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This paper presents the Multimedia C language, which is designed for the mul-
timedia extensions included in all modern microprocessors. The paper discusses
the language syntax, the implementation of its compiler and its use in develop-
ing multimedia applications. The goal was to provide programmers with the
most natural way of using multimedia processing facilities in the C language.
The MMC language has been used to develop some of the most frequently used
multimedia kernels. The presented experiments on these scientific and multi-
media applications have yielded good performance improvements.
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1. INTRODUCTION

C language is frequently used by professional and system programmers
because it allows them to develop highly efficient code. They choose C
because it reflects all the main features of a system architecture, which has
an impact on the program’s efficiency. These features are:

1. machine-oriented data types,

2. indirect addressing and address arithmetic (pointers, arrays,...),

3. bit operations.

On the other hand, C hides from the programmer the peculiarity of
each particular processor architecture (register storage and register allocation,
stack implementation, details of the instruction set, activation modules, etc.).



Today’s computer architectures are very different from those of a few
years ago in terms of complexity and the computational availabilities of the
execution units within a processor. Practically all modern processors have
facilities that improve performance without placing an additional burden
on the software developers—including super-scalar execution, out-of-order
execution, speculative execution(1)—as well as those facilities which require
support from external entities (i.e., assembler language and compilers) such
as multimedia (also called short vector or SIMD within a register) process-
ing ability(2–12) (i.e., Intel MMX, Intel SSE, Intel SSE2, Motorola Altivec,
SUN VIS,...), support for multiprocessor architectures, etc. This was
reflected in an extension of the assembly languages (extended instruction
set).

But if we want to use them in high-level programming languages such
as C, then we have to find some way to add these new facilities in some
way to the high-level programming languages. In this paper we focus on
porting multimedia extension processing facilities into high-level languages,
particularly C.

The increasing need for multimedia applications has prompted the
addition of multimedia extensions to most existing general-purpose micro-
processors. These extensions introduce short vector or SIMD (Single
Instruction Multiple Data) instructions to the microprocessor’s scalar
instruction set. This added instruction set is supported by special hardware
that enables the execution of one instruction to packed data within a mul-
timedia register. Such a vector instruction set is primarily used in multi-
media applications and it seems that their use will expand rapidly over the
next few years.

High-level programming languages do not support this kind of data
parallelism. Thus, on the one hand we have modern execution hardware
and on the other hand we have high-level programming languages that are
not able to use these new facilities. So far we have noticed a number of
different approaches that are designed to integrate these new facilities into
high-level programming languages:

1. The use of assembly languages within high-level programming
languages whenever we want to exploit vector processing. This
approach gives us the ability to develop highly efficient multime-
dia code but it has the disadvantages of a long development time
and a reluctance among most programmers to program in
assembly language.

2. The addition of some special libraries(6, 13) that have a wide range
of vector processing functions coded in assembly language. These
libraries are often available from microprocessor manufacturers,
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but they tend to only cover particular functions for multimedia
processing so we cannot use them for some general vector pro-
cessing. They are only intended for programmers who develop
multimedia software for some particular class of microprocessors
(i.e., the Intel family).

3. The use of vectorizing compilers.(14–31) This is a special class of
compilers that can parallelize some simple loops within a high-
level programming language code. These compilers are, in general,
unable to use some special facilities of vector processing mainly
because we cannot describe these facilities in high-level program-
ming languages (there are no constructs to describe these special
facilities). This is the case with, for example, saturation arithmetic.
In ordinary C only expressions with modular arithmetic may be
used.

4. The last approach is to extend the syntax and semantics of high-
level programming languages and to redefine the semantics of
existing operators and expressions. We find that this is the best
way to migrate new vector processing facilities into high-level
programming languages and we agree with those authors(32–41)

who tried to develop such a class of high-level programming lan-
guages, although for a different execution model (mainly the large-
scale SIMD execution model).

As a consequence of the above we decided to extend the syntax of C
and to redefine the existing semantics in such a way that we could use
multimedia processing facilities in C. We redefined the semantics of the
existing operators, we added a few new ones, and we also added some
new syntax that enables access to array slices. The goal was to provide
programmers with the most natural way of using the multimedia processing
facilities in the C language. We named this extended C as MMC (Multi-
Media C).

This paper is organized as follows: in Section 2 we describe the MMC
programming language, in Section 3 we describe the implementation of the
MMC compiler, in Section 4 we give real examples from multimedia
applications and the performance results. Finally, in Section 5 we make
comparisons with related studies.

2. THE MMC LANGUAGE

MMC language is an extended ANSI C language with multimedia
(short vector or SIMD within a register) processing facilities. It keeps all
the ANSI C syntax plus the syntax rules for vector processing. It extends
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the ANSI C syntax only in the access possibilities for the array elements
and in the new vector operators. The syntax notation is mostly based on
the notation that was first introduced in Ref. 36.

2.1. Arrays

Let us present some basic definitions for an array (vector) and a vector
strip in MMC.

Definition 1. In the MMC language an array (or vector) is a data
structure that consists of sequentially allocated elements of the same type
with a strictly positive unit step.

Modern processors with multimedia execution hardware have only
vector load/store instructions, which can only move sequentially allocated
elements between the memory and the microprocessor. Gather/scatter
operations are useful, for example, when multiplying matrices because of
the different type of access to the elements in two matrices (in one we
access to the column elements and in the other matrix we access to the row
elements). But also, these operations are very expensive and we believe
that, regarding to the existing multimedia execution hardware, it is better
to force the programmer to correctly rearrange the array elements
(actually, matrix multiplication can be implemented in a way that doesn’t
need gather-scatter operations). So, the extension of the array definition to
the non-sequentially allocated elements (also called non stride-1 vectors) is
redundant for this type of execution model.

