
TECHNOLOGIES FOR INTERACTIVE MULTIMEDIA SERVICES

Novel multimedia retrieval technique: progressive
query (why wait?)

S. Kiranyaz and M. Gabbouj

Abstract: A novel multimedia retrieval technique, called progressive query (PQ) is presented. PQ
is designed to bring an effective solution especially when querying large-scale multimedia
databases. In addition, PQ produces intermediate query retrieval results during the execution of the
query. The series of intermediate query results will finally converge to the full-scale search retrieval
in a faster way and with no minimum system requirements. Experimental progressive query
retrieval results show that intermediate retrieval results may be satisfactory and further query
processing time may be avoided.

1 Introduction

It is a known fact that recent technological hardware and
network improvements along with the daily usage of
Internet have caused a rapid increase in the size of digital
audio-visual information that is used, handled and stored via
several applications. Besides several benefits and usages,
such massive collections of information have brought
storage and especially management problems. In order to
overcome such problems several content-based indexing
and retrieval techniques and applications have been
developed such as the MUVIS system [1, 2], Photobook
[3] VisualSEEk [4], Virage [5], and VideoQ [6]; some of
which are designed to bring a framework structure for the
multimedia items such as digital images and audio=video
clips. The usual approach for indexing is to map database
primitives into some high dimensional vector space, that is
so-called feature domain. The feature domain may consist
of several types of features (visual, aural, motion, etc.) as
long as the database contains such items from which those
particular features can be extracted. Among so many
variations, careful selection of the feature sets allows
capturing the semantics of the database items. Especially for
large-scale multimedia databases the number of features
extracted from the raw data is often kept large owing to the
naı̈ve expectation that it helps to capture the semantics
better. Content-based similarity between two database items
can then be assumed to correspond to the (dis-) similarity
distance of their feature vectors. Henceforth, the retrieval of
similar database items with respect to a given query (item)
can be transformed into the problem of finding such
database items that give feature vectors, which are close
to the query feature vector. This is so-called query-
by-example (QBE), which is one of the most common
retrieval schemes. The basic QBE operation is called

Normal Query (NQ), and works as follows: using the
available aural or visual features (or both) of the queried
multimedia item (i.e. an image, a video clip, an audio clip,
etc.) and all the database items, the similarity distances are
calculated and then merged to obtain a unique similarity
distance per database item. Ranking the items according to
their similarity distances (to the queried item) over the entire
database yields the query result.

Such an exhaustive search for QBE is costly and CPU
intensive especially for large-scale multimedia databases
since the number of similarity distance calculations is
proportional to the database size. This fact brought a need
for indexing techniques, which will organise the database
structure in such a way that the query time and I=O access
amount could be reduced. During the past three decades,
several indexing techniques have been proposed. Many of
these techniques are formed in a hierarchical tree structure
that is used to cluster (or partition) the feature space. Both
KD-tree [7] and R-tree [8] are the first examples of spatial
access methods (SAMs). Afterwards several enhanced
SAMs have been proposed. R�-tree [9] provides a
consistently better performance than the R-tree and Rþ-
tree [10] by introducing a policy called ‘forced reinsert’.
Lin et al. proposed TV-tree [11], which uses so-called
telescope vectors. Berchtold et al. [12] introduced X-tree,
which is particularly designed for indexing higher dimen-
sional data. X-tree avoids overlapping of region bounding
boxes in the directory structure by using a new organis-
ation of the directory and as a result of this X-tree
outperforms both TV-tree and R�-tree significantly. Still
bounding rectangles can overlap in the higher dimensions.
In order to prevent this, White and Jain proposed the
SS-tree [13], an alternative to R-tree structure, which uses
minimum bounding spheres instead of rectangles. Even
though SS-tree outperforms R�-tree, the overlapping in the
high dimensions still occurs. Thereafter several other SAM
variants are proposed such as SR-tree [14], S2-Tree [15],
Hybrid-Tree [16], A-tree [17], IQ-tree [18], Pyramid Tree
[19], NB-tree [20], etc. Especially for content-based
indexing and retrieval in large-scale multimedia databases,
SAMs have several drawbacks and significant weaknesses.
By definition an SAM-based indexing scheme partitions
and works over a single feature space. However, a
multimedia database can have several feature types

q IEE, 2005

IEE Proceedings online no. 20045061

doi: 10.1049/ip-vis:20045061

The authors are with Institute of Signal Processing, Tampere University of
Technology, Tampere, Finland

