
Softw Syst Model (2004) 3: 181–193 / Digital Object Identifier (DOI) 10.1007/s10270-003-0045-7

Special section on graph transformations and visual modeling
techniques

DynamicMetaModelingwith time: Specifying the semantics
ofmultimedia sequence diagrams

Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer

University of Paderborn, Institute for Computer Science, D 33095 Paderborn, Germany
E-mail: {hausmann,reiko,sauer}@upb.de
Received: 7 February 2003/Accepted: 14 May 2003

Published online: 1 April 2004 – Springer-Verlag 2004

Abstract. The Unified Modeling Langugage (UML) of-
fers different diagram types to model the behavior of
software systems. In some domains like embedded real-
time systems or multimedia systems, it is necessary to in-
clude specifications of time in behavioral models since the
correctness of these applications depends on the fulfill-
ment of temporal requirements in addition to functional
requirements. UML thus already incorporates language
features to model time and temporal constraints. Such
model elements must have an equivalent in the semantic
domain.
We have proposed Dynamic Meta Modeling (DMM),

an approach based on graph transformation, as a means
for specifying operational semantics of dynamic UML di-
agrams. In this article, we extend this approach to also
account for time by extending the semantic domain to
timed graph transformation. This enables us to define the
operational semantics of UML diagrams with time speci-
fications. As an example, we provide semantics for special
sequence diagrams from the domain of multimedia appli-
cation modeling.

Keywords: Formal semantics – Meta modeling – UML
extensions – Graph transformation – Time – Multimedia
– Sequence diagram

1 Introduction

The key objective of modeling is to create a representa-
tion of reality or ideas that abstracts from unnecessary
details and concentrates on the main concepts. When
designing software systems, time aspects are often (al-
though sometimes unreasonably) considered a minor re-
quirement and are thus not represented in the models.

Consequently, the core diagrams of UML [18] – the stan-
dard language for building visual models of software sys-
tems – focus on structure, function, and dynamics of sys-
tems, but not on temporal aspects.
While this approach is adequate for example in the

construction of business software (where temporal re-
quirements typically concern efficiency, which mostly de-
pends on the underlying hardware, system software, and
database systems), temporal behavior is a key feature in
other domains, and it has to be represented in the model
in a precise way. Embedded real-time systems and multi-
media applications are the most prominent among these
domains. Real-time systems require that the results of
a computational task are available within a limited period
of time. In multimedia applications, timing requirements
especially refer to the processing and synchronization of
continuous media objects and the related quality of ser-
vice (QoS).
The UML already provides some syntactic elements to

express temporal behavior, like send and receive times of
messages and duration of intervals on sequence diagrams
or firing times for transitions in statecharts. These elem-
ents may be used to formulate timing constraints, i.e.,
time expressions on stimuli, message, or transition names.
Further elements are being introduced by UML profiles
like the UML Profile for Schedulability, Performance, and
Time [17], which is motivated by the domain of embed-
ded real-time systems. Its temporal modeling more fun-
damentally deals with time and time values, time-related
events and stimuli, timing mechanisms like timers and
clocks, and timing services.
Yet, while the semantics of the frequently used core

elements of the UML is only partly understood, the in-
terpretation of time-related modeling concepts in UML
is even more ambiguous. The real-time profile [17] adds
some detail in this regard, but still lacks a precise and for-
mal semantics.

182 J.H. Hausmann et al.: Dynamic Meta Modeling with time

We can thus identify both a strong need for the precise
specification of temporal behavior and a lack of concepts
in the UML to meet this demand.
Existing approaches for real-time system specification

are mainly motivated by the need to analyze (i.e., test or
verify) systems with respect to their fulfillment of tempo-
ral properties. These approaches generally use time con-
straints to prescribe temporal requirements for a system.
These constraints can be modeled in UML sequence di-
agrams. The operational execution of a system is rather
described by an automata-based model, e.g. a state ma-
chine with timed events. It can then be tested or verified
whether the state machine model or an implementation
conforms to the timing constraints specified in the se-
quence diagram. Examples for this can be found in [13]
where statecharts are extended by information of worst-
case execution times derived from an actual implemen-
tation. Other approaches check whether an implementa-
tion satisfying all constraints may actually exist by using
model checkers [1, 5] or systems of linear inequalities [14].
[1] defines an operational semantics of a real-time ex-
tended subset of UML statecharts by translating them to
Uppaal timed automata [15] and model-checking them.
In contrast to the aforementionend translation ap-

proaches, we present an approach to the operational se-
mantics of UML diagrams in this article that resides on
a higher level of abstraction, disregarding the need to be
familiar with mathematical formalisms or model-checker
languages. It incorporates a notion of time, thus enabling
precise interpretation of models with temporal informa-
tion. The approach consists of specifying an abstract in-
terpreter for the behavioral diagrams of interest. For this
purpose, diagrams are represented as instances of a meta
model (i.e., as object diagrams, formally regarded as at-
tributed graphs) which extends the UML meta model by
representations of runtime state information. The steps
of the interpreter are specified by graph transformation
rules which manipulate the runtime state information to
model the execution of the diagram. This approach to
Dynamic Meta Modeling (DMM) has been successfully
applied to statechart and sequence diagrams [2, 9]. Note
that the use of graph transformation rules is different
from the graph-grammar based transformation presented
in [19]. There, UML models that are annotated with per-
formance information (like execution time) are translated
into a stochastic performance model by means of graph-
grammar productions.
In order to account for the time aspect, we extend