2.2. Vector Strips

Because of hardware limitations, especially the multimedia execution
hardware and the multimedia register set within a microprocessor, not all
the lengths of the array components are permitted. So we will define some
notations, which we will use throughout this paper and which represent
different vector strips.

Definition 2. A vector strip is a subset of an array where all of the
components have the same type. These components can be as long as 8 bits
(or a byte), 16 bits (or a word), 32 bits (or a doubleword), 64 bits (or a
quadword) and 128 bits (or a superword). The size of the vector strip is
also constant, it is limited to the length of the multimedia register in a
microprocessor, and for most modern microprocessors this length is 64 or
128 bits.
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Definition 3. We can define the following possible vector strips:

1. A VB vector strip is an array slice composed of 8(16) byte com-
ponents.

2. A VW vector strip is an array slice composed of 4(8) word com-
ponents.

3. A VD vector strip is an array slice composed of 2(4) doubleword
components.

4. A VQ vector strip is an array slice composed of 1(2) quadword
component(s).

5. A VS vector strip is an array slice composed of 1 superword
component.

6. A VSF vector strip is an array slice composed of 4 single-precision
floating-point components.

7. A VDF vector strip is an array slice composed of 2 double-preci-
sion floating-point components.

2.3. Access to the Array Elements

To access the elements of an array or a vector we can use one of the
following expressions:

1. expression[expr1]. With this expression we can access the
expr1 th element of an array object expression. Here, the expr1
is an integral expression and expression has a type ‘‘array of
type.’’

Example 1. We define two arrays of 100 integers:

int A[100], B[100];

We can now access the 46 th element of array A and put its value
into the 34 th element of the array B with the expression state-
ment:

B[33]=A[45];

2. expression[expr1:expr2, expr3:expr4]. With this expression
we can access the bits expr4 through expr3 of the elements expr2
to expr1 of an array object expression. Here, the expr1, expr2,
expr3, expr4 are integral expressions and expression has a type
‘‘array of type.’’ The expr1 denotes the last accessed element,
expr2 denotes the first accessed element, expr3 denotes the last
accessed bit and expr4 denotes the first accessed bit.
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Example 2. We define two arrays of 100 integers:

int A[100], B[100];

We can now put the upper 16 bits of the first 50 elements of the
array A into the lower 16 bits of the last 50 elements of the array
B with the expression statement:

B[99:50, 15:0]=A[49:0, 31:16];

If a programmer specifies something unusual like access to the
array[7:3, 11:4], where array is of the byte type, the MMC
compiler should divide this operation into several memory acces-
ses (actually, the current laboratory version of the MMC compiler
will only report an error). We have enabled such irregular access
as we believe that the language should be designed for longevity
and ‘‘look to the future.’’ If these multimedia operations are to
remain important in the future, some sort of bit scatter/gather
hardware will become available on many platforms.

3. expression[,expr1:expr2]. With this expression we can access
the bits expr1 through expr2 of all the elements of an array
object expression. Here, the expr1 and expr2 are integral
expressions and expression has a type ‘‘array of type.’’ The
expr1 denotes the last accessed bit and expr2 denotes the first
accessed bit.

Example 3. We define two arrays of 100 integers:

int A[100], B[100];

We can now move the low-order bits of all the elements in the
array A into the high-order bits of all the elements of the array B
with the expression statement:

B[, 31:16]=A[, 15:0];

The operation for one element is shown in Fig. 1.

Fig. 1. Move the lower part of A[i] into the
upper part of B[i].
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4. expression[]. With this expression we can access the whole
array object expression. Here, the expression has a type ‘‘array
of type.’’

Example 4. We define two arrays of 100 integers:

int A[100], B[100];

We can now copy the array A into the array B with the expression
statement:

B[]=A[];

The operator [] was first introduced in the C[] language as
described in Ref. 36. It is called the block operator because blocks
(forbids) the conversion of the operand to a pointer. We found it
suitable to denote the whole array object and thus avoid any pos-
sible confusion of arrays with pointers.

To support these new access types we have to redefine the syntax of an
array access expression. The postfix expression is defined as:

postfix_expression : primary_expression

| postfix_expression ’[’ expression ’]’

| postfix_expression ’(’ ’)’

| postfix_expression ’(’ argument_expression_list ’)’

| postfix_expression ’.’ IDENTIFIER

| postfix_expression PTR_OP IDENTIFIER

| postfix_expression INC_OP

| postfix_expression DEC_OP

| postfix_expression ’[’ vector_access_expression ’]’

and these new productions are added:

vector_size_expression : expression ’:’ conditional_expression

vector_access_expression : vector_size_expression

| ’,’ vector_size_expression

| vector_access_expression ’,’ vector_size_expression
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And finally, we have to rewrite the production for the conditional
expression in order to avoid ambiguity:

conditional_expression : logical_or_expression
| logical_or_expression ’?’ vector_size_expression

2.4. Operators

2.4.1. Unary Operators

We extended the semantics of the existing ANSI C unary operators &,
*, +, − , ’, ! in the sense that they may now have both scalar- and vector-
type operands.

Example 5. First, we declare two arrays and then we assign nega-
tive values of the elements from the first array to the elements from the
second array:

int A[]={1, 2, 3, 4};
int B[4];

...
B[]=−A[];

After that, array B will have the following values: {−1, −2, −3, −4}.

We have also, in a similar way to Refs. 36 and 41, added new reduc-
tion unary operators [+], [− ], [*], [&], [ | ], [^]. These operators are
overloaded existing binary operators +, − , *, &, |, ^ and are only applic-
able to the vector operands. These operators perform the given binary
operation between the components of the given vector. The result is always
a scalar value. Again, we believe that [op] notation, which was introduced
in Ref. 36, in a more ‘‘natural’’ way indicates that the operation is to be
performed over all vector components.