E-mail: serkan@cs.tut.fi

Paper first received 24th June and in revised form 24th December 2004

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005356

(visual, aural, etc.), each of which might also have multiple
feature subsets. Furthermore, SAMs assume that query
operation time and complexity are only related to accessing
a disc page (I=O access time) containing the feature vector.
This is obviously not a trivial assumption for multimedia
databases and consequently, no attempt in the design of
SAMs has been done to reduce the similarity distance
computations (CPU time). In order to provide a more
general approach to similarity indexing for multimedia
databases, several efficient metric access methods (MAMs)
have been proposed. The generality of MAMs comes from
the fact that any MAM employs the indexing process by
assuming only the availability of a similarity distance
function, which satisfies three trivial rules: symmetry,
non-negativity and triangular inequality. Therefore, a
multimedia database might have several feature types
along with various numbers of feature sub-sets all of which
are in different multi-dimensional feature spaces. As long
as a similarity distance function that is usually treated as a
‘black box’ by the underlying MAM, exists the database
can be indexed by any MAM. Several MAMs have been
proposed so far. Yianilos [21] presented vp-tree that is
based on partitioning the feature vectors (data points) into
two groups according to their similarity distances with
respect to a reference point, so called vantage point.
Bozkaya and Ozsoyoglu [22] proposed an extension of
vp-tree, so-called mvp-tree (multiple vantage point), which
basically assigns m vantage points for a node with a fan out
of m2. They reported 20 to 80% reduction in the similarity
distance computation time compared to vp-trees. Brin [23]
introduced the geometric near-neighbour access tree
(GNAT) indexing structure, which chooses k number of
split points at the top level and each of the remaining
feature vectors are associated with the closest split points.
GNAT is then built recursively and the parameter k value
is chosen to be a different value for each feature set
depending on its cardinality. The aforementioned MAMs
have several shortcomings. Contrary to SAMs, these metric
trees are designed only to reduce the number of similarity
distance computations, paying no attention to I=O costs
(disc page accesses). They are also static methods in the
sense that the tree structure is built once and new insertions
are not supported. Furthermore, all of them build the
indexing structure from top to bottom and hence the
resulting tree is not guaranteed to be balanced. Ciaccia
et al. [24] proposed M-tree to overcome such problems.
M-tree is a balanced and dynamic tree, which is built from
bottom to top, creating a new root level only when
necessary. The node size, M, is a fixed number and
therefore, the tree height depends on M and the database
size. Its performance optimisation concerns both CPU
computational time for similarity distances and I=O costs
for disc page accesses for feature vectors of the database
items. Recently Traina et al. [25] proposed Slim-tree, an
enhanced variant of M-tree, which is designed for
improving the performance by minimising the overlaps
between nodes. They introduced two factors, ‘fat-factor’
and ‘bloat-factor’, to measure the degree of overlap and
proposed the usage of minimum spanning tree (MST) for
splitting the node. Another slightly enhanced M-tree
structure, so-called Mþ-tree, can be found in [26].
Along with the indexing techniques addressed so far,

certain query techniques are needed to speed up a QBE
process. The most common query techniques developed for
the aforementioned indexing techniques are as follows:

. Range queries: Given a query object, Q, and a maximum
similarity distance range, e and the similarity distance

function SD, the range query selects all indexed database
items, Qi; such that SD ðQ; QiÞ< e:
. kNN queries: Given a query object, Q, and an integer
number k>0; kNN query selects the k database items, which
have the shortest similarity distance from Q.

Unfortunately, both query techniques may not provide an
efficient retrieval scheme from the user’s point of view
owing to their parameter dependency. For instance, range
queries require a distance parameter, e, where the user may
not be able to provide such a number prior to a query process
since it is not obvious to find out a suitable range value if the
database contains various types of features and feature
subsets. Similarly, parameter k in a kNN query may be hard
to determine since it can be too small in case the database
may provide many more similar (relevant) items than
required, or too big if the number of similar objects is only a
small fraction of the required number k, which means
unnecessary CPU time has been wasted for that query
process. Both query techniques often require several trials to
converge to a successful retrieval result and this alone might
remove the speed benefit of the underlying indexing
scheme, if there is any.

As mentioned before, the other alternative is the so-called
Normal Query (NQ), which makes a sequential (exhaustive)
search owing to lack of an indexing scheme. NQ for QBE is
costly and CPU intensive especially for large-scale multi-
media databases; however, it yields such a final and decisive
result that no further trials are needed. Still, all QBE
alternatives have some common drawbacks. First of all, the
user has to wait until all (or some) of the similarity distances
are calculated and the searched database items are ranked
accordingly. Naturally, this might take a significant time if
the database size (or k, e) is large and the database contains a
rich set of aural and visual features, which might further
reduce the efficiency on the indexing process. Furthermore,
any abrupt stopping (i.e. manual stop by the user) during the
query process will cause total loss of retrieval information
and essentially nothing can be saved out of the query
operation so far performed. In order to speed up the query
process, it is a common application design procedure to hold
all features of database items into the system memory first
and then perform the calculations. Therefore, the growth in
the size of the database and the set of features will not only
(proportionally) increase the query time (the time needed
for completing a query) but it might also increase the
minimum system memory requirements such as memory
capacity and CPU power.

In order to eliminate such drawbacks and provide a faster
query scheme, we have developed a novel retrieval scheme,
the Progressive Query (PQ), which is implemented under
the MUVIS system to provide a basis for multimedia
retrieval and to test the performance of the technique. PQ is
a retrieval (via QBE) technique, which can be performed
over the databases with or without the presence of an
indexing structure. Therefore, it can be an alternative to NQ
where both produce (converge to) the same result at the end.
When the database has an indexing structure, PQ can
replace kNN and range queries whenever a query path over
which PQ proceeds, can be formed. As its name implies, PQ
provides intermediate query results during the query
process. The user may browse these results and may stop
the ongoing query in case the results obtained so far are
satisfactory and hence no further time should be wasted
unnecessarily. As expected, PQ and NQ will converge to
the same (final) retrieval results at the end. Furthermore, PQ
may perform the overall query process faster (within
a shorter total query time) than NQ. Since PQ provides

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005 357

a series of intermediate results, each of which obtained from
a (smaller) sub-set within the database, the chance of
retrieving relevant database items that would not be
retrieved otherwise via NQ, might be increased. Approv-
ingly some experimental results show that it is quite
probable to achieve even better retrieval performance
within an intermediate sub-query than the final query state.

It is a known fact that significant performance improve-
ments of content-based multimedia retrieval systems can be
achieved by using a technique known as relevance feedback
[27, 28], which allows the user to rate (intermediary)
retrieval results. This helps to tune the ranking and retrieval
parameters and hence yields a better retrieval result at
the end. Traditional query techniques so far addressed
(NQ, kNN and range queries) may allow such a feedback
only after the query is completed. Since PQ provides the
user with intermediate results during the query process,
relevance feedback may be applied already to these
intermediate results, yielding possibly faster satisfactory
retrieval results from the user’s point of view.

2 Progressive query overview

The principal idea behind the design of PQ is to partition the
database items into some sub-sets within which individual
(sub-) queries can be performed. Therefore, a sub-query is a
fractional query process that is performed over any sub-set
of database items. Once a sub-query is completed over a
particular sub-set, the incremental retrieval results (belong-
ing only to that sub-set) should be fused (merged) with the
last overall retrieval result to obtain a new overall retrieval
result, which belongs to the items where PQ operation so far
covers from the beginning of the operation. Note that this is
a continuous operation, which proceeds incrementally, sub-
set by sub-set, by covering more and more groups of items
within the database. Each time a new sub-query operation is
completed, PQ updates the retrieval results to the user. Since
the previous (overall) query results are used to obtain the
next (overall) retrieval result via fusion, the time consuming
query operation is only performed over the (next)
partitioned group of items instead of all the items where
PQ covered so far.