the formal foundation of the DMM approach from at-
tributed to timed graph transformation systems [7]. Con-
sequently, the approach is calledDynamic Meta Modeling
with time (DMM+t). Following a formal introduction to
the approach in Sect. 2, Sect. 3 presents – as a case study
for DMM+t – multimedia sequence diagrams. They are
a specialization of UML sequence diagrams for modeling
multimedia applications and have been proposed as part
of the OMMMA approach towards object-oriented mod-

eling of multimedia applications based on UML (see [4,
20] for details). The operational semantics of these di-
agrams is defined using DMM+t in Sect. 4, where we
also show how the formal semantics can be employed
to gain additional information on the example under
consideration.
A careful review of the achieved results in Sect. 5 re-

veals that in special cases the semantics definition yields
results that do not correspond to the intuitive concepts.
Two different kinds of strengthening the semantics are in-
troduced that can be used to eliminate these unwanted
phenomena. Section 6 concludes the presentation and
points out possibilities for future work.
A preliminary version of this work has been presented

at the International Workshop on Graph Transform-
ation and Visual Modeling Techniques (GTVMT 2002) in
Barcelona [10].

2 Dynamic MetaModeling with time

While textual programming languages are defined by
means of grammars and abstractly represented by terms
or trees, the UML is defined by its meta model [18],
i.e., a class diagram augmented with constraints, whose
instances represent individual UML models. Interpret-
ing these instances as attributed graphs, it is natural to
use graph transformations to specify the manipulation
and execution of diagrams. The approach of Dynamic
MetaModeling (DMM) [2, 9] uses rule-based graph trans-
formations, denoted as UML collaborations, to specify
abstract interpreters for dynamic sub-languages of the
UML, and thus provides an operational semantics.
In order to provide semantics to modeling techniques

with time, like multimedia sequence diagrams, the rep-
resentation of time in graph transformation systems
has been studied in [7]. Instead of introducing time as
a separate semantic concept, the approach models time
by means of time-valued attributes representing logical
clocks. This bears the advantage that different aspects
and properties of time can be modeled, depending on the
strategies according to which time values are assigned
and updated.

2.1 Graph transformation

Dynamic Meta Modeling with time (DMM+t) is based
on typed and attributed graphs which are represented as
UML class and object diagrams. Graph transformation
is defined according to the algebraic approach, which is
given a set-theoretic description in [7]. We denote rules by

p : L→R and transformation steps by G
p(o)
=⇒H, where p

is the rule and o its occurrence, and consider sequences

G0
p1(o1)
=⇒ · · ·

pn(on)
=⇒ Gn of transformations up to permuta-

tion of independent steps.
To be more precise, a notion of equivalence is de-

fined on transformation sequences which considers two

J.H. Hausmann et al.: Dynamic Meta Modeling with time 183

sequences as equivalent if they can be obtained from
each other by repeatedly swapping independent trans-
formation steps. This equivalence has been formalized by
the notion of shift-equivalence [12], and it is based on
the notion of independence of graph transformations: two

transformationsG
p1(o1)
=⇒ X

p2(o2)
=⇒ H are sequentially inde-

pendent if the occurrences o1(R1) of the right hand side of
p1 and o2(L2) of the left hand side of p2 do only overlap
in objects ofX that are preserved by both steps, formally
o1(R1)∩ o2(L2) ⊆ o1(L1 ∩R1)∩ o2(L2 ∩R2). Otherwise,
there exists a causal dependency between the two steps
forcing their application in the given order: either the
match o2(L2) of the second step contains vertices or edges
created by the first step, or the second step removes ver-
tices or edges that have been part of the match o1(L1) of
the first.

Two alternative transformations G
p1(o1)
=⇒ H1 and

G
p2(o2)
=⇒ H2 are parallel independent if the occurrence

o1(L1) of the left hand side of p1 in G is preserved by the
application of p2, and vice versa. Otherwise the two steps
are in conflict.
While sequential independence allows consecutive

transformations to be swapped, parallel independence al-
lows alternative transformations to be scheduled in any
order with the same result. The semantic idea behind
these notions is expressed in the local Church–Rosser
Theorem [3].

2.2 Graph transformation with time

Next we review the basic concepts of graph transform-
ation with time, following [7]. To incorporate time into
graph transformation with attributes, we generalize the
approach of TER nets [8]. TER nets are high-level Petri
nets that model time as a token attribute. Therefore,
a time data type is required as a domain for time-valued
attributes.
We model time by means of logical clocks repre-

sented by special attributes of a time data type T =
〈Dtime,+, 0,≥〉, i.e., an algebraic structure where ≥ is
a partial order with 0 as its least element, 〈+, 0〉 forms
a monoid (that is, + is associative with neutral element
0), and + is monotonic wrt. ≥. Obvious examples include
natural or real numbers with the usual interpretation of
the operations, but not dates in the YY:MM:DD format
(due to the Y2K problem).
A graph with time over a given time data type T is

a graph in which all vertices are attributed with a special
attribute chronos of type T . This attribute represents the
state of the local clock of the object. Graph transform-
ation rules with time p : L→ R are just pairs of graphs
with time as introduced above that respect the particu-
lar properties of time. This is expressed in the following
axioms.

