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The development of effective content-based multimedia search systems is an important

research issue due to the growing amount of digital audio-visual information. In the

case of images and video, the growth of digital data has been observed since the

introduction of 2D capture devices. A similar development is expected for 3D data as

acquisition and dissemination technology of 3D models is constantly improving. 3D

objects are becoming an important type of multimedia data with many promising

application possibilities. Defining the aspects that constitute the similarity among 3D

objects and designing algorithms that implement such similarity definitions is a

difficult problem. Over the last few years, a strong interest in methods for 3D similarity

search has arisen, and a growing number of competing algorithms for content-based

retrieval of 3D objects have been proposed. We survey feature-based methods for 3D

retrieval, and we propose a taxonomy for these methods. We also present experimental

results, comparing the effectiveness of some of the surveyed methods.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational

Geometry and Object Modeling—Curve, surface, solid, and object representations;

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism;

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms

Additional Key Words and Phrases: 3D model retrieval, content-based similarity search

1. INTRODUCTION

The development of multimedia database
systems and retrieval components is be-
coming increasingly important due to a
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rapidly growing amount of available mul-
timedia data. As we see progress in the
fields of acquisition, storage, and dissem-
ination of various multimedia formats,
the application of effective and efficient
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database management systems to han-
dle these formats is highly desirable. The
need is obvious for image and video con-
tent. In the case of 3D objects, a simi-
lar development is expected in the near
future. The improvement in 3D scanner
technology and the availability of 3D mod-
els widely distributed over the Internet
are rapidly contributing to the creation of
large databases of this type of multime-
dia data. Also, the continuing advances in
graphics hardware are making fast pro-
cessing of this complex data possible and,
as a result, this technology is becoming
available to a wide range of potential users
at a relatively low cost compared with the
situation ten years ago.

One of the most important tasks in
a multimedia retrieval system is to im-
plement effective and efficient similar-
ity search algorithms. Multimedia ob-
jects cannot be meaningfully queried in
the classical sense (exact search) because
the probability that two multimedia ob-
jects are identical is negligible unless
they are digital copies from the same
source. Instead, a query in a multimedia
database system usually requests a num-
ber of the most similar objects to a given
query object or a manually entered query
specification.

One approach to implement similarity
search in multimedia databases is by us-
ing annotation information that describes
the content of the multimedia object. Un-
fortunately, this approach is not very prac-
ticable in large multimedia repositories
because, in most cases, textual descrip-
tions have to be generated manually and
are difficult to extract automatically. Also,
they are subject to the standards adopted
by the person who created them and can-
not encode all the information available
in the multimedia object. A more promis-
ing approach for implementing a similar-
ity search system is using the multimedia
data itself which is called content-based
search. In this approach, the multimedia
data itself is used to perform a similarity
query. Figure 1 illustrates the concept of
content-based 3D similarity search. The
query object is a 3D model of a chair. The
system is expected to retrieve similar 3D

Fig. 1. Example of a similarity search on a database
of 3D objects, showing a query object (q) and a set of
possible relevant retrieval answers (a).

objects from the database as shown in
Figure 1.

1.1. Similarity Search in 3D Object
Databases

The problem of searching similar 3D ob-
jects arises in a number of fields. Exam-
ple problem domains include Computer
Aided Design/Computer Aided Manufac-
turing (CAD/CAM), virtual reality (VR),
medicine, molecular biology, military ap-
plications, and entertainment.

—In medicine, the detection of similar
organ deformations can be used for
diagnostic purposes. For example, the
current medical theory of child epilepsy
assumes that an irregular development
of a specific portion of the brain, called
the hippocampus, is the reason for
epilepsy. Several studies show that the
size and shape of the deformation of the
hippocampus may indicate the defect,
and this is used to decide whether or
not to remove the hippocampus by brain
surgery. Similarity search in a database
of 3D hippocampi models can support
the decision process and help to avoid
unnecessary surgeries [Keim 1999].

—Structural classification is a basic task
in molecular biology. This classification
can be successfully approached by
similarity search, where proteins and
molecules are modeled as 3D objects. In-
accuracies in the molecule 3D model due
to measurement, sampling, numerical
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rounding, and small shift errors must
be handled accordingly [Ankerst et al.
1999b].

