of Berlin [12]. We

employ

SNR�1(%) ¼ 100

P
e(n)2

P
x(n)2

¼ 100

P
(x(n)� x̂(n))2

P
x(n)2

as the performance measurement.

Fig. 1 shows the prediction result of the VSSNLMS
algorithm and the proposed scheme for a part of ‘Soccer’ I,
P and B subsequences. As mentioned previously, for the
VSSNLMS algorithm, we set p ¼ 5, mmax ¼ 0.58,
mmin ¼ 0.03, a ¼ 0.98 and g ¼ 6 � 1029. For the
proposed scheme, the p, mmax, mmin, a and g are the
same as those used in the VSSNLMS algorithm; further,
for I-, P- and B-frames, the gap values are 0.2, 0.8 and 0.2,
respectively. From this figure, we observe that for I, P and
B subsequences, the proposed scheme converges faster and
produces smaller prediction errors, particularly when scene
changes occur. This is because the proposed scheme can
quickly adapt itself to different traffic-variation characteristics,
for instance scene changes or the introduction of a new video.

Table 1 lists the SNR21 values of VSSNLMS and the
proposed scheme for subgroups I, P and B of different
video traces. For comparison, we provide one set of
VSSNLMS prediction results, namely, VSSNLMSoptimal.
For VSSNLMSoptimal, different video traces use different
parameter values in order to achieve the optimal
performance. The values of the VSSNLMS parameters
for different movies are determined by exhaustive search
in order to give the minimal MSE. Similarly, for the
proposed scheme, we provide two sets of prediction
results, namely, ProposedSoccer and Proposedoptimal. In the
former, all the parameter values are the same as those in
the previous experiment (i.e. Fig. 1, the optimal
parameter values of ‘Soccer’), and in the latter, the
parameter values for different movies are the same as
those of VSSNLMSoptimal. Moreover, for all the video

Figure 3 Procedure of the proposed P-frame predictor

Table 1 SNR21 comparison with VSSNLMS

VSSNLMSoptimal Proposedoptimal ProposedSoccer

I P B I P B I P B

Mr. Bean 3.93 8.47 4.97 2.19 4.53 2.78 2.95 5.17 3.45

Formula 1 3.16 6.61 2.76 1.77 3.24 1.28 2.63 4.54 1.86

Soccer 5.82 9.83 2.84 3.37 5.06 1.19 3.37 5.06 1.19

The Firm 2.08 10.95 4.72 0.93 5.67 3.37 1.42 6.32 4.23

Star Trek 4.74 7.72 4.03 2.65 3.14 2.21 3.14 4.23 3.27

Robin Hood 2.65 7.34 2.65 1.04 3.51 1.04 2.06 4.46 1.78

Boulevard 3.51 8.86 6.78 1.72 4.32 3.42 2.79 4.91 4.32

N3 talk 4.67 5.98 3.19 2.48 2.79 1.25 3.58 3.85 2.06
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traces, the gap values for I-, P-, and B-frames are 0.2, 0.8
and 0.2, respectively. From Table 1, we can see that (1)
comparing the results of VSSNLMSoptimal with those of
Proposedoptimal, the proposed scheme decreases the error
in I-, P- and B-frames by approximately 42–61%, 47–
59% and 41–61%, respectively. Apparently, the proposed
scheme significantly outperforms the VSSNLMS algorithm.
Second, comparing the results of VSSNLMSoptimal with
those of ProposedSoccer, the performance of the proposed
scheme is still better than that of VSSNLMSoptimal for all
the video traces. This is because, for the proposed scheme,
the VSSNLMS algorithm is only used to predict the intra-
scene traffic variation that changes within a limited extent.
Thus, it is much easier to select one set of parameter
values that can achieve a better performance than the
VSSNLMS algorithm for different videos. Moreover, since
the prior traffic statistics of real-time video are unavailable,
it is very difficult to predetermine the optimal values of the
predictor parameters for different videos in advance. It is
more practical that one selects a set of parameter values
that can achieve good performance for different videos and
uses the same set of parameter values to predict different
videos. The results of Table 1 reveal that in real situations,
the proposed predictor can easily achieve better
performance than the optimal performance of the
VSSNLMS algorithm.