1. Local monotonicity: for all vertices x ∈ L and y ∈ R:
x.chronos ≤ y.chronos, and

2. Uniform time stamps: for all vertices x, y ∈ R: x.chro-
nos = y.chronos.

These axioms ensure a behavior of time which can be de-
scribed informally as follows: according to axiom 1 an
operation or step specified by a rule cannot take nega-
tive time, i.e., it cannot decrease the chronos values of
the nodes it is applied to. It is, however, permitted to
take zero time. If this option seems too idealistic, the zero
case can be excluded without affecting the results of this
article.
Axiom 2 states an assumption about atomicity of rule

application, that is, all effects specified in the right hand
side are observed at the same time, called the firing time
of the rule application. Hence, it is guaranteed that the
chronos value of each object always represents the last
point in time when the object took part in a rule ap-
plication (thus the last time it had an externally visible
behavior).
In this case, one can show in analogy with TER nets

that for each transformation sequence s using only rules
that satisfy the above two conditions, there exists an
equivalent sequence s′ such that s′ is time-ordered, that
is, time is monotonically non-decreasing as the sequence
advances. Thereby we obtain the behavior of a fully syn-
chronized systemwith global time by strictly local means.

Theorem 1 (globalmonotonicity [7]).Forevery trans-
formation sequence s using only rules that satisfy axioms
1 and 2 above, there exists an equivalent sequence s′ =

G0
p1(o1),t1
=⇒ . . .

pn(on),tn
=⇒ Gn such that s

′ is time-ordered,
that is, ti ≤ ti+1 for all i ∈ {1, . . . , n−1}.

The abstract interpreter specified in this manner by
a set of graph transformation rules with time is mathe-
matically represented as a rewrite relation over instance

graphs G
p(o),t
=⇒ H labeled with occurrences of rules p(o)

and their firing times t. In addition, we specify a set of
terminal instance graphs to distinguish successful termi-
nation from deadlock. Then, a trace of the interpreter is
a sequence of transformation steps ending in a terminal
state corresponding to a terminal instance graph. Since
we do not want to distinguish different interleavings of
concurrent actions, we consider such traces up to shift-
equivalence. Theorem 1 ensures that one time-ordered
representative exists in every equivalence class of traces.
The rewrite relation defined above also induces a no-

tion of equivalence on graphs: two graphs are equivalent
if they are reducible to the same sets of terminal graphs.
(Note that there may be more than one terminal instance
graph reachable from a given graph because the rewrite
relation is, in general, non-deterministic.) This equiva-
lence can be used to define a notion of semantic equiv-
alence on UML diagrams, even if they are syntactically
different.
We use this model in Sect. 4 to specify an abstract in-

terpreter for multimedia sequence diagrams. Given a set
of individual diagrams as input to this interpreter, we can

184 J.H. Hausmann et al.: Dynamic Meta Modeling with time

test under which conditions a scenario executes success-
fully (by reaching a terminal state) and whether two given
scenarios are equivalent (if they always produce equiva-
lent traces or end up in the same terminal states).

3 Specifying time in multimedia with UML

Temporal relationships between elements of media pre-
sentations are the key characteristics of multimedia ap-
plications. The behavioral model of an interactive mul-
timedia application has to account for both the timed
and synchronized rendering of predefined scenes and the
alteration of the course of presentation caused by user
interaction. In the OMMMA approach, we deploy multi-
media sequence diagrams (in the following: MM sequence
diagrams), which are extended UML sequence diagrams,
to model the former and UML statecharts to model the
latter (the details of these modeling views and their inte-
gration can be found in [20]). Within this article, we con-
centrate on the representation of time in MM sequence
diagrams to explain the DMM+t approach to formal se-
mantics of UML with time.
We choose an example from a cinema application to

illustrate our approach. In a cinema, typically there is
a break to sell ice cream before the feature movie starts.
We model this situation as a scene using an MM sequence
diagram (see Fig. 1). While the ice cream is being sold, an
advertisement slide is presented for 200 seconds. A sound
clip announcing new products or special offers (Intro) fol-
lowed by some “appetite-inducing” music is being played
while the vendors sell the ice cream. The intro does not
have a fixed length since it is subject to frequent change;
the backgroundmusic can be played indefinitely. The mu-
sic is stopped when the movie is about to start.
The special elements used in this kind of multimedia

modeling can be explained in natural language:

– All objects appearing at the top of a MM sequence di-
agram are application objects. They have the ability
to render the content of some kind of media object.

Fig. 1. Example scene as a multimedia
sequence diagram

Every application object contains the methods start
and stopwhich control the rendering of the media. Ad-
ditional methods for pausing and re-synchronization
purposes are not used in this article. Application ob-
jects are independent in their timekeeping, following
the principles of distributed multimedia systems [16].
That means neither a central controller nor a global
clock can be assumed.
– The boxes on the lifelines of the application objects
are presentations. These elements replace the UML
construct activation. A presentation represents the
rendering of a media element by an application object.
The name of the media object is given inside of the
presentation’s box. A presentation may furthermore
define constraints on the minimal and maximal length
of the media rendering. This means that shortermedia
elements would remain visible/audible even though
their duration is over (e.g. static media elements like
the slide have a duration of 0, but need to be shown for
some time) and that long (possibly infinite) media ob-
jects (e.g. streams) can be limited. These features are
needed because a scene (as described by the MM se-
quence diagram) does not require all media elements
to have a known and fixed duration. MM sequence
diagrams can thus be compared to higher-level and
role-based interaction diagrams that are typically pro-
vided in the analysis phase of a software development.
– Attached to a presentation are incoming and outgo-
ing messages. Incoming messages aligned with the top
of a presentation box are messages calling the pre-
defined method start (startmessages), incoming mes-
sages aligned with the bottom of a presentation box
are stopmessages. Outgoing messages start or stop
other presentations in synchronization with the cur-
rent presentation. Outgoing messages can be synchro-
nized either with the start of a presentation (starting
at the top of the sending presentation box), the end of
the presentation (starting at the bottom of the box),
or they are sent out with a certain delay after the start
of the presentation (starting at the side of the box
with the specification of the delay attached). For in-
stance, the message to start the audio playback in the
example is timed to happen 5 seconds after the presen-
tation of the slide started.