—For a number of years, many weather
forecast centers include pollen-forecasts
in their reports in order to warn and
aid people allergic to different kinds of
pollen. Ronneberger et al. [2002] devel-
oped a pattern recognition system that
classifies pollen from 3D volumetric
data acquired using a confocal laser
scan microscope. The 3D structure of
pollen can be extracted. Grey scale in-
variants provide components of feature
vectors for classification.

—Forensic institutes around the world
must deal with the complex task of iden-
tifying any tablets with illicit products
(drug pills). In conjunction with chem-
ical analysis, physical characteristic of
the pill (e.g., shape and imprint) are
used in the identification process. The
shape and imprint recognition methods
include object bounding box, region-
based shape and contour-based shape
which can be used to define a 3D model of
the pill. A similarity search system can
be used to report similarities between
the studied pill and the models of known
illicit tablets [Geradts et al. 2001].

—A 3D object database can be used to sup-
port CAD tools because a 3D object can
exactly model the geometry of an object,
and any information needed about it can
be derived from the 3D model, for exam-
ple, any possible 2D view of the object.
These CAD tools have many applica-
tions in industrial design. For example,
standard parts in a manufacturing
company can be modeled as 3D objects.
When a new product is designed, it can
be composed by many small parts that
fit together to form the product. If some
of these parts are similar to one of the
standard parts already designed, then
the possible replacement of the original
part with the standard part can lead to
a reduction in production costs.

—Another industrial application is the
problem of fitting shoes [Novotni and
Klein 2001a]. A 3D model of the client’s
foot is generated using a 3D scanning

tool. Next, a similarity search is per-
formed to discard the most unlikely
fitting models according to the client’s
foot. The remaining candidates are then
exactly inspected to determine the best
match.

—A friend/foe detection system is sup-
posed to determine whether a given
object (e.g., a plane or a tank) is con-
sidered friendly or hostile based on its
geometric classification. This kind of
system has obvious applications in
military defense. One way to implement
such a detection system is to store 3D
models of the known friendly or hostile
objects, and the system determines the
classification of a given object based
on the similarity definition and the
database of reference objects. As such
decisions must be reached in real-time
and are obviously critical, high effi-
ciency and effectiveness of the retrieval
system is a dominant requirement for
this application.

—Movie and video game producers make
heavy use of 3D models to enhance
realism in entertainment applications.
Reuse and adaptation of 3D objects by
similarity search in existing databases
is a promising approach to reduce
production costs.

As 3D objects are used in diverse appli-
cation domains, different forms for object
representation, manipulation, and pre-
sentation have been developed. In the
CAD domain, objects are often built by
merging patches of parametrized surfaces
which are edited by technical personnel.
Also, constructive solid geometry tech-
niques are often employed, where com-
plex objects are modeled by composing
primitives. 3D acquisition devices usually
produce voxelized object approximations
(e.g., computer tomography scanners) or
clouds of 3D points (e.g., in the sensing
phase of structured light scanners). Other
representation forms exist like swept vol-
umes or 3D grammars. Probably the most
widely used representation is to approxi-
mate a 3D object by a mesh of polygons,
usually triangles. For a survey on impor-
tant representation forms, see Campbell
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and Flynn [2001]. For 3D retrieval, ba-
sically all of these formats may serve as
input to a similarity query. Where avail-
able, information other than pure geom-
etry data can be exploited, for example,
structural data that may be included in
a VRML representation. Many similarity
search methods that are presented in the
literature to date rely on triangulations
but could easily be extended to other rep-
resentation forms. Of course, it is always
possible to convert or approximate from
one representation to another one.

Research on describing shapes and es-
tablishing similarity relations between ge-
ometric and visual shape has been done
extensively in the fields of computer vi-
sion, shape analysis, and computational
geometry for several decades. In computer
vision, the usual method is to try to rec-
ognize objects in a scene by segmenting a
2D image and then matching these seg-
ments to a set of a priori known reference
objects. Specific problems involve accom-
plishing invariance with respect to light-
ing conditions, view perspective, clutter,
and occlusion. From the database perspec-
tive, it is assumed that the objects are al-
ready described in their entity and can be
directly used. Problems arise in the form of
heterogeneous object representations (of-
ten certain properties of 3D objects can-
not be assured), and the decision problem
per se is difficult. What is the similarity
notion? Where is the similarity threshold?
How much tolerance is sustainable in a
given application context, and which an-
swer set sizes are required? In addition,
the database perspective deals with a pos-
sibly large number of objects, therefore the
focus lies not only on accurate methods
but also on fast methods providing effi-
cient answer times even on large object
repositories.