Example 6. First, we declare array A and then we make the sum of
all its components:

int sum;
int A[]={1, 2, 3, −4};

...
sum=[+] A[];

After that, the sum will be 2.
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We have also added one new vector operator | /, which calculates the
square root of each component in the vector (please note, that this works
only with floating-point vectors, although the MMC compiler does not
perform any type checking, and if we apply this operator to integer vectors
the result my be undetermined).

To achieve these operations in the MMC languge we have to rewrite
the grammar production for the unary operators in ANSI C. To the
grammar rule for the unary operator we have added the following
productions:

| VEC_COMPONENT_ADD

| VEC_COMPONENT_SUB

| VEC_COMPONENT_MUL

| VEC_COMPONENT_AND

| VEC_COMPONENT_OR

| VEC_COMPONENT_EXOR

| ’| / ’

where VEC_COMPONENT_ADD denotes the [+] operator, and it is similar
for the others.

2.4.2. Binary Operators

We have extended the semantics of the existing ANSI C binary opera-
tors and the assign operators in such a way that they can now have vector
operands. Thus, one or both operands can have an array type. If both
operands are arrays of the same length then the result is an array of the
same length (note that the length is measured in the number of components
and not in the number of bits!). If one array operand has N elements and
another array operand has M elements and N < M then the operation is
only performed over N elements. If arrays have different types then the
MMC compiler reports an error. If one of the operands is of the scalar type
then it is internally converted by the MMC compiler into a vector strip of
the corresponding type and length. This type of element in the vector strip
and its length strongly depends on the processor for which we compile our
program. For example, if the array operand consists of word components
then for the Intel Pentium processor the scalar operand is converted into
the VW vector strip (vector of four 16-bit values).

Example 7. We can now make the sum of two arrays:
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short A[4]={1, 2, 3, 4};

short B[4]={4, 3, 2, 1};

short C[4]={0, 0, 0, 0};

short d=7;

...

C[]=A[]+B[];

A[]=d+A[];

Note, that the + operator has both operands with an array type. Now, the
components from array C will have the following values: (5, 5, 5, 5) and the
components from array A will have the following values: (8, 9, 10, 11).
Variable d is expanded internally by the MMC compiler into the vector
[0007h, 0007h, 0007h, 0007h].

Example 8. The Intel SIMD instruction PMADDWD first carries
out the component-wise product of the integers, and then, second, makes
the sum of the products into an integer. This can also be written in the
MMC language as:

short A[4], B[4];

int R[2];

...

R[1:1, 31:0]=[+] ( A[2:1, 15:0] * B[2:1, 15:0] );

R[2:2, 31:0]=[+] ( A[4:3, 15:0] * B[4:3, 15:0] );

We have overloaded the existing binary operators with 3 new operators:

? this operator overloads the binary operators in such a way that
the given binary operator performs the operation with saturation,

@ this operator overloads the binary add operator in such a way that
the given binary operator first performs addition over adjacent
vector elements and then averages (shift right one bit) the result.
Let A[] and B[] be two vectors of the same dimension N and the
same type. Then expression A[] @+ B[] has the same semantics as
the expression (A[0]+B[0])/2},..., (A[N−1]+B[N−1])/2,

’ (tilde) this operator overloads the multiply operator in such a way
that the result is the high part of the product,

_ (underscore) this operator overloads the multiply operator in such
a way that the result is the low part of the product.
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Thus, we may have the following operations:

?+ for add with saturation (in the grammar denoted as VEC_
ADD_SAT),

?− for subtract with saturation (in the grammar denoted as VEC_
SUB_SAT),

@+ for average add (in the grammar denoted as VEC_ADD_AVG),

’* multiply, the result is the high part of the product (in the
grammar denoted as VEC_MUL_HI),

_* multiply, the result is the low part of the product (in the
grammar denoted as VEC_MUL_LO).

Besides the existing binary operators we have added one new, binary
operator, which we found to be important in multimedia applications. This
operator is applicable only on vector operands (if any operand has a scalar
type then it is expanded into an appropriate vector strip) and is as follows:

|-| absolute difference (in the grammar denoted as VEC_SUB_ABS).

Example 9. The Intel SIMD instruction PADDSB makes the sum
between two unsigned byte vectors (VB) and uses saturation arithmetic.
This can also be written in the MMC language as:

unsigned char A[8], B[8];

unsigned char C[8];

...

C[]=A[] ?+B[] ;

Example 10. The Intel SIMD instruction PSADBW computes the
absolute differences of the packed unsigned byte vector strips (VB). Dif-
ferences are then summed to produce an unsigned word integer result. This
can also be written in the MMC language as:

unsigned char A[8], B[8]; /* components are 8 bits long */

unsigned short c;

...

c=[+] (A[] |-| B[]) ;

Thus, to the grammar rule for the multiplicative expression in the
ANSI C language we have added the following productions:
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multiplicative_expression VEC_MUL_HI cast_expression

| multiplicative_expression VEC_MUL_LO cast_expression

and to the grammar rule for the additive expression in the ANSI C lan-
guage we have added these productions:

additive_expression VEC_ADD_SAT multiplicative_expression

| additive_expression VEC_SUB_SAT multiplicative_expression

| additive_expression VEC_ADD_AVG multiplicative_expression

| additive_expression VEC_SUB_ABS multiplicative_expression

2.4.3. Conditional Expression

The conditional operator ?: which is used in the conditional expression
can now have array-type operands. If the first operand is a scalar or an
array and the second and third are arrays then the result operand has the
same array type as both operands. If the array operands have different
array lengths or different types of components then the behavior of the
conditional expression is undetermined. If the second or third operand is
scalar then it is converted into a vector (the same conversion as for binary
operators). If all the operands are arrays of the same length the operation
is performed component-wise.