In Sect. 4.2 these concepts will be formalized using
DMM+t rules. Like every semantics definition they are
based on the abstract rather than the concrete syntax of
the language. Therefore, the meta model defining the new
language elements for MM sequence diagrams is given in
Fig. 2.
The most prominent new feature in the meta model

is the data type Time. This data type may contain pos-
itive integer values and the special value unlim denot-
ing an unlimited time. It is used throughout the meta
model to specify timepoints (e.g. Message.timestamp
or Presentation.endtime) or the length of time intervals

J.H. Hausmann et al.: Dynamic Meta Modeling with time 185

Fig. 2. Meta model of the MM sequence diagram

Fig. 3. Abstract syntax of the example diagram

186 J.H. Hausmann et al.: Dynamic Meta Modeling with time

(e.g. Media.duration). As every model element must have
a chronos attribute (to comply with the axioms), it was
added to the topmost class of the UML meta model hi-
erarchy ModelElement. While a presentation uses the
symbol of the UML element activation (which has no rep-
resentation in the abstract syntax), it corresponds to the
meta model element Presentation that contains the at-
tributes minduration and maxduration. The associations
between the incoming and outgoing messages in stan-
dard UML have consequently been adapted to this new
element. The activator is now the message that starts
a presentation, and all resulting outgoing messages are
owned by the presentation. The order of these messages
is still determined by the successor/predecessor relation.
If message delays are specified, they must not contra-
dict this order. Attributes like presentation.active or mes-
sage.timestamp represent runtime information necessary
for the interpretation of the operational semantics rules.
A Device is the representation of a physical rendering fa-
cility suitable for the media type (this is not elaborated
here).
The representation of the example diagram of Fig. 1

according to this meta model is shown in Fig. 3. Addi-
tional information in the meta model representation is
the duration of the media objects (formerly only given
in the text) and the assumption of default values for
constraints of presentations: minduration is by default 0,
maxduration is by default unlim. Everything else is just
a representation of the information present in the con-
crete syntax diagram of Fig. 1.
Next we show how the techniques formally introduced

in Sect. 2 can be used to formalize the semantics of MM
sequence diagrams.

Fig. 4. DMM+t rule for ending a presentation due to the media duration

4 Semantics of multimedia sequence diagrams

This section contains the DMM+t rules for the MM se-
quence diagram example. The section consists of three
parts: first, we introduce the rule notation as it appears
in the figures, then we define the set of DMM+t rules for
MM sequence diagrams, and finally we show how these
rules support a precise interpretation of the model.

4.1 Format of the DMM+t rules

DMM+t rules as introduced in Sect. 2 are represented as
pairs of UML collaboration diagrams on the level of clas-
sifier roles (in contrast to the instance level) where the
role name following the slash symbol is optional and only
shown if it is needed for binding and the name of the
base classifier follows the colon symbol in the name string
(see [18, pp. 3–124ff]). The collaboration diagrams are ex-
tended by attribute conditions (given in OCL). The left
hand side diagram denotes the pre- and the right hand
side diagram the post-conditions of the transformation.
Since all rules here should conform to the axioms defined
in Sect. 2, we introduce a special variable firingtime. This
variable represents the chronos value that is associated
with the rule’s invocation. Its possible values are defined
in the preconditions section of the rule. The execution
mechanism of the rule has to ensure that

– the chronos attributes of all objects on the left hand
side of the rule have a lower or equal value to that of
firingtime before applying the rule, and
– the chronos attributes of all objects on the right hand
side of the rule are updated to the value of firingtime
after the rule has been executed.

J.H. Hausmann et al.: Dynamic Meta Modeling with time 187

Specifying the firing time in this fashion is a convenient
way to ensure that all resulting rules are correct with re-
spect to the axioms. The value of firingtime may also be
used in other conditions to set timestamps etc.

4.2 DMM+t rules for multimedia sequence diagrams

The DMM+t rules defining the semantics of MM se-
quence diagrams can be distinguished in three groups:
rules that describe the end of a presentation (Figs. 4 to 6),
rules that describe the reception of a message (Figs. 7
and 8), and rules that describe the sending of messages
(Figs. 9 to 11).
One of the features of MM sequence diagrams that

requires a specification in a formal time-based semantic
domain is the end of a presentation. This end may occur
in a number of ways. Either the media duration is in-

Fig. 5. DMM+t rule for extending a presentation up to minduration

Fig. 6. DMM+t rule for cutting a presentation at maxduration

Fig. 7. DMM+t for receiving a stopmessage

Fig. 8. DMM+t rule for receiving a startmessage

side the specified parameters and the presentation stops
“naturally” (i.e., the presentation runs just as long as
the media’s duration), or the minduration or maxdura-
tion constraints force the end of the rendering to occur
at a certain point in time. A further possibility is the
reception of a stopmessage. Figures 4 to 7 specify these al-
ternatives. The simplest one is the normal end of a media
object. The corresponding rule is represented in Fig. 4.
The preconditions state that this rule is only applicable
if media.duration fulfills the specified constraints, i.e., if
it falls inside the specified interval. Note that the associ-
ation (association role, to be precise) to the :Device role
is only present on the left hand side of the rule, i.e., it
is deleted when applying the rule since the device is de-
allocated. This is the same for all rules ending a presenta-
tion. The two rules in Figs. 5 and 6 specify the end of the
presentation due to the minduration or maxduration con-