1.2. Feature Vector Paradigm

The usage of feature vectors (FVs) is
the standard approach for multimedia re-
trieval [Faloutsos 1996] when it is not
clear how to compare two objects directly.
The feature-based approach is general
and can be applied on any multimedia

database, but we will present it from the
perspective of 3D object databases.

1.2.1. Feature Vector Extraction. Having
defined certain object aspects, numeri-
cal values are extracted from a 3D ob-
ject. These values describe the 3D object
and form a feature vector (FV) of usually
high dimensionality. The resulting FVs
are then used for indexing and retrieval
purposes. FVs describe particular char-
acteristics of an object based on the na-
ture of the extraction method. For 3D ob-
jects, a variety of extraction algorithms
have been proposed, ranging from basic
ones, for example, properties of an object’s
bounding box, to more complex ones, like
the distribution of normal vectors or cur-
vature, or the Fourier transform of some
spherical functions that characterize the
objects. It is important to note that dif-
ferent extraction algorithms capture dif-
ferent characteristics of the objects. It is
a difficult problem to select some particu-
lar feature methods to be integrated into
a similarity search system as we find that
not all methods are equally suited for all
retrieval tasks. Ideally, a system would im-
plement a set of fundamentally different
methods, such that the appropriate fea-
ture could be chosen based on the applica-
tion domain and/or user preferences. After
a method is chosen and FVs are produced
for all objects in the database, a distance
function calculates the distance of a query
point to all objects of the database, pro-
ducing a ranking of objects in ascending
distance.

Figure 2 shows the principle of a
feature-based similarity search system.
The FV is extracted from the original 3D
query object, producing a vector v ∈ R

d for
some dimensionality d .

The specific FV type and its given
parametrization determine the extraction
procedure and the resulting vector dimen-
sionality. In general, different levels of
resolution for the FV are allowed: more
refined descriptors are obtained using
higher resolutions. After the FV extrac-
tion, the similarity search is performed ei-
ther by a full scan of the database or by
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Fig. 2. Feature-based similarity search.

using an index structure to retrieve the
relevant models.

1.2.2. Metrics for Feature Vectors. The
similarity measure of two 3D objects is de-
termined by a nonnegative, real number.
Generally, a similarity measure is, there-
fore, a function of the form

δ : Obj × Obj → R
+
0 ,

where Obj is a suitable space of 3D objects.
Small values of δ denote strong similarity,
and high values of δ correspond to dissim-
ilarity.

Let U be the 3D object database and let
q be the query 3D object. There are ba-
sically two types of similarity queries in
multimedia databases.

—Range queries. A range query (q, r), for
some tolerance value r ∈ R

+, reports
all objects from the database that are
within distance r to q, that is, (q, r) =
{u ∈ U, δ(u, q) ≤ r}.

—k nearest neighbors (k-NN) queries. It re-
ports the k objects from U closest to q,
that is, it returns a set C ⊆ U such as
|C| = k and for all u ∈ C and v ∈ U − C,
δ(u, q) ≤ δ(v, q).

Assume that a FV of dimension d is
taken for a similarity search. In typical
retrieval systems, the similarity measure
δ(u, v) is simply obtained by a metric dis-
tance L (�x, �y) in the d -dimensional space
of FVs, where �x and �y denote the FVs of
u and v, respectively. An important fam-
ily of similarity functions in vector spaces
is the Minkowski (Ls) family of distances,

defined as:

Ls (�x, �y) =
( ∑

1≤i≤d

|xi − yi |s
)1/s

, �x, �y ∈ R
d , s ≥ 1.

Examples of these distance functions
are L1, which is called Manhattan dis-
tance, L2, which is the Euclidean dis-
tance, and the maximum distance L∞ =
max1≤i≤d |xi − yi|.