The order of the database items processed is a matter for
the indexing structure of the database. If the database is not
indexed at all, simply a sequential or random order can be
chosen. In case the database has an indexing structure, a
query path can be formed in order to retrieve the most
relevant items at the beginning during a PQ operation.

Since there are various indexing schemes addressed in the
previous Section, for the sake of simplicity, we shall first
explain the basics of PQ for a database with no indexing
structure.

Another important factor is to determine the size of
each sub-set (i.e. the number of items within a sub-set
where sub-query operation is performed) that is most
convenient from the user’s point of view. A straightfor-
ward solution is to let the user fix the sub-set size (say
e.g. 25). This would mean that the user wants updates
every time 25 items are covered during the ongoing PQ
operation. However, this also brings the problem of
uncertainty because the user cannot know how much
time a sub-query will take beforehand since the sub-
query time will vary owing to factors such as the amount
of features present in the database and the speed of the
computer where it is running, etc. Therefore the PQ
retrieval updates might be too fast or too slow for the
user. To avoid such uncertainties, the proposed PQ
scheme is designed over periodic sub-queries as shown
in Fig. 1 with a user defined period value ðt ¼ tpÞ:
The period (time) is an obviously more natural choice
since the user can eventually expect the retrieval results
will be updated every tp seconds no matter what database
is involved or what computer is used. Without loss of
generality, in databases without an indexing structure, PQ
is designed to perform sub-set partitioning sequentially
with a forward direction (i.e. starting from the first item
to the last one).

Next, we shall first present the formation of periodic sub-
queries and the mechanism needed to partition the database
into such sub-sets that each progressive sub-query (PSQ)
retrieval result can be updated within a close neighbourhood
of a user-defined period ðtpÞ: Sub-query fusion operation
will then be explained in Section 2.2. Finally, Section 2.3 is
devoted specifically to PQ for databases with an (hypothe-
tical) indexing structure.

2.1 Periodic sub-query formation

To achieve periodic sub-queries, we need to define some
additional sub-query compositions.

2.1.1 Atomic sub-query: This is the smallest sub-
set size on which a sub-query is performed. Here we assume
that atomic sub-query time is not significant compared to
periodic sub-query time. Atomic sub-queries are the only
sub-query types that have a fixed sub-set size ðSASQÞ: They
are only used during a first periodic query and they are used

Fig. 1 Progressive query overview

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005358

in order to provide an initial sub-query per item time t0r
� �

;
that is the time spent for the retrieval of a single database
item, formulated as follows:

t0r ¼
tASQ

NASQ

if NASQ>0 ð1Þ

where tASQ is the total time spent for atomic sub-query
and NASQ is the number of database items that are
involved (used) in the atomic sub-query operation.
Without an indexing structure, note that 04NASQ4SASQ;
since the initial database items might not belong to the
ongoing query type. For example in a multimedia
database, there might be video-only clips and audio-only
clips (and clips with both media types). So for a visual
query, those audio-only clips will be discarded totally and
if the initial atomic query sub-set covers such audio-only
clips then naturally NASQ4SASQ: In case NASQ ¼ 0; one or
more atomic sub-queries have to be performed until we
get a valid t0r value (i.e.NASQ>0).

2.1.2 Fractional sub-query: This can be any sub-
query performed over a sub-set whose size is smaller or
equal to the sub-set size of the periodic sub-query. That is, a
fractional sub-query time might be less than or equal to a
periodic sub-query time.
As explained previously, periodic sub-queries are peri-

odic over time and a mechanism is needed to ensure this
periodicity. This mechanism works over atomic and
fractional sub-queries; it performs fusion operation over as
many atomic and fractional sub-queries as necessary. First,
it starts with an atomic sub-query to obtain a valid (initial)
sub-query per item time, t0r ; and it keeps going with atomic
queries until a valid t0r value is obtained. Once it is obtained,
then one or more fractional sub-queries will be performed to
complete the first periodic sub-query. The size of the
fractional query (NFSQ) can then be estimated as:

N0
FSQ ffi

t0p

t0r
ð2Þ

where t0p ¼ tp � t aS is the time left for completing the first
periodic sub-query and t aS the total time spent for all atomic
queries performed so far. Afterwards, the fractional sub-
query can be performed within a sub-set of N0

FSQ items.
Once the fractional sub-query is completed, the total time
ðtSÞ so far spent from the beginning of the operation till now
is compared with the required time period of the qth (so far
q ¼ 0) periodic query, t

q
p; where q is the periodic sub-query

index. If the tS value is not within a close neighborhood
(i.e. dtw < 0:5 s) of tqp (i.e. tS < t

q
p � dtw) then the operation

continues with a new fractional sub-query until the
condition is met. For the new fractional sub-query and
for all the latter fractional sub-query operations tr value is
re-estimated (updated) from the former operations such as:

Ni
FSQ ¼ t

q
p � tS

tir

tS < t
q
p�dtw��������!

tiþ1
r ¼ tSP

i2FSQ
Ni
FSQ

if
X
i2FSQ

Ni
FSQ > 0 ð3Þ

Once one or more fractional queries form the qth periodic
query, owing to offset that has occurred from the period of
PQ, next periodic sub-query ðqþ 1stÞ is formed with an
updated (offset removed) period value:

tqþ1
p ¼ tp þ tqp � tS

� �
ð4Þ

where tp is the required period and t
q
p � tSð Þ is the offset

time, which is the time difference between the required
period time for qth periodic sub-query and the total (actual)
time spent so far. The flowchart of the formation of a
periodic sub-query is shown in Fig. 2.