188 J.H. Hausmann et al.: Dynamic Meta Modeling with time

Fig. 9. DMM+t rule describing the sending of the first message in an order

Fig. 10. DMM+t rule describing the sending of subsequent messages in an order

Fig. 11. DMM+t rule defining the sending of end-synchronized messages

straints. Only their preconditions differ, the effect (the
end of the presentation) is the same for all three rules.
In contrast, the reception of a stopmessage requires

the presence of a stimulus for the message as shown in
Fig. 7. A stimulus is the UML instance of a message
specification.1 Whenever a message is sent, a stimulus is
created and attached to the receiving object. In this way,
sending and reception are decoupled. Thus one might e.g.
formulate rules including protocol-based reception mech-
anisms (as specified by statecharts) as an alternative to
direct reception. Since we focus on MM sequence dia-
grams, we provide direct reception rules for startmessages
and stopmessages. The reception of a startmessage is
specified in Fig. 8. The stimulus that indicates the pend-
ing message is consumed in the course of the rule appli-

1 The precise definition of a Stimulus is not repeated here, it can
be found in the UML specification [18, pp. 2–103ff].

cation, and a device for rendering the media element is
allocated. Note that as the firing time of both message
reception rules is given as stimulus.chronos (the recep-
tion time of the stimulus), we assume a communication
without observable delays. It would also be possible to
model fixed delays, delays within a bounded interval or
unbounded message delays by modifying this condition.
The third set of rules describes the sending of specified

messages (Figs. 9 to 11). We have to distinguish between
messages that have a numerically specified delay (either
0, indicating a synchronization with the start of the own-
ing presentation, or a fixed time after that) and messages
that have a delay value of unlim, indicating a synchroniza-
tion with the end of the presentation. According to the
UML specification, we also have to account for messages
being in predecessor/successor relationship. The seman-
tics specification results in three different rules describing
the sending of specified messages.

J.H. Hausmann et al.: Dynamic Meta Modeling with time 189

Figure 9 displays the rule for the first message in
a sequence that has a limited delay. Since the attribute
msg.delay is present in the definition of the firing time, this
could never be true for the value unlim (firing time can
never be unlim). To interdict the application of the rule to
any message which has a predecessor (and is thus not the
first one), a negative application condition is used. A nega-
tive application condition (NAC) as defined in [11] con-
tains a subgraph that must not be present in the context
of a rule occurrence. It is indicated by enclosing the elem-
ents of the NAC in a dashed and canceled area. Therefore,
this rule couldnevermatch the role /msg to anymessage in
a givenhostgraph that has a predecessor.The effects of the
rule are the creation of a Stimulus at the receiving object
and the specification of a timestamp for the message, thus
indicating successful sending of the message.
The rule in Fig. 10 can be applied to any subsequent

message in the order specified by the predecessor rela-
tionship. It requires the previous message to be executed
(timestamp is set) and also requires a finite value for
its delay. Note that if all messages would be required
to carry a delay value, the way of processing messages
could be simplified by determining the order based on
their delay values. Combining the two ordering mechan-
isms can cause contradictions in the specifications (i.e.,
the specified order of messages and their delays do not
correspond), but gives flexibility to combine timed speci-
fications as used in our example with standard features
of UML sequence diagrams. One could e.g. combine MM
sequence diagrams with messages that are sent in reac-
tion to some external event rather than after a fixed delay.
Thosemessages would then have an unspecified delay, but
could be placed in an order with the timed messages.
The remaining case that has to be specified leads to

the resolution of an (intentional) ambiguity in the descrip-
tion of MM sequence diagrams in Sect. 3. The descrip-
tion in natural language does not yield any information on
the situation that a presentation ends before all its mes-
sages are executed. The trivial options are either to send
all remaining messages immediately (disregarding their
delay values) or to discard them. When discarding the
messages, we can furthermore distinguish whether end-
synchronized messages should still be sent (disregarding
the fact that some of their predecessors have been dis-
carded) or whether they should also be discarded. Note
that the twoprevious rules do not yield any information on
this as they only apply in the case of active presentations.
The rule in Fig. 11 does clarify these ambiguities. It states
that at the end of a presentation the end-synchronized
messageswill still be sent.No condition requires the execu-
tion of previous messages, thus end-synchronization over-
rides the predecessor/successor order. There is further-
more no rule to process remaining messages that are not
end-synchronized, thus they are discarded. This example
shows how a formal specification strengthens and clarifies
concepts presented in natural language although different
semantic decisions could be taken.