A first extension to the standard
Minkowski distance is to apply a weight
vector w that weighs the influence that
each pair of components exerts on the to-
tal distance value. This is useful if a user
has knowledge about the semantics of the
FV components. Then, she can manually
assign weights based on her preferences
with respect to the components. If no such
explicit knowledge exists, it is still possible
to generate weighting schemes based on
relevance feedback, see for example, Elad
et al. [2002]. The basic idea in relevance
feedback is to let the user assign relevance
scores to a number of retrieved results.
Then, the query metric may automatically
be adjusted such that the new ranking is
in better agreement with the supplied rel-
evance scores, and thereby (presumably)
producing novel (previously not seen) rel-
evant objects in the answer set.

If the feature components correspond
to histogram data, several further exten-
sions to the standard Minkowski distance
can be applied. In the context of image
similarity search, color histograms are of-
ten used. The descriptors then consist of
histogram bins, and cross-similarities can
be used to reflect natural neighborhood
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similarities among different bins. One
prominent example for employing cross-
similarities is the QBIC system [Ashley
et al. 1995] where results from human per-
ceptual research are used to determine
a suitable cross-similarity scheme. It is
shown that quadratic forms are the natu-
ral way to handle these cross-similarities
formally and that they can be efficiently
evaluated for a given database [Seidl and
Kriegel 1997]. If such intrafeature cross-
similarities can be identified, quadratic
forms may also be used for 3D similarity
search, as done, for example, in the shape
histogram approach (Section 3.4.2). Apart
from Minkowski and quadratic forms,
other distance functions for distributions
can be borrowed from statistics and infor-
mation theory. But this variety of distance
functions also makes it difficult to select
the appropriate distance function as the
retrieval effectiveness of a given metric de-
pends on the data to be retrieved and the
extracted features [Puzicha et al. 1999].

1.3. Overview

The remainder of this article presents a
survey of approaches for searching 3D ob-
jects in multimedia databases under the
feature vector paradigm. In Section 2, we
discuss fundamental issues of similarity
search in 3D objects databases. In Section
3, we review and classify feature-based
methods for describing and comparing 3D
objects that are suited for database de-
ployment. A comparison in Section 4 tries
to contrast the surveyed approaches with
respect to important characteristics and
gives experimental retrieval effectiveness
benchmarks that we performed on a num-
ber of algorithms. Finally, in Section 5, we
draw some conclusions and outline future
work in the area.

2. PROBLEMS AND CHALLENGES OF 3D
SIMILARITY SEARCH SYSTEMS

Ultimately, the goal in 3D similarity
search is to design database systems that
store 3D objects and effectively and effi-
ciently support similarity queries. In this
section, we discuss the main problems

posed by similarity search in 3D object
databases.

2.1. Descriptors for 3D Similarity Search

3D objects can represent complex informa-
tion. The difficulties to overcome in defin-
ing similarity between spatial objects are
comparable to those for the same task ap-
plied to 2D images. Geometric properties
of 3D objects can be given by a number
of representation formats as outlined in
the introduction. Depending on the for-
mat, surface and matter properties can
be specified. The object’s resolution can
be arbitrarily set. Given that there is no
founded theory on a universally applica-
ble description of 3D shapes or how to use
the models directly for similarity search,
in a large class of methods for similar-
ity ranking, the 3D data is transformed
in some way to obtain numeric descrip-
tors for indexing and retrieval. We also
refer to these descriptors as feature vec-
tors (FVs). The basic idea is to extract nu-
meric data that describe the objects under
some identified geometric aspect and to in-
fer the similarity of the models from the
distance of these numerical descriptions in
some metric space. The similarity notion
is derived by an application context that
defines which aspects are of relevance for
similarity. Similarity relations among ob-
jects obtained in this way are then subject
to the specific similarity model employed
and may not reflect similarity in a differ-
ent application context.

The feature-based approach has several
advantages compared to other approaches
for implementing similarity search. The
extraction of features from multime-
dia data is usually fast and easily
parametrizable. Metrics for FVs such as
the Minkowski distances can also be effi-
ciently computed. Spatial access methods
[Böhm et al. 2001] or metric access meth-
ods [Chávez et al. 2001] can be used to
index the obtained FVs. All these advan-
tages make the feature-based approach a
good candidate for implementing a 3D ob-
ject similarity search engine.