2.2 Sub-query fusion operation

The overall PQ operation is carried out over progressive
sub-queries (PSQs). In principal, it can be stated that PQ is a
(periodic) series of PSQ results. As shown in Fig. 1, a new
PSQ retrieval is formed each time a periodic sub-query is
completed and then it is fused with the previous PSQ
retrieval result. Once a PSQ is realised, the results are shown
to the user and saved during the lifetime of the ongoing PQ
so that the user can access them at any time. The user is
shown updated retrieval results each time a new PSQ is
completed. The first PSQ is the first periodic sub-query
performed. The fusion operation is a process of fusing two
sorted sub-query results to achieve one (fused) sub-query
result. Since both of the sub-query results are already sorted
with respect to the similarity distances, simply comparing
the consecutive items in each of the sub-query lists can
perform the fusion operation. Let n1 and n2 be the number of
items in the first and second sub-set, respectively. Since
there are n1 þ n2 items to be inserted into the fused list one
at a time, the fusion operation can take a maximum n1 þ n2
comparisons. This (worst) case occurs whenever the
items from both lists are distributed evenly with respect
to each other. Alternatively if the maximum valued item
(i.e. the last item) in the smaller list is less than the minimum
valued item (i.e. the first item) in the bigger list, the number
of comparisons will not exceed the number of items in
the smaller list because once all of the items in it are
compared with the (smallest) first item in the bigger list
and henceforth inserted into the fused list, there will not be
any more comparisons needed. Note that this is the direct

fusion

atomic sub-query

calculate size of
next fractional

sub-query

fractional
sub-query

implemented
only at the

beginnning of
thefirst periodic

sub-query

yes

no

yes

no

stop

NASQ >0

t > tp– dtw

periodic sub-
query (t = tp)~

Fig. 2 Formation of a periodic sub-query

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005 359

consequence of the fact that the both lists are sorted (from
minimum to maximum) beforehand and one of them is now
fully depleted. Therefore, the fusion operation will take
minimum Min (n1; n2) comparisons respectively. A sample
fusion operation is illustrated in Fig. 3. Note that the subsets
X and Y contain 12 and 6 items, respectively, and the fusion
operation performs only 12 comparisons.

Since the fusion operation is nothing but merging two
arbitrarily sized sub-sets (retrieval results), it can be applied
during each phase of a PQ operation. For instance, the
atomic sub-queries are fused with fractional sub-queries and
several fractional sub-queries are fused to obtain a periodic
sub-query. Fusing the periodic sub-query with the previous
PSQ retrieval produces a new PSQ retrieval, covering a
larger part of the database. If the user does not stop the
ongoing PQ operation, it will eventually cover the entire
database at the end and therefore, it generates the overall
retrieval result of the queried item. In this case PQ generates
the exact same retrieval result as NQ since both of them
perform the same operation, i.e. searching a queried item
through the entire database and ranking the database items
accordingly.

2.3 PQ in indexed databases

For the databases without an indexing structure, PQ can be
used conveniently as an alternative query scheme to the
traditional query type, NQ. As a retrieval process, PQ can
also be performed over indexed databases as long as a query
path can be formed over the clusters (partitions) of the
underlying indexing structure. Obviously, a query path is
nothing but a special sequence of the database items. When
the database lacks an indexing structure, it can be formed in
any convenient way such as sequentially (starting from the
1st item towards the last one, or vice versa) or randomly.
Otherwise, the most advantageous way to perform PQ is to
use the indexing information so that the most relevant items

can be retrieved in earlier PSQ steps. Since the technical
details of various available indexing schemes are beyond the
scope of this paper, we only show the hypothetical
formation of the query path and run-time evaluation of PQ
over this path.

As briefly mentioned earlier, the primary objective of
indexing structures is to partition the feature domain into
such (tree-based) clusters that CPU time and I=O accesses
are shortened via pruning of the redundant tree nodes.
Figure 4 shows a hypothetical clustering scheme and the
formation of the query path over which PQ will proceed
during its run-time. The illustration shows 4 clusters
(partitions or nodes), which contain a certain number of
items (features) and the query path is formed according to
the relative (similarity) distance to the queried item and its
parent cluster. Therefore, PQ will give the priority to cluster
A (the host), then B (the closest), C, D, etc. Note that the
query path might differ from the final retrieval result
depending on the accuracy of the indexing scheme. For
instance, query path gives priority to item B2 on the search
with respect to item C4 but item C4 may have more
similarity (relevancy) with respect to the queried item A2.
When the retrieval results are formed it will eventually be
ranked higher and presented earlier to the user by PQ. Even
though PQ corrects this misleading result owing to the
erroneous indexing (note that in this case item C4 should
have belonged to cluster B, not C), as a possible
consequence of this, the retrieval of C4 might be delayed
to the next periodic PSQ retrieval.

At this point, one can implement two different
approaches: the overall query path can be formed immedi-
ately after the query is initiated and then the PQ evolves
over it with its natural supplies of periodic retrievals. This
approach is only recommended for small and medium sized
databases where the complete query path formation takes
insignificant time. Otherwise, the query path should be