4.3 Interpreting the semantics

One of the motivations for deploying formal semantics
is the need to gain additional information on the model
under consideration. Since specifications can be quite
complex, it is not always obvious whether the specifica-
tion has a meaningful interpretation or if it complies with
the intention of the modeler. The definition of DMM+t
rules facilitates an interpretation of a given model. The
interpretation can be used for a visualization or a test of
a given situation. This is especially important if certain
elements of the model are underspecified, e.g. the dura-
tion of media elements is not given. Here, a modeler has
to ensure that at least a few chosen test cases produce the
intended behavior.
For such a test, an initial configuration (test case) has

to be provided. In addition to the specification given in
Fig. 3, we will assume the model to be in a state where
all chronos values are initially 0, the timestamps are un-
defined, and all application objects are inactive. A trigger
for the whole scenario is created by assuming that pre-
sentation p1 is to be started, i.e., p1.starttime is 0, p1
is active. We additionally assume a length of 50 seconds
for Intro. A fragment of this configuration is depicted in
Fig. 12.
The rule that can be applied on this initial config-

uration is the one shown in Fig. 9. The roles match as
follows: /receiver on Tape Player, /sender on Projector 1,
/presentation on p1, and /msg on m1. According to the
OCL constraints of this rule the firing time will be at
choronos=5 and a Stimulus will be created. Applying the
rule of Fig. 8 will consume the stimulus and activate p2.
Abstracting from the actual details of these graph

matchings, Fig. 13 shows an overview of the possible con-
figurations and the transitions between them. In this
figure, configurations are characterized by the chronos
values of the four presentation objects and their appli-
cation objects. Presentations that are currently active
are shaded in grey. The names of the configurations are
given as roman numerals. Labeled transitions between
the configurations indicate the rules applied as well as the
chronos value of the rule applications (the firing time).
Rule applications with identical firing times have been
combined into one transition.
The alternative paths between the configurations II

and IV illustrate the effect of the global monotonicity
theorem introduced in Sect. 2. Although some elements of
configuration IIIa have already reached a chronos value
of 200, performing operations on independent elements
with lower chronos values (in the past) still remains pos-
sible. Whether an actual interpreter would compute the
diagram by the path via configuration IIIa or configura-
tion IIIb is non-deterministic. The theorem guarantees
for each (successful) path of rule applications that an al-
ternative path exists that is ordered with respect to the
chronos values of the rule application (in the example
the path via IIIb). Therefore, the result of the interpre-

190 J.H. Hausmann et al.: Dynamic Meta Modeling with time

Fig. 12. Excerpt from the initial configuration

Fig. 13. Trace of the execution of the test scenario

J.H. Hausmann et al.: Dynamic Meta Modeling with time 191

tation is independent of the ordering of rule applications
in an actual interpretation. The terminal configuration,
i.e., the terminal instance graph, is not shown here; it is
reached when the movie ends.
In general, a terminal state is reached when all pre-

sentation objects have been presented, that is, their end-
time attributes are set. This intuitively corresponds to the
completion of the scenario at the bottom of the sequence
diagram.
More information on the application’s behavior can

be gained from possibly defective test cases, because the
system’s reaction to unexpected situations cannot eas-
ily be predicted. If we assume the length of the Intro to
be 230 seconds, it is not intuitively clear how this situ-
ation is handled. If we apply our semantic rules to this
scenario, we find that the scenario is invalid under the
rules we specified. At the end of the slide presentation,
a Stopmessage is sent to the tape player, but the resulting
Stimulus cannot be consumed since the object is not ac-
tive. Thus the Stimulus stays attached. At firingtime=235
the Intro ends and sends a Startmessage to the tape player.
This can now be processed, the player starts. A conflict
with the still lingering stimulus of the stopmessage does
not occur as the conditions for processing the stopmes-
sage are neither met before the startmessage is being pro-
cessed (presentation not active) nor afterwards (chronos
has been advanced). Thus the music never stops and no
terminal state can be reached.

5 Strengthening the semantics

In the previous section we demonstrated how DMM+t
rules can be used to specify semantics for UML diagrams
and how these specifications can be put to use. Yet some
details of the presented approach need to undergo a fur-
ther investigation to guarantee that DMM+t rules are
indeed able to express all concepts of MM sequence dia-
grams (and other dynamic UML diagrams with temporal
aspects).
The first and most general observation is that build-

ing on graph transformations as the basis of the semantic
domain gives a high degree of freedom. All graph trans-
formation rules can be executed on any part of the graph
provided their application conditions are satisfied. While
this allows for a non-deterministic and concurrent execu-
tion of a specification, it has to be ensured that no unin-
tended effects arise from this flexibility. The axioms given
in Sect. 2 already restrict the handling of the chronos at-
tributes to firing sequences that conform to the general
concept of passing time. These axioms have been enforced
by introducing the variable firingtime in the DMM+t
rules and interpreting it accordingly. Thus the distributed
presentation of media elements can be modeled using this
semantic domain.
MM sequence diagrams provide some other notions

that have to be properly represented. Outgoing messages

from a presentation have an order (specified by their
delays and/or the predecessor relation). To ensure that
this order is preserved in the semantic domain, the rules
for message processing are formulated to create a de-
pendency between them. Each of the message-processing
rules sets the timestamp of the message it executes and
thus creates the context for the processing of the next
message. Another intuitive order is embedded in the mes-
saging mechanism. A message cannot be received before
it is sent. Again, this is enforced by creating a dependency
between the rules, based on the existence of the stimulus
object.
But there still exists a degree of freedom in the seman-

tic domain that yields non-intuitive results. Consider the
MM sequence diagram given in Fig. 14 and assume that
the media element assigned to presentation p1 has a du-
ration of 80 (for the moment we will disregard p2 and p3
completely). If the presentation p1 starts at chronos=0,
the rules for sending the message (at firingtime=100) and
for reaching the end of the media object can both apply.
If the message is sent, an awkward situation occurs. Not
only does the sending of the message contradict the con-
cepts specified in Sect. 3 and refined in Sect. 4. But also,
by sending the message, the chronos value of the presen-
tation object is advanced to a value of 100, thus the rule
of Fig. 4 can never apply and end the presentation. Obvi-
ously, this is an unwanted behavior.
In terms of the formalization in Sect. 2 we have a con-