3D similarity can also be estimated
under paradigms other than the FV
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Fig. 3. A 3D object in different scale and orientation (left) and also represented with an
increasing level of detail (right).

approach. Generally, nonnumeric descrip-
tions can be extracted from 3D objects,
like structural information. Also, direct
geometric matching is an approach. Here,
how easily a certain object can be trans-
formed into another one is measured, and
a cost associated by this transformation
serves as the metric for similarity. Usually
these metrics are computationally costly
to compute and do not always hold the tri-
angle inequality, therefore it is more dif-
ficult to index the database under these
alternative paradigms.

2.2. Descriptor Requirements and 3D Pose
Normalization

Considering the descriptor approach, one
can define several requirements that ef-
fective FV descriptors should meet. Good
descriptors should abstract from the po-
tentially very distinctive design decisions
that different model authors make when
modeling the same or similar objects.
Specifically, the descriptors should be in-
variant to changes in the orientation
(translation, rotation and reflection) and
scale of 3D models in their reference co-
ordinate frame. That is, the similarity
search engine should be able to retrieve ge-
ometrically similar 3D objects with differ-
ent orientations. Figure 3 (left) illustrates
different orientations of a Porsche car 3D
object: the extracted FV should be (almost)
the same in all cases. Ideally, an arbitrary
combination of translation, rotation, and
scale applied to one object should not af-
fect its similarity score with respect to an-
other object.

Furthermore, a descriptor should also
be robust with respect to small changes
in the level of detail, geometry, and topol-
ogy of the models. Figure 3 (right) shows
the Porsche car 3D object at four different
levels of resolution. If such transforma-
tions are made to the objects, the result-
ing similarity measures should not change
abruptly but still reflect the overall simi-
larity relations within the database.

Invariance and robustness properties
can be achieved implicitly by those de-
scriptors that consider relative object
properties, for example, the distribution
of the surface curvature of the objects.
For other descriptors, these properties can
be achieved by a preprocessing normal-
ization step which transforms the objects
so that they are represented in a canon-
ical reference frame. In such a reference
frame, directions and distances are com-
parable between different models, and this
information can be exploited for similar-
ity calculation. The predominant method
for finding this reference coordinate frame
is pose estimation by principal component
analysis (PCA) [Paquet et al. 2000; Vranić
et al. 2001], also known as Karhunen-
Loève transformation. The basic idea is
to align a model by considering its cen-
ter of mass and principal axes. The object
is translated to align its center of mass
with the coordinate origin (translation in-
variance), and then is rotated around the
origin such that the x, y and z axes co-
incide with the three principal compo-
nents of the object (rotation invariance).
Additionally, flipping invariance may be
obtained by flipping the object based on
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Fig. 4. Pose estimation using the PCA for three classes of 3D objects.

some moment test, and scaling invariance
can be achieved by scaling the model by
some canonical factor. Figure 4 illustrates
PCA-based pose and scaling normaliza-
tion of 3D objects. For some applications,
matching should be invariant with respect
to anisotropic scaling. For this purpose,
Kazhdan et al. [2004] proposed a method
that scales objects such that they are max-
imally isotropic before computing FVs for
shape matching.

While PCA is a standard approach to
pose estimation, several variants can be
employed. When a consistent definition of
object mass properties is not available as is
usually the case in mesh representations,
one has to decide on the input to the PCA.
Just using polygon centers or mesh ver-
tices would make the outcome dependent
on the tessellation of the model. Then, it
is advantageous to use a weighing scheme
to reflect the influence that each polygon
contributes to the overall object distribu-
tion when using polygon centers or mesh
vertices [Vranić and Saupe 2000; Paquet
and Rioux 2000]. Analytically, it is neces-
sary to integrate over all of the infinites-
imal points on a polygon [Vranić et al.
2001]. Others use a Monte-Carlo approach
to sample many polygon points [Ohbuchi
et al. 2002] to obtain PCA input.

Some authors articulate a fundamental
critique on the PCA as a tool for 3D re-
trieval. Funkhouser et al. [2003] find PCA
being unstable for certain model classes
and consequently propose descriptors that
do not rely on orientation information. On
the other hand, omitting orientation infor-
mation may also omit valuable object in-
formation.