Y1 = 0.01

Y2 = 0.05

Y3 = 0.15

Y4 = 0.25

Y5 = 0.55

Y6 = 0.65

X Y

Y1 = 0.01

Y2 = 0.05

X1 = 0.1

Y3 = 0.15

X2 = 0.2

Y4 = 0.25

X3 = 0.3

X4 = 0.4

X5 = 0.5

Y5 = 0.55

X6 = 0.6

Y6 = 0.65

X7 = 0.7

X8 = 0.8

X9 = 0.9

X10 = 1.0

X11 = 1.1

X12 = 1.2

fusion: X~Y

X1 = 0.1

X2 = 0.2

X3 = 0.3

X4 = 0.4

X5 = 0.5

X6 = 0.6

X7 = 0.7

X8 = 0.8

X9 = 0.9

X10 = 1.0

X11 = 1.1

X12 = 1.2

Fig. 3 A sample fusion operation between sub-sets X and Y

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005360

dynamically (incrementally) formed along with the PQ
run-time process and the time spent for it should be taken
into account during the adaptive calculation of period given
in (4). In this case, the adaptive period calculation for the
qþ 1st periodic sub-query period should be reformulated as
follows:

tqþ1
p ¼ tp þ tqp � tS � t

q
QP

� �
ð5Þ

where t
q
QP is the time spent for forming the query path

during the formation of qth periodic sub-query.
As a result PQ in indexed databases makes more sense

than to be strictly dependant on an unknown parameter such
as k as in kNN query or e in range query, which might cause
a deficiency in the retrieval performance such as the casual
need for doing multiple queries to come with a satisfactory
result at the end. Alternatively there exists a certain degree
of similarity (or analogy) between PQ and those conven-
tional query techniques. For instance each PSQ retrieval can
be seen as a particular kNN (or range) query retrieval with
only one difference: the parameter k (or e) is not fixed
beforehand, rather dynamically changing (growing) over
time along with the lifetime of PQ and the user has the
opportunity to fix it (stop PQ) whenever satisfactory
retrievals are obtained.

3 Experimental results

To present the experimental conditions, the multimedia
databases used and especially the test-bed platform used for
experiments, Section 3.1 briefly introduces MUVIS and
particularly the MBrowser application under which PQ is
primarily developed and tested. Later in Section 3.2 we
begin the evaluation of PQ with respect to NQ in terms of
speed, memory, accessibility and (better) relevancy in the
databases with no indexing structure and hence without
interference of any indexing algorithm. We shall also
present the evaluation of PQ with respect to the variations of
the query parameters such as PQ period (tp), query type, etc.
and show some sample visual and aural PQ retrievals in
image, video and audio databases.

3.1 PQ within MUVIS

MUVIS framework aims to bring a unified and global
approach to indexing, browsing and querying of various
multimedia types such as audio=video clips and still images.
MUVIS basically provides tools for real-time audio and
video capturing, encoding by several widely used codecs
such as MPEG-4, H:263þ; MP3 and AAC. It supports
several digital image types including JPEG-2000. Further-
more, it provides a well-defined interface to integrate third
party feature extraction algorithms into the framework.

As shown in Fig. 5,MUVIS framework is based upon three
applications, each of which has different responsibilities and
facilities. AVDatabase is mainly responsible for real-time
audio=video database creation with which audio=video clips
are captured, (possibly) encoded and recorded in real-time
from any peripheral audio and video devices connected to a
computer. DbsEditor performs the indexing of the multi-
media databases and therefore, off-line feature extraction
process over the multimedia collections is its main task.
MBrowser is the primary media browser and retrieval
application into which the PQ technique is integrated as the
primary retrieval (QBE) scheme. NQ is the alternative query
scheme within MBrowser. Both PQ and NQ can be used for
ranking the multimedia primitives with respect to their
similarity to a queried media item (an audio=video clip, a
video frame or an image). Owing to their unknown duration,
which might cause impractical indexing times for an on-line
query process, to query an (external) audio=video clip, it
should first be appended (off-line operation) to a MUVIS
database uponwhich the querywill be performed. There is no
such necessity for images; any digital image (inclusive or
exclusive to the active database) can be queried within the
active database. The similarity distances will be calculated
by the particular functions, each of which is implemented
in the corresponding visual=aural feature extraction
(FeX or AFeX) modules. More detailed information about
MUVIS can be found in [1] and [2].

As shown in Fig. 6, the MBrowser GUI is designed
to support all the functionalities that PQ provides.
Once a MUVIS database is loaded into MBrowser, the user

Fig. 4 Query path formation in a hypothetical indexing structure

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005 361

can browse among the database items, choose any item and
then initiate a query. The basic query parameters such as
query type (PQ or NQ), query genre (aural or visual), PQ
update period (time), the (visual and aural) set of features
and their individual parameters (i.e. feature weights), etc.
can be set prior to a query operation. When a (sub-) query is
completed the retrieval results are then presented to the user
page by page. Each page renders 12 ranked results in the
descending order (from left to right and from top to bottom)
and the user can browse the pages back and forth using the
Next and Prev buttons on the bottom right of the
Figure (the first page with 12-best retrieval results is

shown on the right of Fig. 6). If NQ is chosen, then the user
has to wait till the whole process is completed but if PQ is
chosen then the retrieval results will be updated periodically
(with the user-defined period value) each time a new PSQ is
accomplished. The current PSQ number (10) is shown on
the PQ Browser Handle and this handle can also be used to
browse manually among the retrieved PSQ results during
(or after) an ongoing PQ operation. In the snapshot shown in
Fig. 6, a video clip is chosen within a MUVIS (video)
database and visual PQ is performed. Currently the 1st page
(12-best results) of the 10th PSQ retrieval results is shown
on the GUI window of MBrowser.

Fig. 5 Generic overview of MUVIS framework

Fig. 6 MBrowser GUI showing a PQ operation where 10th PSQ is currently active (or set manually)

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005362

In the experiments performed in this section, we used 4
different MUVIS databases:

1) Open Video database: This database contains 1500 video
clips, each of which is downloaded from ‘The Open Video
Project’ web site [29]. The clips are quite old (from the
1960s) but contain colour video with sound. The total
duration of the database is around 46 hours.
2) Real World audio=video database: There are 800 audio-
only clips and video clips in the database with a total
duration of over 36 hours. They are captured from several
TV channels and the content is distributed among news,
advertisements, talk shows, cartoons, etc.
3) Sports hybrid database: There are 200 video clips
mainly carrying sports content such as football, tennis and
formula-1. There are also 495 images (in GIF and JPEG
formats) showing instances from football matches and
other sports tournaments.
4) Shape image database: There are 1500 black and white
(binary) images that represent mainly the shapes of different
objects such as animals, cars, accessories, geometric
objects, etc.