3 IEEE 802.15.3 MAC and
proposed dynamic bandwidth
allocation algorithm
3.1 Introduction of 802.15.3 MAC

The IEEE 802.15.3 defines a wireless ad hoc network
(piconet) that allows a number of devices to communicate

directly with each other. One device of the piconet is elected
as the piconet coordinator (PNC) that is responsible
for coordinating radio resources among the other devices
within a piconet, associating and disassociating devices,
authenticating new devices etc. The channel time of the
802.15.3 MAC is divided into superframes (SFs). Each SF
consists of three parts: a beacon frame, an optional
contention access period (CAP) and a channel time
allocation period (CTAP). At the beginning of each
SF, the PNC broadcasts the beacon frame that is used to
provide management information, network-wide timing
synchronisation and the channel time allocation information
for traffic streams. The CAP is used for transmission of
commands and asynchronous data (i.e. traffic with no
specific QoS requirements). During the CAP, devices
access the channel using the carrier sense multiple access/
collision avoidance with back-off procedure. The CTAP is
composed of channel time allocations (CTAs) and optional
management CTAs (MCTAs). The CTAP is used to
support both asynchronous and isochronous traffic (i.e.
applications with specific QoS requirements) transmission.
In each SF, during the CAP, devices request CTAs for the
next SF to the PNC which is responsible for the resource
allocation. Specifically, if a device needs CTA, it will issue a
Channel Time Request command (CTRq) during the CAP
that indicates the required channel time of the next SF. On
reception of this request, the PNC responds with a Channel
Time Response (CTRp) command and, if the required radio
resource is available, it allocates the requested channel time
to the stream. Then, in the next SF, the PNC broadcasts the
allocated CTAs in the beacon frame to all streams. MCTAs
are a type of CTA used for communication between devices
and the PNC. MCTAs are either assigned to a specific
source/destination pair and use time division multiple access
to communicate or they are shared CTAs that are accessed
using the slotted aloha protocol.

Figure 4 Channel utilisation comparison
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Although 802.15.3 standard defines signalling mechanism
for CTA negotiation, it does not specify the resource
allocation algorithm that can properly distribute CTAs in
order to guarantee QoS requirements of different applications.
To address this issue, we propose a dynamic bandwidth
allocation algorithm which allows the 802.15.3 standard to
provide QoS transport of real-time VBR videos.

3.2 Proposed dynamic bandwidth
allocation algorithm

Apparently, static resource allocation (i.e. allocating a fixed
bandwidth for an entire video transmission) is not suitable

for real-time VBR videos. If resources are over-allocated,
the network incurs low resource utilisation. On the other
hand, if resources are under-allocated, the video stream may
suffer intolerable delays, jitter or packet loss. To achieve
high resource utilisation while supporting the QoS transport
of real-time VBR videos over 802.15.3 WPANs, we
propose a dynamic bandwidth allocation algorithm described
as follows.

In the proposed scheme, we choose the duration of a SF as
the inter-arrival time of video frame. During the CAP in each
SF, the device sends the CTRq command that indicates the
bandwidth requirement of the next SF to the PNC.

Figure 5 Buffer usage comparison

a Buffer usage of static resource allocation scheme
b Buffer usage of proposed scheme and the scheme in which the PSnþ1 in (6) is fed with the prediction results of the VSSNLMS algorithm
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Moreover, to achieve a more reliable transmission for CTRq/
CTRp, an MCTA is allowed to be used, instead of a CAP.
The bandwidth requirement includes the amount of data in
the buffer (if it has any) and the predicted size of the video
frame in the next SF as (6) shows

BRnþ1 ¼ BSn þ PSnþ1 (6)

where BRnþ1 is the bandwidth request for the next (i.e. the
(nþ 1)th) SF, BSn is the bandwidth requirement for
transmitting all queued packets in the current (i.e. the nth)
SF, PSnþ1 is the predicted size of the (nþ 1)th video
frame. The proposed scheme adopts the prediction results
of the traffic predictor presented in Section 2.2 to request
the bandwidth requirement for real-time VBR video. After
receiving the bandwidth request, the PNC will allocate the
resource which is equal to BRnþ1 to the stream in the next
SF and responds with a CTRP command. In the beacon of
the next SF, the PNC broadcasts the CTA information to
devices within the same piconet. Therefore the PNC can
dynamically allocate radio resource in order to achieve high
channel utilisation and sustain the QoS requirements of
real-time VBR videos. If the predicted size of the video
frame is less than the actual required bandwidth, the device
queues the difference which is considered as a part of
bandwidth request (i.e. PSnþ1 in (6)) of the next SF.