A final descriptor property that is also
desirable to have is the multiresolution
property. Here, the descriptor embeds pro-
gressive model detail information which
can be used for similarity search on differ-
ent levels of resolution. It eliminates the
need to extract and store multiple descrip-
tors with different levels of resolution if
multiresolution search is required, for ex-
ample, for implementing a filter and re-
finement step. A main class of descriptors
that implicitly provides the multiresolu-
tion property is one that performs a dis-
crete Fourier or Wavelet transform of sam-
pled object measures.

2.3. Retrieval System Requirements

There are two major concerns when de-
signing and evaluating a similarity search
system, effectiveness and efficiency. To
provide effective retrieval, the system,
given a query, is supposed to return the
most relevant objects from the database in
the first rankings, and to hold back irrele-
vant objects from this ranking. Therefore,
it needs to implement discrimination
methods to distinguish between similar
and nonsimilar objects. The previously
described invariants need to be provided.
However, it is not clear what the exact
meaning of similarity is. As is obvious
from the number of different methods
reviewed in Section 3, there exist a variety
of concepts for geometric similarity. The
most formalizable one until now is global
shape similarity, as illustrated in the first
row of chairs shown in Figure 1. But,
in spite of significant difference in their
global shapes, two objects could still be
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considered similar in that they belong
to some kind of semantic class, for ex-
ample, as in the second row of chairs in
Figure 1. Furthermore, partial similarity
among different objects also constitutes
a similarity relationship within certain
application domains. Most of the current
methods are designed for global geometric
similarity, while partial similarity still
remains a difficult problem.

The search system also has to pro-
vide efficient methods for descriptor ex-
traction, indexing, and query processing
on the physical level. This is needed be-
cause it can be expected that 3D databases
will grow rapidly once 3D scanning and
3D modeling become commonplace. In
databases consisting of millions of objects
with hundreds of thousands of voxels or
triangles each which need to be auto-
matically described and searched for, ef-
ficiency becomes mandatory. Two broad
techniques exist to efficiently conduct fast
similarity search [Faloutsos 1996]. A filter-
and-refinement architecture first restricts
the search space with some inexpensive,
coarse similarity measure. On the cre-
ated candidate set, some expensive but
more accurate similarity measure is em-
ployed in order to produce the result
set. It is the responsibility of such fil-
ter measures to guarantee no false dis-
missals, or at least only a few, in or-
der to generate high-quality answer sets.
Second, if the objects in a multimedia
database are already feature-transformed
to numerical vectors, specially suited
high-dimensional data structures along
with efficient nearest-neighbor query al-
gorithms can be employed to avoid the
linear scan of all objects. Unfortunately,
due to the curse of dimensionality [Böhm
et al. 2001], the performance of all
known index structures deteriorates for
high-dimensional data. Application of di-
mensionality reduction techniques as a
postprocessing step can help improving
the indexability of high-dimensional FVs
[Ngu et al. 2001].

Finally, note that, in traditional
databases, the key-based searching
paradigm implicitly guarantees full effec-
tiveness of the search so efficiency aspects

are the major concern. In multimedia
databases, where effectiveness is subject
to some application and user context,
efficiency and effectiveness concerns are
of equal importance.

2.4. Partial Similarity

Almost all available methods for similar-
ity search in 3D object databases focus on
global geometric similarity. In some appli-
cation domains, the notion of partial simi-
larity is also considered. In partial similar-
ity, similarities in parts or sections of the
objects are relevant. In some applications,
complementarity between solid object seg-
ments constitutes similarity between ob-
jects, for examle, in the molecular dock-
ing problem [Teodoro et al. 2001]. In the
case of 2D polygons, some solutions to the
partial similarity problem have been pro-
posed [Berchtold et al. 1997]. For 3D ob-
jects, to date it is not clear how to de-
sign fast segmentation methods that lead
to suited object partitions which could be
compared pairwise. Although partial sim-
ilarity is an important research field in
multimedia databases, this survey focuses
on global geometric similarity.

2.5. Ground Truth

A crucial aspect for objective and repro-
ducible effectiveness evaluation in mul-
timedia databases is the existence of a
widely accepted ground truth. Until now
this is only partially the case for the re-
search in 3D object retrieval since most
research groups in this field have collected
and classified their own 3D databases.
In Section 4, we present our own pre-
pared ground truth which we use to ex-
perimentally compare the effectiveness of
several feature-based methods for 3D sim-
ilarity search. Recently, the carefully com-
piled Princeton Shape Benchmark was
proposed by Shilane et al. [2004]. The
benchmark consists of a train database
which is proposed for calibrating search
algorithms, and a test database which can
then be used to compare different search
engines with each other. This benchmark
could eventually become a standard in
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Fig. 5. 3D descriptor extraction process model.

evaluating and comparing retrieval per-
formance of 3D retrieval algorithms.