flict between two rules, which is unintended, because we
want only the rule for ending the presentation to fire.
There are two ways to rectify this situation. The first
would be to introduce dependencies between all rules con-
flicting in this way. Those pairs of conflicting rules can be
found e.g. employing the tool AGG [22]. This would result
in a lot of artificially created elements embodying the de-
pendencies. These would clog the specification, making it
hard to understand and change, especially as each change
might create new conflicts. Thus a more general solution
has to be found.
The second and in this case much more elegant way

to resolve this conflict is to introduce a general no-
tion of priority. The human intuition for a resolution
of this conflict would be that whichever rule would be
“earlier”, i.e., at a lower firing time, should be applied.
We can compare the firing times since the rules are in

Fig. 14. Example of a complex
MM sequence diagram

192 J.H. Hausmann et al.: Dynamic Meta Modeling with time

conflict and are thus influencing the local time of at
least one common object (and all objects synchronized
with it by the rule). Thus we state that an occurrence
of a rule may only happen if there is no conflicting
rule that might occur at a lower firing time. We call
the semantics conforming to this restriction the locally
strong semantics. By requiring this kind of priority it
is guaranteed that the local order of rule occurrences
does indeed conform to the intuitively expected order of
events.
This order is still enforced only locally. It does not

prevent “unintuitive” firing sequences due to the lack of
synchronization of local clocks. Refer again to Fig. 14. If
we assume the media of p1 to have a duration of 80 and
p2 to have a duration of 70, we might expect that the end-
synchronized stopmessage sent by p2will stop p1 before it
reaches its normal end. But once the presentations p1 and
p2 are started, both the rule for ending p1 due to the end
of the media (it has a lower firing time than the conflict-
ing rule for sending the message at firingtime=100) and
the rule for sending the message from p2 to p3 at firing-
time=30 can occur (it is not in conflict with the rule for
ending p1 as there are no common elements). Thus, non-
deterministically, we might end p1 and thereby advance
its chronos to 80. Then at firingtime=70, p2 would end,
but the rule for emitting the stopmessage to p1 would not
be applicable since the chronos value of p1 would already
be advanced to 80. Note that this is not a faulty behavior
if we regard the different media objects as unsynchro-
nized entities with their own local clocks. Under this as-
sumption, the sequence described above could yield valu-
able information for the case of a very “slow” componen
rendering p2.
But not every timed UML diagram assumes this kind

of local clocks. In most cases it is much simpler (and jus-
tifiable from the appliation domain) to assume perfectly
synchronized components, i.e., a global clock. In this case,
yet another restriction can be placed upon the semantics:
we can require an interpreter to always choose from all
possible rule occurrences one with minimal firing time.
This leads to the automatic creation of a globally time-
ordered firing sequence in which no object can “overtake”
another. In [8] this concept is called the strong semantics.
This kind of semantics places a heavy restriction on the
non-deterministic nature of the underlying formalism, as
it only allows for a non-deterministic choice between pos-
sible rule occurrences that happen at the same firing time.
This interpretation of the rules is closest to the intuitive
human interpretation.
We imagine that a tool could provide both possible in-

trepretation mechanisms. In that way, a modeler could
first interpret his specification under the assumption of
perfect time and then move to an interpretation taking
distributed clocks into account (if this is required by the
application domain). We believe that both interpreta-
tions yield interesting new and valuable information on
the model.

6 Conclusion

In this paper, we have extended the approach of Dynamic
Meta Modeling [2, 9] to specify the semantics of time-
dependent dynamic behavior of UML models. As a case
study, we have applied this approach to multimedia se-
quence diagrams, a variant of UML sequence diagrams for
modeling the control of multimedia presentations.
We have taken a high-level point of view in two dif-

ferent respects. First, the proposed semantics is at the
requirements level, that is, we have assumed zero dura-
tion for the operations like the start or termination of
a presentation or the transmission of a message. Further-
more, we did not consider failures and delays due to im-
perfect infrastructure (e.g. lack of resource availability),
that may appear for instance in distributed Web-based
multimedia applications. To capture those aspects, an ex-
tension of both the language of multimedia sequence dia-
grams and its semantic rules is required.
Second, the rules themselves are high-level because

they assume an execution mechanism based on global
pattern (that is, graph) matching which provides non-
determinism or backtracking to search for a successfully
terminating sequence. Although there are tools support-
ing these paradigms [21], this is quite different from stan-
dard object-oriented concepts. It is a topic of future re-
search how to map abstract semantic rules to object-
oriented implementations.