3.3 Performance evaluation and
discussion

In this section, we evaluate the performance of the proposed
scheme, the scheme in which the PSnþ1 in (6) is fed with the
prediction results of the VSSNLMS algorithm, and the static
resource allocation scheme in terms of channel utilisation,
buffer usage and packet loss rate. We implement different
resource allocation algorithms on NS-2 [13] with the
802.15.3 MAC module developed by Intel [14], and
modify the module to satisfy our needs. We assume ideal
error-free wireless channels, since the focus is on the
802.15.3 MAC, and traffic prediction and dynamic
resource allocation for real-time VBR videos. In our
simulation, a device transmits a VBR video to another
device within the same piconet. The data rate of each DEV
is set as 55 Mbps, which is the maximum data rate of
IEEE 802.15.3. The MPEG video used in the simulation
is ‘Soccer’ with a frame rate of 25 fps (i.e. the 802.15.3
superframe duration is 40 ms), mean-rate 1.1 MKbps and
peak-rate 3.6 Mbps. The simulation runs for 3600s, which
is the length of the video stream. For the proposed scheme
and the scheme in which the PSnþ1 in (9) is fed
with the prediction results of the VSSNLMS algorithm,
the parameters are all the same as Proposedoptima and
VSSNLMSoptimal described in Section 2.3. For the static
resource allocation scheme, we allocate mean rate of the
video stream in each SF.

Fig. 4 illustrates the channel utilisation of a part of Soccer
for the three schemes. We observe that the proposed scheme

achieves higher channel utilisation than the scheme in which
the PSnþ1 in (6) is fed with the prediction results of the
VSSNLMS algorithm. This is because the proposed traffic
predictor is more accurate than the VSSNLMS. For the
entire movie, the average channel utilisation of the
proposed scheme, the scheme in which the prediction
results using VSSNLMS, is about 97.8% and 95.6%,
respectively.

Fig. 5 depicts the buffer usage of a portion of Soccer for the
three schemes. We observe that the proposed scheme shows
the best buffer usage, whereas the performance of the static
resource allocation scheme is the worst. For the entire
movie, the average buffer usage of the proposed scheme,
the scheme in which the PSnþ1 in (6) is fed with the
prediction results of the VSSNLMS algorithm, and the
static resource allocation scheme is 263, 437 and 12 361
bytes, respectively. Moreover, the maximum buffer
occupancy of the three schemes is 9684, 13 985 and
594 746 bytes, respectively. Apparently, the proposed
scheme can save buffer space most effectively. Furthermore,
comparing Fig. 4 with Fig. 5a, we find that although the
static resource allocation scheme has the highest channel
utilisation among the three schemes, it also results in the
longest queue size. This is because static bandwidth
allocation is not sufficient to transmit the bursts of packet
arrivals and most packets are thus queued at the
transmitter’s buffer.

Fig. 6 shows the average packet loss rate for the three
schemes. When the buffer capacity is fixed, we would
prefer the scheme with the lowest packet loss rate since it
can provide the best video quality. From Fig. 6, we find
that the proposed scheme has the lowest packet loss rate
and thus achieves the best video quality among the three
schemes for the same buffer size.

4 Conclusion
In this paper, we first presented that the VSSNLMS
algorithm produces large prediction errors and converges

Figure 6 Average loss rate comparison
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slowly when scene changes occur. Furthermore, it is very
difficult to determine beforehand the appropriate parameters
of the VSSNLMS algorithm to guarantee fast convergence
and small prediction errors when scene changes occur,
particularly for real-time VBR video in which traffic
characteristics are unknown beforehand. According to our
observations, we propose a novel traffic predictor designed
for MPEG VBR videos, which are expected to become a
major application in WPANs. The novelty of the proposed
scheme, as compared to that of previous proposals, is its
capability of self-adaptation to varying video characteristics,
for example scene changes or the introduction of a new
video. This adaptability is with regard to not only the
adjustment of the step size and filter coefficients but also the
dynamic update of inputs. The conducted simulation results,
in comparison with the results for the VSSNLMS
algorithm, show that the proposed scheme can significantly
reduce the prediction error. Based on the proposed
predictor, we developed a dynamic resource allocation
mechanism for QoS transport of real-time VBR videos over
IEEE 802.15.3 WPANs. Simulation results comparing the
proposed mechanism with other resource allocation schemes
indicated that the proposed scheme can achieve better
performance in terms of packet delay, channel utilisation,
buffer usage and packet loss rate.
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