Example 11. The Intel SIMD instruction PMAXUB returns the
greater vector components between two byte vectors (VB). This can also be
written in the MMC language as:

int A[100, 8], B[100, 8]; /* components are 8 bits long */

int C[100, 8];

...

C[]=(A[] > B[]) ? A[] : B[];

Tables I and II summarize the multimedia instruction set supported by
the Intel, Motorola and SUN processor families and the associated MMC
expression statements.

3. IMPLEMENTATION OF THE MMC COMPILER AND PORTABILITY

ISSUES

The laboratory version of the MMC compiler is implemented for Intel
Pentium III and Intel Pentium IV processors. It is implemented as a
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Table I. Relations Between Integer Multimedia Instructions and MMC Expressions

SUN UltraSpark Motorola Altivec
MMC expression Intel MMX VIS PowerPC

R[]=A[]+B[]; PADD[B | W | D] vis_fadd[16 | 32] vec_add[8 | 16 | 32]
R[]=A[] ?+B[]; signed PADDS[B | W] vec_adds[8 | 16 | 32]
R[]=A[] ?+B[]; unsigned PADDUS[B | W]
R[]=A[]−B[]; PSUB[B | W | D] vis_fpsub[16 | 32] vec_sub[8 | 16 | 32]
R[]=A[] ?−B[]; signed PSUBS[B | W | D]
R[]=A[] ?−B[]; unsigned PSUBUS[B | W | D]
R[]=A[] ’* B[]; signed PMULHW
R[]=A[] ’* B[]; unsigned PMULHUW
R[]=A[] _* B[]; signed PMULLW
R[]=A[] _* B[]; unsigned PMULLUW
A[]=A[] ° count; PSLL[W | D] vec_sl[8 | 16 | 32]
A[]=A[] ± count; PSRA[W | D] vec_sra[8 | 16 | 32]
A[]=A[] ± count; PSRL[W | D] vec_sr[8 | 16 | 32]
R[]=A[] op B[];a POR, PAND, PXOR, vec[_or | _and | _xor]64

PANDN
R[]=(A[]==B[])? 0xFF : 0; PCMPEQ[B | W | D] vis_fcmpeq[16] vec_cmpeq[8 | 16 | 32]
R[]=(A[] > B[])? 0xFF : 0; PCMPGT[B | W | D] vis_fcmpgt[16] vec_cmpgt[8 | 16 | 32]
R[]=A[] > B[] ? A[] : B[]; PMAXU[B | W ] vec_max[8 | 16 | 32]
R[]=A[] < B[] ? A[] : B[]; PMINU[B | W ] vec_min[8 | 16 | 32]
R[]=A[] @+B[]; PAVG[B | W] vec_avg[8 | 16 | 32]
R[]=A[] |-| 0; vec_abs[8 | 16 | 32]
R=[+] (A[] |-| B[]); unsigned PSAD[B | W]

a op={ |, &, ^, ’&}.

Table II. Relations Between Floating-Point Multimedia Instructions and MMC Expressions

MMC expression Intel SSE SUN VIS Motorola Altivec

R[]=A[]+B[]; ADDPS vec_add
R[]=A[]−B[]; SUBPS vec_sub
R[]=A[] * B[]; MULPS
R[]=A[] / B[]; DIVPS
R[]=1 / A[]; RCPPS vec_rc
R[]=|/^A[]; SQRTPS
R[]=1 / ( | /^A[] ); RSQRT vect_rsqrte
R[]=A[] log_op B[];a POR, PAND, vec_or | _and | _xor | _andn

PXOR, PANDN
R[]=(A[] rel_op B[])? 0xFF : 0; CMPPS, rel_op1b vec_cmp [rel_op2]c

R[]=A[] > B[] ? A[] : B[]; MAXPS vec_max[8 | 16 | 32]
R[]=A[] < B[] ? A[] : B[]; MINPS vec_min[8 | 16 | 32]

a log_op={ |, &, ^, ’& }.
b rel_op1={==, < , <=, !=, !< , !<=, !? }.
c rel_op2={==, < , <=, !=, >, >= }.
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translator to ordinary C code that is then compiled by an ordinary C
compiler (in our example with Intel C++ Compiler for Linux(13)).

The MMC compiler parses input MMC code, performs syntax and
semantics analysis, builds its internal representation, and finally translates
the internal representation into ANSI C with macros written in a particular
assembly language instead of the MMC vector statements. The compilation
process is presented in Fig. 2.

If we want to compile for another class of microprocessor, we have
to use another macro library that is written for that particular class of
microprocessor. In such a way we can easily port the programs to another
machine. The macro libraries for different processors are easily written and
all lower-level optimization of the code is done by an ordinary C compiler

Fig. 2. Compilation of the MMC source.
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for a particular microprocessor. In the event that a particular micropro-
cessor does not support some parallel operation written in MMC with
special multimedia machine instruction(s) we use a function written in C
that executes sequentially instead of multimedia macro.