3. METHODS FOR CONTENT-BASED 3D
RETRIEVAL

This section reviews recent methods for
feature-based retrieval of 3D objects. In
Section 3.1, an overview and a classifica-
tion of the different methods discussed in
this survey is given. In Sections 3.2–3.7,
we give a detailed description of many in-
dividual methods, sorted according to our
classification.

3.1. Overview and Classification

Classifying methods for 3D description
can be done using different criteria. A pop-
ular differentiation from the field of shape
analysis functions according to the follow-
ing schema [Loncaric 1998].

—Descriptors can be built based on the
surface of an object or based on interior
properties. Curvature of the boundary is
an example of the first type of descrip-
tor, while measures for the distribution
of object mass are of the second type of
description.

—Depending on the type of resulting ob-
ject descriptor, numeric methods pro-
duce a vector of scalar values represent-
ing the object, while spatial methods use
other means, for example, a sequence
of primitive shapes approximating the
original shape or a graph representing
object structure.

—Preserving descriptors preserve the
complete object information which al-
lows the lossless reconstruction of the
original object from the description.
Nonpreserving descriptors discard a cer-
tain amount of object information, usu-

ally retaining only that part of the infor-
mation that is considered the most im-
portant.

A descriptor differentiation more spe-
cific to 3D models can be done based
on the type of model information focused
on, for example, geometry, color, texture,
mass distribution, and material proper-
ties. Usually geometry is regarded as most
important for 3D objects, and thus all de-
scriptors presented in this survey make
use of geometry input only. This is also
because geometry is always specified in
models, while other characteristics are
more application-dependent and cannot
be assumed to be present in arbitrary 3D
databases.

Furthermore, one could differentiate de-
scriptors with respect to integrity con-
straints assumed for the models, for ex-
ample, solid shape property, consistent
face orientation, or the input type as-
sumed (polygon mesh, voxelization, CSG
set, etc.). Most of the presented methods
are flexible in that they allow for model in-
consistencies and assume triangulations.
Of course, the description flexibility de-
pends on the model assumptions; addi-
tional information can be expected to yield
more options for designing descriptors.

Recently, we proposed a new way to
classify methods for 3D model retrieval
[Bustos et al. 2005]. In this classifica-
tion, the extraction of shape descriptors
is regarded as a multistage process (see
Figure 5). In the process, a given 3D object,
usually represented by a polygonal mesh,
is first preprocessed to approximate the re-
quired invariance and robustness proper-
ties. Then, the object is abstracted so that
its character is either of surface type, or
volumetric, or captured by one or several
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2D images. Then, a numerical analysis of
the shape can take place and, from the re-
sult, finally the FVs are extracted.

We briefly sketch these basic steps in the
following. Without loss of generality, we
assume that the 3D object is represented
by a polygonal mesh.

(1) Preprocessing. If required by the de-
scriptor, the 3D model is preprocessed
for rotation (R), translation (T), and/or
scaling (S) invariance.

(2) Type of object abstraction. There are
three different types of object abstrac-
tion: surface, volumetric, and image.
Statistics of the curvature of the object
surface is an example of a descriptor
based directly on surface, while mea-
sures for the 3D distribution of object
mass, for example, using moment-
based descriptors, belong to the
volumetric type of object abstraction.
A third way to capture the characteris-
tics of a mesh is to project it onto one or
several image planes, producing ren-
derings, corresponding depth maps,
silhouettes, and so on, from which
descriptors can be derived. This forms
image-based object abstractions.

(3) Numerical transformation. The main
features of the polygonal mesh can be
captured numerically using different
methods. For example, voxels grids
and image arrays can be wavelet
transformed or surfaces can be adap-
tively sampled. Other numerical
transformations include spherical
harmonics (SH), curve fitting, and
the discrete Fourier transform (DFT).
Such transforms yield a numerical rep-
resentation of the underlying object.