All experiments are carried out on a Pentium-4 3.06GHz
computer with 2048 MB memory. In order to have unbiased
comparisons between PQ and NQ, the experiments are
performed using the same queried multimedia item with the
same instance of MBrowser application. The evaluations of
the retrieval results by QBE are performed subjectively
using ground-truth method, i.e. a group of people evaluates
the query results of a certain set of retrieval experiments,
upon which all the group members totally agreed about the
query retrieval performance. Among these a certain set of
examples were chosen and presented in this article for visual
verification.

3.2 PQ against NQ

As explained earlier, PQ and NQ eventually converge to the
same retrieval result at the end. Also in the abovementioned
scenarios they are both designed to perform an exhaustive
search over the entire database within MUVIS. However PQ
have several advantages over NQ as detailed in the
following Sections.

3.2.1 System memory requirement: The
memory requirement is proportional to the database size
and the number of features present in a NQ operation.
Owing to the partitioning of the database into sub-sets, PQ
will reduce the memory requirement by the number of PSQ
operations performed. After each periodic sub-query
operation, the memory used for feature vectors in that
sub-set is no longer needed and can be used for the next
periodic sub-query. Figure 7 illustrates the memory usage of
a retrieval example that is shown later in Fig. 9 by a PQ first

and a NQ afterwards. As clearly seen in this experimen-
tation, PQ only requires a fractional memory per sub-query
operation and it can free it at the end of each PSQ retrieval,
whereas NQ needs to keep a big amount of memory for
allocations of features used and similarity distances
calculated afterwards, till to the end of the sorting (ranking)
and rendering (on screen) operations that are naturally
reached only at the end.

We also observe that especially in very large-scale
databases containing a rich set of features, NQ can exceed
the system memory. Two possible outcomes may eventually
occur as a result. The operating system may handle it by
using virtual memory (i.e. disc) if the excessive memory
requirement is not too high. In this case, the operational
speed for a NQ operation will be degraded drastically and
eventually PQ can outperform NQ several times with
respect to overall retrieval time. The other possibility is that
NQ operation cannot be completed at all since the system is
not capable of providing the excessive memory required by
NQ and in this case PQ is the only feasible query operation.

3.2.2 Earlier=better relevant results: A better
retrieval result occurs when more relevant items are ranked
higher in the retrieval result. An earlier (and equal) result
occurs when the same end result is achieved in an earlier
time instance. Along with the ongoing process PQ allows
intermediate query results (PSQ steps), which might some-
times show equal or ‘even better’ performance than the final
(overall) retrieval result as some typical examples given in
Fig. 8 and Fig. 9.

In Fig. 8, an image retrieval example within Shape
database via PQ using canny edge histogram feature is
shown. We use tp ¼ 0:2 s and PQ operation is completed in
three PSQ series (i.e. PQ #1; #2 and #3). This is one
particular example in which an intermediate PSQ retrieval
yields a better performance than the final PQ retrieval (that is
the same as the retrieval result of NQ). In this example, the
first 12-best retrieval results in PQ #1 are obviously better
(more relevant in terms of shape similarity to the queried
shape, i.e. ‘mobile phone’) than the ones in PQ #3 (NQ).

In Fig. 9, a video retrieval example within Real World
database via aural PQ using mel-frequency cepstral
coefficients (MFCC) as the audio features is shown.
We use tp ¼ 5 s and PQ operation is completed in 12 PSQ
series but only 3 PSQ retrievals (i.e. PQ #1; #6 and #12)
are shown. Note that PQ #6 and the latter retrieval results
till PQ #12 are identical, which means that PQ operation
produces the final retrieval result (which NQ would
produce) in an earlier (intermediate) PSQ retrieval.

Such ‘earlier and even better’ retrieval results can be
verified owing to the fact that searching an item in a smaller
data set usually yields better (detection or retrieval)
performance than searching in a larger set. This is obviously

Fig. 7 Memory usage for PQ and NQ

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005 363

an advantage for PQ since it proceeds within sub-queries
performed in (smaller) sub-sets whereas NQ always has to
proceed through the entire database. Furthermore, for the
databases that are not indexed such as in the examples
given, this basically means that the order of the relevant
items coincides with the progress of the ongoing PQ
operation in the earlier PSQ steps. When the database has a
solid indexing structure and a query path can be formed
according to the relevancy of the queried item, the user
eventually gets relevant retrieval results in a fraction of the
time that is needed for a typical NQ operation.

3.2.3 Query accessibility: This is the major
advantage that PQ provides. Stopping an ongoing query
operation is an important capability. As shown in Fig. 6, by
pressing the PQ Knob during an ongoing PQ operation, the
user can stop it any time (i.e. when the results are so far
satisfactory). Of course, NQ can also be stopped but no
retrieval result is available afterwards since the operations
such as similarity distance calculations or sorting are likely
not to be completed.

Another important accessibility option that PQ offers is
so-called PSQ browsing. When stopped abruptly or
completed at the end, the user can still browse among
PSQ retrievals and visit any retrieval page of that particular
PSQ since the retrieval results will be alive unless a new PQ
is initiated or the application is terminated. This is obviously

a significant requirement especially when better results are
obtained in an earlier PSQ step than the later ones as
mentioned before. Alternatively, this might still be a
desirable option even if the earlier PSQ results are not
better but comparable as much as the later ones. This could
be relevant to the user. One particular example is shown in
Fig. 10, that is, a video retrieval example from the Open
Video database via visual PQ using several colour (YUV,
HSV, etc.), texture (GLCM [30]) and shape (canny edge
histogram) features. We use tp ¼ 3 s and PQ operation is
completed in 4 PSQ series. Note that a retrieval performance
criteria can be difficult to accomplish among these PSQ
retrievals since their relevancy to the queried item is
subjective.