Here we will only show the macro library for the integer operations
for the Intel Pentium class of microprocessor and that is used by the MMC
compiler to translate MMC code into ordinary C code. The macro library
itself is written in assembly language, and can be listed in some separate sets:

1. Arithmetic and logic instructions on vectors:

(a) vectors A+B, A ?+B to RESULT:

ADD[B | W | D | B | UW | UD | USB | USW | USD]

(RESULT, A, B);

(b) vectors A−B, A ?−B to RESULT:

SUB[B | W | D | UB | UW | UD | USB | USW | USD]

(RESULT, A, B);

(c) vectors A & B, !A & B, A | B, A N B to RESULT:

AND[Q | O] (RESULT, A, B); ,

ANDN[Q | O] (RESULT, A, B); ,

OR[Q | O] (RESULT, A, B); ,

EXOR[Q | O] (RESULT, A, B);

(d) vectors A _* B, A ’* B to RESULT:

MULL[W | UW] (RESULT, A, B); , MULH[W | UW]

(RESULT, A, B);

(e) AVG[B | W] (RESULT, A, B); // ([+](A-B))/2 to RESULT

(f ) SRL, SLL[W | D | Q] (A, NOSHIFTS); // shift R/L vector A
for NOSHIFTS

(g) SRA[W | D] (A, NOSHIFTS); // shift R vector A
for NOSHIFTS

2. Miscellaneous instruction set:

(a) SUMMULTWD
(RESULT, A, B); // [+](A*B) to scalar RESULT
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(b) SUMABSDIFFBW
(RESULT, A, B); // [+](A−B) to scalar RESULT

3. Compound (control) instructions:

(a) IFMGT[B | W | FP]
(MASK, A, B, R); // R=(MASK > A) ? A : B

(b) IFMEQ[B | W | FP]
(MASK, A, B, R); // R=(MASK==A) ? A : B

(c) IFGT[B | W | FP]
(A, B, D, E, R); // R=B > A) ? D : E

(d) IFEQ[B | W | FP]
(A, B, D, E, R); // R=(B==A) ? D : E

The complete macro library can be downloaded from http://lra-1.fri.
uni-lj.si/vect/MacroVect.c.

The library MacroVect.c is under development, and during its use we
will be able to evaluate its pros and cons. From this perspective we have
developed a general set of mostly usable macros.

Example 12. The MMC statement:

R[]=(A[] > MASK) ? A[] : B[];

is evaluated during the compilation process into macro IFGTB(MASK, A,
B, R); which is defined as:

#define IFMGTB(MASK, A, B, R); __asm{ mov eax, B \
movq mm3, [eax] \
mov ebx, A \
movq mm2, [ebx] \
mov ecx, MASK \
movq mm1, [ecx] \
pcmpgtb mm1, mm2 \
movq mm4, mm1 \
pand mm1, mm3 \
pandn mm4, mm2 \
por mm1, mm4 \
mov edx, R \
movq [edx], mm1 };

In Section 4 we can see the use of this macro in a real application.
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4. THE USE OF THE MMC LANGUAGE TO DEVELOP MULTIMEDIA

APPLICATIONS

In this section we present the use of MMC language to code some
commonly used multimedia kernels. At the end of this section the perfor-
mance results for the given examples are presented. Examples 13 through
15 show how the MMC code is translated by the MMC compiler into C
code.

Example 13. We mix the two images, one a live picture from the
video camera, and the second, the background map, which is in the
memory. The principle of mixing is very simple, and is as follows:

if (Threshold > Live_picture) then Show = Background;

else Show=Live_picture;

As the color white is ’0xFF’ we put the Threshold a little lower, i.e., about
’0xF0’. The above statement we rewrite in the MMC language:

char Show[NOITEMS];

char Live_picture[NOITEMS];

char Background_map[NOITEMS];

char Live_picture[NOITEMS];

...

Show[]=Thr > Live_picture[] ? Background_map[] : Live_picture[];

Where the constant Thr is 0xF0.

These statements in MMC are translated into the C code in such a
way that the used scalar program can run in vectored mode:

// create new symbols for loop indexes:

int i00001, i00002;

// expand Thr into vector:

int ThrMASK[8]={Thr, Thr, Thr, Thr, Thr, Thr, Thr, Thr} ;

for( i00001=0; i00001 < NOITMES/8; i00001+=8 ) {

A=Live_picture+i00001; // prepare addresses for macro

B=Background_map+i00001;
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R=Show+i00001;

D=ThrMASK;

IFMGTB(D, A, B, R); // macro insertion

}

for( i00002=NOITMES/8; i00002 < NOITEMS; i00002++) {

if (Thr > Live_picture[i00002]) {

Show[i00002]= Background[i00002];

}

else Show[i00002]=Live_picture[i00002];

}

We used our MMC for processing a b/w signal from a video frame-
grabber. The processing kernel is the mixing function presented in the pre-
vious example. For a comparison we first used the program written in
ANSI C and then the program written in the MMC language. In Table III
we can see the results of both tests, the number of instructions, and the
improvement of execution times for processing the array of 442368 bytes,
shorts, and integers. We made the test on the Pentium III microprocessor.

We see that the execution time improves by about 30% on larger
arrays (int), and by about 100% on smaller arrays (byte), even though the
total number of instructions is greater.

Example 14. Finite impulse response (FIR) filters are used in many
aspects of present-day technology because filtering is one of the basic tools
of information acquisition and manipulation. FIR filters can be expressed
by the equation:

y(n)= C
N − 1

k=0
h(k) · y(n − k)

Table III. Execution Results. The Execution Time for the Code Written in ANSI C

with Byte Arrays and Compiled with the Intel C++ Compiler Is Normalized to 1

Example in / Number of total Time Time Time
Compiled with instructions byte short int

C/Intel C++ 22 1 1.6 1.7
MMC/MMCC, Intel C++ 22+9 SIMD 0.65 1.37 1.65
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where N represents the number of filter coefficients h(k) (or the number
of delay elements in the filter cascade), x(k) is the input sample and y(k)
is the output sample. The MMC implementation of the FIR filter is as
follows:

int j;

double h[FILTER_LENGTH]; // FIR filter coefficients

double delay_line[FILTER_LENGTH]; // delay line

double x[SIGNAL_LENGTH]; // input signal

double y[SIGNAL_LENGTH]; // output signal

for (j=0; j < SIGNAL_LENGTH; j++) {

delay_line[0]=x[j]; // store input in the delay line

// calculate FIR:

y[j]=[+] ( h[] * delay_line[] );