References

1. David A, Möller MO, Yi W (2002) Formal verification of UML
statecharts with real-time extensions. In: Proc. 5th Interna-
tional Conference on Fundamental Approaches to Software
Engineering (FASE 2002), Lecture Notes in Computer Sci-
ence, vol 2306. http://www.springer.de/comp/lncs. Springer,
pp 218–232

2. Engels G, Hausmann JH, Heckel R, Sauer S (2000) Dynamic
Meta Modeling: A graphical approach to the operational se-
mantics of behavioral diagrams in UML. In: Evans A, Kent
S, Selic B (eds) Proc. UML 2000, York, UK, Lecture Notes
in Computer Science, vol 1939. http://www.springer.de/
comp/lncs. Springer-Verlag, pp 323–337

3. Ehrig H, Pfender M, Schneider HJ (1973) Graph grammars:
An algebraic approach. In: 14th Annual IEEE Symposium on
Switching and Automata Theory. IEEE, pp 167–180

4. Engels G, Sauer S (2002) Object-oriented modeling of multi-
media applications. In: Chang SK (ed) Handbook of Software
Engineering and Knowledge Engineering, vol 2. World Scien-
tific, Singapore, pp 21–52

5. Firley T, Huhn M, Diethers K, Gehrke T, Goltz U (1999)
Timed sequence diagrams and tool-based analysis – A case
study. In: France R, Rumpe B (eds) Proc. UML ’99, Lec-
ture Notes in Computer Science, vol 1723. Springer-Verlag,
pp 645–660

6. Gyapay S, Heckel R, Varro D (2002) Graph transformation
with time: Causality and logical clocks. In: Corradini A, Ehrig
H, Kreowski H-J, Rozenberg G (eds) Proc. 1st International
Conference on Graph Transformation (ICGT 02), Barcelona,
Spain, Lecture Notes in Computer Science, vol 2505. Springer-
Verlag, pp 120–134

7. Gyapay S, Heckel R, Varro D (2003) Graph transformation
with time In: Fundamenta Informaticae 58(1):1–22

J.H. Hausmann et al.: Dynamic Meta Modeling with time 193

8. Ghezzi C, Mandrioli D, Morasca, Pezzè, S (1991) A unified
high-level Petri net formalism for time-critical systems. IEEE
Transactions on Software Engineering 17(2):160–172

9. Hausmann JH, Heckel R, Sauer S (2001) Towards dynamic
meta modeling of UML extensions: An extensible seman-
tics for UML sequence diagrams. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments
(HCC’01), pp 80–87

10. Hausmann JH, Heckel R, Sauer S (2002) Dynamic Meta
Modeling with time: Specifying the semantics of multi-
media sequence diagrams. In: Bottoni P, Minas M (eds)
Proc. International Workshop on Graph Transformation and
Visual Modeling Techniques (GTVMT 2002), Barcelona,
Spain, Electronic Notes in Theoretical Computer Science
72(3). http://www.elsevier.nl/locate/entcs. Elsevier
Science

11. Heckel R, Wagner A (1995) Ensuring consistency of condi-
tional graph grammars – A constructive approach. In: Proc.
of SEGRAGRA’95 “Graph Rewriting and Computation”,
Electronic Notes in Theoretical Computer Science, vol 2.
http://www.elsevier.nl/locate/entcs. Elsevier Science

12. Kreowski H-J (1977) Manipulation von Graphmanipulatio-
nen. PhD thesis, Technical University of Berlin, Department
of Computer Science

13. Küster JM, Stroop J (2001) Consistent design of embedded
real-time systems with UML-RT. In: Proc. IEEE Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC 2001), pp 31–40

14. Li X, Lilius J (1999) Timing analysis of UML sequence dia-
grams. In: France R, Rumpe B (eds) Proc. UML ’99, Lecture
Notes in Computer Science 1723. Springer, pp 661–674

15. Guldstrand Larsen K, Pettersson P, Yi W (1997) UPPAAL in
a nutshell. International Journal on Software Tools for Tech-
nology Transfer 1(1–2):134–152

16. Mühlhäuser M, Gecsei J (1996) Services, frameworks, para-
digms for distributed multimedia applications. IEEE Multi-
media 3(3):48–61

17. Object Management Group (2002) UML Profile for Schedula-
bility, Performance, and Time, OMG adopted specification

18. Object Management Group (2003) OMG Unified Modeling
Language Specification, version 1.5

19. Petriu DC, Shen H (2002) Applying the UML performance
profile: Graph grammar-based derivation of LQN models from
UML specifications. In: Computer Performance Evaluation,
Modelling Techniques and Tools (Proceedings of TOOLS
2002), Lecture Notes in Computer Science, vol 2324. Springer-
Verlag, pp 159–177

20. Sauer S, Engels G (2001) UML-based behavior specification of
interactive multimedia applications. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments
(HCC’01), pp 248–255

21. Schürr A, Winter AJ, Zündorf A (1997) PROGRES: Lan-
guage and environment. In: Ehrig H, Engels G, Kreowski H-J,
Rozenberg G (eds) Handbook on Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages,
and Tools. World Scientific, Singapore, pp 487–550

22. Taentzer G (1999) AGG: A tool environment for algebraic
graph transformation. In: Proc. International Workshop on
Applications of Graph Transformations with Industrial Rele-
vance (AGTIVE 1999), pp 481–488

Jan Hendrik Hausmann is
a PhD student at the Univer-
sity of Paderborn, Germany. His
research topics include object-
oriented modelling with the UML,
graph transformations and their
application in software engineer-
ing, meta modelling, and eLearn-
ing systems.

Reiko Heckel is assistant pro-
fessor at the University of Pader-
born, Germany, since 1998. His
research interest is the use of
graph transformation in soft-
ware engineering, including the
development of relevant theory
like structuring and modular-
ity concepts, concurrency theory,
graph-based temporal logic, etc.
and the application of this the-
ory to the modelling of object-

oriented and agent-based systems, and to the semantics of
visual modelling languages.

Stefan Sauer works as a re-
search and teaching associate at
the University of Paderborn in
the database and information
systems group. The focus of his
research is on object-oriented
modeling with the UML, seman-
tics of visual languages, meta
modeling, extensions of the UML
for interactive multimedia appli-
cations, and multimedia software
engineering.