The most important accessibility advantage that PQ can
provide is that it can further improve the efficiency of any
relevance feedback mechanism in certain ways. An ordinary
relevance feedback technique works as follows: the user
initiates a query and only after the query is completed, the
user gives some feedback to the system about the retrieval
results according to their relevancy (and=or irrelevancy)
with respect to the queried item. Afterwards, a new query is
initiated to get better retrieval results and this might be
repeated several times until satisfactory results are obtained.
This is an especially time consuming process since at each
iteration the user has to wait until the query operation is
completed. Owing to the enhanced accessibility options that

Fig. 8 PQ retrievals of a query image (left-top) within 3 PSQs (tp ¼ 0:2 s)

Fig. 9 Aural PQ retrievals of a video clip (left-top) in 12 PSQs

(Only 1st, 6th and 12th are shown with tp ¼ 5 s)

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005364

PQ provides, significant improvements can be achieved for
the user with the following scenarios. First the user can
employ relevant (and irrelevant) feedbacks during the query
process and the incoming progressive retrievals can thus be
tuned progressively. This means that during an ongoing
query process the user can employ one or more relevant
feedbacks anytime (within the life-time of PQ). Another
alternative is that, the user can stop an ongoing PQ and then
employs the relevant feedbacks with respect to the
(intermediate) retrievals via PSQ browsing and re-initiate
a new (fine-tuned) PQ. Basically any relevance feedback
technique can be applied along with PQ since in both
scenarios PQ only provides the necessary basis for the (user)
accessibility to employ the relevance feedback but other-
wise stay independent from the internal structure of any
individual technique employed.

3.2.4 Overall retrieval time (query
speed): The overall query time is the time elapsed
from the beginning of the query to the end of the operation.
For NQ, this is obviously the total time from the moment the
user initiates the query until the results are ranked and
displayed on the screen. However, for PQ, since the retrieval
is a continuous process with PSQ series, the overall retrieval
means that PQ proceeds over the entire database until the
process terminates. As mentioned earlier, at this point both
PQ and NQ will generate identical retrieval results for a
particular queried item. The retrieval process includes the
execution times for loading the database features from the
disc to the computer memory, calculating the similarity
measure between the query item and the database items and
finally ranking the results. Both NQ (single stage) and PQ
(multiple stages) would take the same amount of time to
execute the first two tasks; while, PQ will execute the third
task (i.e. ranking the results) faster than NQ since, at each
PSQ, fewer items are compared. In the limit, as the number
of data partitions approaches the total number of items in the
database, say N, ranking would require order N operations.
In order to verify this expectation, several audio PQ

retrieval experiments in Real World database have been
performed with different tp values. To get an unbiased
measure, the experiments for each tp value are repeated 5
times and the median from 5 overall retrieval times is taken
into account. PQ total execution time (overall retrieval time)
and the number of PSQ updates are plotted in Fig. 11.

The same experiment is repeated for visual PQ operation
and the result is shown Fig. 12. Note that if PQ is completed
with only one PSQ (corresponding to the longest PQ
period in Figs. 11 and 12), then it basically performs a NQ
operation and therefore NQ retrieval time can also be
examined in both figures.

45

40

35

30

25

25

20

15

10

5

0

20
0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
PQ period, s

PQ period, s

A
ur

al
 P

Q
 to

ta
l

ex
ec

ut
io

n
tim

e,
 s

A
ur

al
 P

Q
 n

o.
of

P

S
Q

 u
pd

at
es

Fig. 11 Aural PQ overall retrieval time and PSQ number against
PQ period

Fig. 12 Visual PQ overall retrieval time and PSQ number
against PQ period

Fig. 10 Visual PQ retrievals of a video clip (left-top) in 4 PSQs (tp ¼ 3 s)

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005 365

It is also observed that the real PSQ retrieval times are
close neighbourhood (i.e. dtw < 0:5 s) of tp ¼ 5 s (user-
defined period) value. One typical example showing PSQ
arrival times for the PQ example shown in Fig. 9 is plotted
in Fig. 13.

4 Conclusions

In this paper we have proposed a simple, yet efficient query
technique, called Progressive Query (PQ). PQ is particularly
suited to large-scale multimedia databases. We believe that
the user interaction with the active query process has the
utmost importance and provides significant advantages in
terms of user (and CPU) time and I=O accesses. Therefore,
PQ is primarily developed to provide periodic and faster
retrievals along with the ongoing query process. From this
the user can get an idea about the current status of the query,
immediately evaluate the available retrieval results and
if satisfactory results are already achieved, the user can
then halt the query process without wasting further time.
We have confirmed this with a significant number of
experiments.

As an efficient retrieval technique, PQ can be especially
useful for databases lacking an efficient indexing structure.
Naturally the exhaustive-search-based query operation, NQ,
on such databases requires significant and sometimes even
unfeasible retrieval times. Approvingly, an important
objective achieved with the proposed PQ technique is that
it avoids such implementation drawbacks, which NQ
encounters. Experimental results show that PQ is not
affected from such drawbacks and currently has no
limitations with respect to system configuration.

PQ can also be applied to indexed databases. Once a
query path is formed within the indexing structure, the most
relevant items can be retrieved first. Moreover, we can
foresee that PQ can provide a dynamic basis for relevance
feedback in such a way that the user can employ relevance
feedback during the query process and the incoming
progressive retrievals can achieve a better retrieval
performance. Since this is a natural consequence of user
interaction capability, it was the primary inspiration of
developing an interactive query technique such as PQ. In our
future work, we plan to develop an efficient, self-learning
and MAM-based indexing structure, which is designed to

provide optimal performance for PQ along with an effective
relevance feedback mechanism under MUVIS framework.