// shift delay line:

delay_line[FILTER_LENGTH:1]=delay_line[FILTER_LENGTH-1:0];

}

This MMC code is translated by the MMC compiler into C code with
inserted macros. So, after strip-mining and macro insertion, which is done
by the MMC compiler, we have:

int j;

float h[FILTER_LENGTH]; // FIR filter coefficients

float delay_line[FILTER_LENGTH]; // delay line

float x[SIGNAL_LENGTH]; // input signal

float y[SIGNAL_LENGTH]; // output signal

// create new symbols:

int i00001, i00002, i00003;

for (j=0; j < SIGNAL_LENGTH; j++) {

z[0]=x[j]; // store input in the delay line
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// calculate FIR:

// strip mining and macro insertion:

for( i00001=0; i00001 < FILTER_LENGT/4; i00001+=4 ) {

H=h+i00001; // prepare addresses for macro

Z=delay_line+i00001;

OUT=y+j;

SUMMULTWD(OUT, H, Z); // macro insertion

}

for( i00002=FILTER_LENGTH/4;

i00002 < FILTER_LENGTH; i00002++) {

y[j]=y[j]+(h[i00002] * delay_line[i00002]) ;

}

// shift delay line:

for( i00003=FILTER_LENGTH-2; i00003 >=0; i00003− − ) {

delay_line[i00003+1]=delay_line[i00003] ;

}

}

Example 15. An Infinite Impulse Response (IIR) filter produces an
output, y(n), that is the weighted sum of the current and the past inputs,
x(n), and past outputs. IIR filters can be expressed by the equation:

y(n)= C
N − 1

k=0
h(k) · x(n − k)+ C

M − 1

p=1
hŒ(p) · y(n − p)

where N represents the number of forward-filter coefficients h(k) (or the
number of delay elements in the forward-filter cascade) and M represents
number of backward-filter coefficients hŒ(k) (or the number of delay ele-
ments in the backward-filter cascade), x(k) is the input sample and y(k) is
the output sample.

The MMC implementation of the IIR filter is as follows (note that for
simplicity in implementation we use the hŒ(0) coefficient, which is always
zero):
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int j;

float hf[FILTER_LENGTH_F]; // forward IIR filter coefficients

float hb[FILTER_LENGTH_B]; // backward IIR filter coefficients

float in_delay[FILTER_LENGTH]; // input delay line

float out_delay[FILTER_LENGTH]; // output delay line

float x[SIGNAL_LENGTH]; // input signal

float y[SIGNAL_LENGTH]; // output signal

for (j=0; j < SIGNAL_LENGTH; j++) {

in_delay[0]=x[j]; // store input in the delay line

// calculate FIR:

y[j]=[+] ( hf[] * in_delay[] );

out_delay[0]=y[j]; // store output into the delay line

// calculate IIR:

y[j]=y[j]+( [+] ( hb[] * out_delay[]) )

// shift delay lines

in_delay[FILTER_LENGTH_F:1]=in_delay[FILTER_LENGTH_F-1:0];

out_delay[FILTER_LENGTH_B:1]=out_delay[FILTER_LENGTH_B-1:0];

out_delay[0]=y[j];

}

This MMC code is translated into C as follows:

int j;

float hf[FILTER_LENGTH_F]; // forward IIR filter coefficients

float hb[FILTER_LENGTH_B]; // backward IIR filter coefficients

float in_delay[FILTER_LENGTH]; // input delay line

float out_delay[FILTER_LENGTH]; // output delay line

float x[SIGNAL_LENGTH]; // input signal

float y[SIGNAL_LENGTH]; // output signal
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// create new symbols:

int i00001, i00002, i00003, i00004, i00005;

float temp00001;

for (j=0; j < SIGNAL_LENGTH; j++) {

in_delay[0]=x[j]; // store input in the delay line

// calculate FIR:

// strip mining and macro insertion:

for( i00001=0; i00001 < FILTER_LENGTH_F/4; i00001+=4 ) {

HF=hf+i00001; // prepare addresses for macro

IND=in_delay+i00001;

OUT=y+j;

SUMMULTWD(OUT, HF, IND); // macro insertion

}

for( i00002=FILTER_LENGTH_F/4;

i00002 > FILTER_LENGTH_B; i00002++) {

output[j]=output[j]+(hf[i00002] * in_delay[i00002]) ;

}

// calculate IIR:

// strip mining and macro insertion:

for( i00003=0; i00003 < FILTER_LENGTH_B/4; i00003+=4 ) {

HB=hb+i00001; // prepare addresses for macro

OUTD=out_delay+i00001;

SUMMULTWD(temp00001, HB, OUTD); // macro insertion

}

y[j]=y[j]+temp00001;
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for( i00004=FILTER_LENGTH_B/4;

i00004 < FILTER_LENGTH; i00004++) {

y[j]=y[j]+(hb[i00004] * out_delay[i00004]) ;

}

// shift delay lines:

for( i00005=FILTER_LENGTH_F-2; i00005 >=0; i00005− − ) {

in_delay[i00005+1]=in_delay[i00005] ;

}

for( i00005=FILTER_LENGTH_B-2; i00005 >=0; i00005− − ) {

out_delay[i00005+1]=out_delay[i00005] ;

}

}

Example 16. The MPEG audio standard uses Discrete Cosine
Transformation (DCT) to transform samples from one domain into
another. DCT is defined as a linear transformation of N input samples,
s[k], and N DCT samples, x[i] where k=0 · · · K − 1 and i=0 · · · K − 1:

x(i)= C
N − 1

k=0
s(k) ·1 (2k+1) · i · p

2N
2

The DCT formula can also be expressed in matrix form as:

xF=DsF

where x is the vector of N DCT samples and s is the vector of N input
samples. D is an N by N matrix with the elements:

D(i, j)=
cos((2j+1) · i · p)

2N

The matrix representation is used for practical implementation. The
matrix representation of the DCT algorithm is well suited for MMC code
implementation since the regular structure of matrix multiplication fits the
SIMD nature. The MMC implementation of the DCT algorithm is as
follows:
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int j;

float D[N*N]; // D matrix

float v[N]; // DCT samples vector

float s[N]; // output samples vector

float D_row[N]; // D matrix row

for (j=0; j < N; j++) {

D_row[]=D[j*N : j*N+(N-1)]; // store matrix row into a vector

// calculate j-th DCT sample:

v[j]=[+] ( D_row[] * s[] );

}

Example 17. This example demonstrates how to convert RGB
color space pixels to YUV color space pixels. Components of the YUV
color space are linear combinations of the components of the RGB color
space. Therefore, RGB-to-YUV color conversion is computed by multiply-
ing a 3 × 3 coefficient matrix by a vector of RGB values. The RGB-to-
YUV color conversion equation is taken from Ref. 42 and is as follows:

rY

U

V

s=r 0.299 0.587 0.114

−0.146 −0.288 0.434

0.617 −0.517 −0.100

s ·rR

G

B

s
The MMC implementation of the above equation is as follows:

float R[VECTOR_SIZE];

float G[VECTOR_SIZE];

float B[VECTOR_SIZE];

float Y[VECTOR_SIZE];

float U[VECTOR_SIZE];

float V[VECTOR_SIZE];

float matrix[]={0,299, 0,587, 0.114,

-0.146, -0.288, 0.434,

0.617, -0.517, -0.100};
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Fig. 3. Speedup on an Intel Pentium III using MMC.

Y[]=R[] * matrix[0]+G[] * matrix[1]+B[] * matrix[2] ;
U[]=R[] * matrix[3]+G[] * matrix[4]+B[] * matrix[5] ;
V[]=R[] * matrix[6]+G[] * matrix[7]+B[] * matrix[8] ;

Note that the matrix coefficients are expanded by the MMC compiler into
VSF vector strips.

In Fig. 3 we can see the performance improvement when using the
MMC instead of the ANSI C for the given examples. Both codes, MMC
and ANSI C, were finally compiled with an Intel C++ Compiler, and
executed on an Intel Pentium III personal computer.

5. COMPARISONS WITH OTHER STUDIES

The Vector C language(38, 39) was designed and implemented on the
CDC Cyber 205 at Purdue University. Vector C extends C by allowing
arrays, in effect, to be treated as first-class objects (vectors) by using a
special subscripting syntax to select array slices. Vector C targets general
vector machines with many vector processing facilities that multimedia-
enhanced processors do not have. On the other hand, the operators in
Vector C do not cover all processing facilities that are present in multime-
dia-enhanced processors. The syntax of Vector C allows periodic scatter/
gather operations and compress/expand operations. Two new data types,
the vector descriptor (which acts as a pointer to the array but is extended
in such a way that it can handle non-stride-1 vectors) and the bit vector,
as well as vector function call and multidimensional parallelism are also
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introduced. The standard C operators act element-wise on vectors and
some twenty new, expression operators have been added. It introduces a
large number of new, vector operators that have no analogue in ordinary C
and are not supported by the existing multimedia hardware extensions.
Moreover, Vector C relies on a view of arrays as first-class objects, whereas
the confusion of arrays with pointers is essential to the character of the C
language. Vector conditional expressions in the Vector C language are
handled with the bit vector. For example, the elements from the vector a
are changed if corresponding bits in the bit vector are one, otherwise they
remains unchanged. Multimedia hardware does not support this kind of
operation which depends on the bit vector, thus in the MMC language we
had to redefine the act of conditional assignment. Our method generates
two vector strips that act as masks. The method was described in Section 3
and in Ref. 5. MMC also differs from Vector C in providing fewer special
facilities for vector manipulation (for example, vector inner product is not
a primitive operator in MMC although it could be easily expressed as we
saw in previous examples) and in preserving the interchangeability of arrays
and pointers.

The C[] language(36) is very similar to Vector C language. It targets
general vector machines and, like Vector C, it introduces a large number of
new vector operators that have no analogue in ordinary C and are not
supported by the existing multimedia hardware extensions. But we found
the syntax notation introduced in the C[] language the most suitable for
MMC expressions of multimedia operations over packed data within a
register (for example, we used the [] operator to describe most multimedia
operations, rather then the @ operator used in Vector C).

The C* (40) language is a commercial data-parallel language from
Thinking Machine Corporation, which was compiled onto their SIMD
CM-2 machine. The main difference between our work and C* is that C*
targets large-scale SIMD machines while MMC targets the multimedia
extension. C* targets large-scale data-parallel model, which assumes a
system with a front-end processor (FE) that controls the overall system and
many ‘‘processing elements’’ (PE’s). C* extends C by having many proces-
sors instead of just one, all executing the same instruction stream. The C*
execution model may be summarized as providing the programmer with
lots of processors of an conventional nature, operating with a uniform
address space in a synchronous execution mode. C* also adds to C addi-
tional overloaded meanings of existing operators and new library functions.
These overloaded operators provide patterns of communication (i.e., fetch-
ing one value from a particular PEs memory, storing one value to the par-
ticular PEs memory, broadcasting a value to all PEs, communication
among PEs,...). It also extends the declarations in such a way that we can
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declare to which memory some variable should be stored. The authors of
C* have added two new parallel operators (min, max). Both could easily be
expressed in MMC through semantically extended C operators. C* also
differs from MMC in adding a new type of statement to C, the selection
statement, which is used to activate multiple processors. And finally, MMC
tries to incorporate as much as possible of multimedia processing facilities
and in addition to provide as few as possible new operators and type
extensions to ANSI C.