5 References

1 Kiranyaz, S., Caglar, K., Guldogan, O., and Karaoglu, E.: ‘MUVIS:
A multimedia browsing, indexing and retrieval framework’. Proc. Third
Int. Workshop on Content Based Multimedia Indexing, CBMI, Rennes,
France, 2003

2 MUVIS. http://muvis.cs.tut.fi
3 Pentland, A., Picard, R.W., and Sclaroff, S.: ‘Photobook: tools for
content based manipulation of image databases’, Proc SPIE (Storage
and Retrieval for Image and Video Databases II), 1994, 2185,
pp. 34–37

4 Smith, J.R., and Chang: ‘VisualSEEk: a fully automated content-based
image query system’. ACM Multimedia, Boston, Nov. 1996

5 Virage. URL:www.virage.com
6 Chang, S.F., Chen, W., Meng, J., Sundaram, H., and Zhong, D.:
‘VideoQ: an automated content based video search system using visual
cues’. Proc. ACM Mult., Seattle, 1997

7 Bentley, J.L.: ‘Multidimensional binary search trees used for associ-
ative searching’, Commun. ACM, 1975, 18, (9), pp. 509–517

8 Guttman, A.: ‘R-trees: a dynamic index structure for spatial searching’.
Proc. ACM SIGMOD, 1984, pp. 47–57

9 Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B.: ‘The
Rp-tree: An efficient and robust access method for points and
rectangles’. Proc. ACM SIGMOD Int. Conf. on Management of Data,
Atlantic City, NJ, 1990, pp. 322–331

10 Sellis, T.K., Roussopoulos, N., and Faloutsos, C.: ‘The Rþ-tree:
A dynamic index for multi-dimensional objects’. Proc. 13th Int. Conf.
on Very Large Data Bases, September 1987, pp. 507–518

11 Lin, K., Jagadish, H.V., and Faloutsos, C.: ‘The TV-tree: an index for
high dimensional data’, VLDB J., 1994, 3, (4), pp. 517–543

12 Berchtold, S., Keim, D.A., and Kriegal, H.-P.: ‘The X-tree: An index
structure for high-dimensional data’. Proc. 22th VLDB Conf., 1996

13 White, D., and Jain, R.: ‘Similarity indexing with the SS-tree’. Proc.
12th IEEE Int. Conf. On Data Engineering, 1996, pp. 516–523

14 Katayama, N., and Satoh, S.: ‘The SR-tree: an index structure for high-
dimensional nearest neighbor queries’. Proc. 1997 ACM SIGMOD Int.
Conf. on Management of Data, Tucson, Arizona, US, 1997, pp. 69–380

15 Wang, H., and Perng, C.-S.: ‘The S2-tree: an index structure for
subsequence matching of spatial objects’. 5th Pacific-Asic Conf. on
Knowledge Discovery and Data Mining (PAKDD), Hong Kong, 2001

16 Chakrabarti, K., and Mehrotra, S.: ‘The hybrid tree: An index structure
for high dimensional feature spaces’. Proc. Int. Conf. on Data
Engineering, February 1999, pp. 440–447

17 Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H.: ‘The A-tree:
an index structure for High-Dimensional spaces using relative
approximation’. Proc. 26th Int. Conf. on Very Large Data Bases,
September 2000, pp. 516–526

18 Berchtold, S., Bohm, C., Jagadish, H.V., Kriegel, H.-P., and Sander, J.:
‘Independent quantization: an index compression technique for high-
dimensional data spaces’. Proc. 16th Int. Conf. on Data Engineering,
San Diego, USA, 2000, pp. 577–588

19 Berchtold, S., Böhm, C., and Kriegal, H.-P.: ‘The pyramid-technique:
towards breaking the curse of dimensionality’. Proc. 1998 ACM
SIGMOD Int. Conf. on Management of Data, Seattle, Washington, US,
1998, pp. 142–153

20 Fonseca, M.J., and Jorge, J.A.: ‘Indexing high-dimensional data for
content-based retrieval in large databases’. Eighth Int. Conf. on
Database Systems for Advanced Applications (DASFAA), Kyoto,
Japan, 2003, pp. 267–274

21 Yianilos, P.N.: ‘Data structures and algorithms for nearest neighbor
search in general metric spaces’. Proc. Fourth Ann. ACM-SIAM Symp.
on Discrete Algorithms, Austin, Texas, US, 1993, pp. 311–321

22 Bozkaya, T., and Ozsoyoglu, Z.M.: ‘Distance-based indexing for high-
dimensional metric spaces’. Proc. ACM-SIGMOD, 1997, pp. 357–368

23 Brin, S.: ‘Near neighbor search in metric spaces’, VLDB J., 1995,
pp. 574–584

24 Ciaccia, P., Patella, M., and Zezula, P.: ‘Mþ -tree: an efficient access
method for similarity search in metric spaces’. Int. Conf. on Very Large
Databases (VLDB), Athens, Greece, 1997, pp. 426–435

25 Traina, Jr, C., Traina, A.J.M., Seeger, B., and Faloutsos, C.: ‘Slim-trees:
high performance metric trees minimizing overlap between nodes’.
EDBT, Konstanz, Germany, 2000, pp. 51–65

26 Zhou, X., Wang, G., Yu, J.X., and Yu, G.: ‘Mþ -tree: a new dynamical
multidimensional index for metric spaces’. Proc. Fourteenth Australa-
sian Database Conf. on Database Technologies, Adelaide, Australia,
2003, pp. 161–168

27 Cheikh, F.A., Cramariuc, B., and Gabbouj, M.: ‘Relevance feedback for
shape query refinement’. Proc. IEEE Int. Conf. on Image Processing
ICIP, Barcelona, Spain, 2003

28 Rui, Y., Huang, T.S., and Metrotra, S.: ‘Relevance feedback techniques
in interactive content-based image retrieval’. Proc. IS&T and SPIE
Storage and Retrieval of Image and Video Databases VI, San Juan,
Puerto Rico, June 1997, pp. 762–768

29 The Open Video Project. http://www.open-video.org/
30 Partio, M., Cramariuc, B., Gabbouj, M., and Visa, A.: ‘Rock texture

retrieval using gray level co-occurrence matrix’. Proc. 5th Nordic
Signal Processing Symp., Oct. 2002

Fig. 13 PSQ and PQ retrieval times for the sample retrieval
example given in Fig. 9

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 3, June 2005366

http://muvis.cs.tut.fi
url:www.virage.com
http://www.open-video.org/