6. CONCLUSION AND FUTURE WORK

We have developed a MMC programming language which is able to
use hardware-level multimedia execution capabilities. The MMC language
is an upward extension of ANSI C and it saves all the ANSI C syntax. In
this way it is suitable for use by programmers who want to extract SIMD
parallelism in a high-level programming language and also by programmers
who do not know anything about multimedia processing facilities and who
are using the C language.

We have shown the ease with which it is possible to express some
common multimedia kernels with MMC. With MMC we can express these
kernels in a more straightforward or ‘‘natural’’ way. The presented exten-
sion to C also preserves the interchangeability of arrays and pointers and
adds as few as possible new operators. All added operators have an
analogue in ordinary C. The declarations of arrays are left unchanged and
also no new types have been added.

We obtained good performance for several application domains.
Experiments on scientific and multimedia applications have significant
good performance improvements. In the future we should try to describe
the difficulty or ease of using the presented language. In addition, more
detailed performance-evaluation results should be provided and compared
to the hand-optimized SIMD code.

Our MMC, its compiler and macro library are still in their infancy.
Although successful, we believe their effectiveness can be further improved.
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37. V. Guštin and P. Bulić, Introducing the Vector C, Proceedings of the 5th International
Meeting on High Performance Computing for Computational Science VECPAR 2002,
Part I, Porto, Portugal, 26–28 June, 2002. pp. 253–266 (2002).

38. K. C. Li and H. Schwetman, Vector C—A Vector Processing Language, J. Parallel
Distrib. Comput. 2:132–169 (1985).

39. K. C. Li, A Note on the Vector C Language, ACM SIGPLAN Notices 21(1):49–57 (1986).
40. J. R. Rose and G. L. Steele, C*: An Extended C Language for Data Parallel Program-

ming, Proceedings of the Second International Conference on Supercomputing ICS87, May,
1987, pp. 2–16 (1987).

41. J. R. Rose and G. L. Steele, The C[] Language Specification. http://www.ispras.ru/’

cbr/cbrsp.html.
42. J. R. Rose and G. L. Steele, MMX Technology Aplication Notes: Using MMX Instruc-

tions to Convert RGB to YUV Color Conversion. http://cedar.intel.com.
43. I. Ahmad, Y. He, and M. L. Liou, Video Compression With Parallel Processing, Parallel

Comput. 28:1039–1078 (2002).
44. W. Amme and E. Zehender, Data Dependence Analysis in Programs with Pointers,

Parallel Comput. 24:505–525 (1998).
45. W. Amme, P. Braun, F. Thomasset, and E. Zehender, Data Dependence Analysis of

Assembly Code, Int. J. Parallel Progr. 28(5):431–467 (2000).

An Extended ANSI C for Processors with a Multimedia Extension 135



46. U. Banerjee, Dependence Analysis, Kluwer Academic Publishers, Dordrecht (1997).
47. F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X. Yang, Distributed pC++:

Basic Ideas for an Object Parallel Language, Sci. Progr. 2(3):7–22 (1993).
48. P. Y. Calland, A. Darte, Y. Robert, and F. Vivien, On the Removal of Anti- and Output-

Dependences, Int. J. Parallel Progr. 26(3):285–312 (1998).
49. P. Faraboschi, G. Desoli, and J. A. Fisher, The Latest Word in Digital and Media Pro-

cessing, IEEE Signal Proc. Mag. 15(2):59–85 (1998).
50. M. Ferretti and D. Rizzo, Multimedia Extensions and Sub-Word Parallelism in Image

Processing: Preliminary Results, Lecture Notes in Comput. Sci. 1685:977–986 (1999).
51. A. John and J. C. Brown, Compilation of Constraint Programs with Noncyclic and Cyclic

Dependences to Procedural Parallel Programs, Int. J. Parallel Progr. 26(1):65–119 (1998).
52. J. K. Lee and D. Gannon, Object Oriented Parallel Programming Experiments and

Results, Processing Supercomputing 91, IEEE Computer Society Press, pp. 273–82 (1991).
53. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann

Publishers (1997).
54. Z. Shen, Z. Li, and P. C. Yew, An Empirical Study of Fortran Programs for Parallelizing

Compilers, IEEE Trans. Parallel Distrib. Syst. 3(1):356–364 (1992).
55. F. L. Van Scoy, Developing Software for Parallel Computing Systems, Comput. Phys.

Commun. 97:36–44 (1996).
56. M. E. Wolf and M. Lam, A Loop Transformation Theory and an Algorithm to Maximize

Parallelism, IEEE Trans. Parallel Distrib. Syst. 2(4):452–470 (October 1991).
57. M. E. Wolf and M. Lam, DSP Guru: Finite Impulse Response FAQ. http://www.

dspguru.com/info/faqs/firfaq.htm.
58. M. E. Wolf and M. Lam, ANSI C Yacc grammar. http://www.lysator.liu.se/c/ANSI-C-

grammar-y.html (1995).
59. M. E. Wolf and M. Lam, Motorola AltiVec Technology Programming Manual, http://

e-www.motorola.com/brdata/PDFDB/docs/ALTIVECPIM.pdf, 1999.
60. M. E. Wolf and M. Lam, SUN VIS Instruction Set User’s Manual, http://www.sun.

com/processors/manuals/805-1394.pdf (2001).
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