(4) Descriptor generation. At this stage,
the final descriptor is generated. It
can belong to one of three classes:

(a) Feature vectors (FVs) consist of el-
ements in a vector space equipped
with a suitable metric. Usually the
Euclidean vector space is taken
with dimensions that may easily
reach several hundreds.

(b) In statistical approaches, 3D
objects are inspected for specific

features which are usually sum-
marized in the form of a histogram.
For example, in simple cases, this
amounts to the summed up surface
area in specified volumetric regions
or, more complex, it may collect
statistics about distances of point
pairs randomly selected from the
3D object. Usually, the obtained
histogram is represented as a FV
where each coordinate value corre-
sponds to a bin of the histogram.

(c) The third category is better suited
for structural 3D object shape de-
scription that can be represented
in the form of a graph [Sundar
et al. 2003; Hilaga et al. 2001]. A
graph can more easily represent
the structure of an object that is
made up of, or can be decomposed
into, several meaningful parts
such as the body and the limbs of
objects modeling animals.

Table I shows the algorithms sur-
veyed in this article with their refer-
ences, preprocessing steps employed, type
of object abstraction considered, numeric
transform applied, and descriptor type
obtained.

For presentation in this survey, we have
organized the descriptors in the following
Sections of the article.

—Statistics (Section 3.2). Statistical de-
scriptors reflect basic object properties
like the number of vertices and poly-
gons, the surface area, the volume, the
bounding volume, and statistical mo-
ments. A variety of statistical descrip-
tors are proposed in the literature for 3D
retrieval. In some application domains,
simple spatial extension or volumetric
measures may already be enough to re-
trieve objects of interest.

—Extension-based descriptors (Section
3.3). Extension-based methods build ob-
ject descriptors from features sampled
along certain spatial directions from an
object’s center.

—Volume-based descriptors (Section
3.4). These methods derive object fea-
tures from volumetric representations
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Table I. Overview of the Surveyed Methods
Descriptor Name Sect. Prepr. Obj. abs. Num. transf. Type

Simple statistics 3.2.1 RTS Volum. None FV
Parametrized stat. 3.2.2 RTS Surface Sampling FV
Geometric 3D moments 3.2.3 RTS Surface Sampling FV
Ray moments 3.2.3 RTS Surface Sampling FV
Shape distr. (D2) 3.2.4 None Surface Sampling Hist.
Cords based 3.2.5 RT Surface Sampling Hist.
Ray based w. SH 3.3.1 RTS Image Sampl.+SH FV
Shading w. SH 3.3.1 RTS Image Sampl.+SH FV
Complex w. SH 3.3.1 RTS Image Sampl.+SH FV
Ext. to ray based 3.3.2 RTS Image Sampl.+SH FV
Shape histograms 3.4.2 RTS Volum. Sampling Hist.
Rot. inv. point cloud 3.4.3 RTS Volum. Sampling Hist.
Voxel 3.4.4 RTS Volum. None Hist.
3DDFT 3.4.4 RTS Volum. 3D DFT FV
Voxelized volume 3.4.5 RTS Volum. Wavelet FV
Volume 3.4.5 RTS Volum. None FV
Cover sequence 3.4.5 RTS Volum. None FV
Rot. inv. sph. harm. 3.4.6 TS Volum. Sampl.+SH FV
Reflective symmetry 3.4.7 TS Volum. Sampling FV
Weighted point sets 3.4.8 RTS Volum. None Hist.
Surface normal direct. 3.5.1 None Surface None Hist.
Shape spectrum 3.5.2 None Surface Curve fitting Hist.
Ext. Gaussian image 3.5.3 R Surface None Hist.
Shape based on 3DHT 3.5.4 None Surface Sampling FV
Silhouette 3.6.1 RTS Image Sampl.+DFT FV
Depth Buffer 3.6.2 RTS Image 2D DFT FV
Lightfield 3.6.3 TS Image DFT, Zernike FV

Topological Matching 3.7.1 None Surface Sampling Graph
Skeletonization 3.7.2 None Volumetric Dist. transf., clustering Graph
Spin Image 3.7.3 None Surface Binning 2D Hist.

obtained by discretizing object surface
into voxel grids or by relying on the
models to already have volumetric
representation.

—Surface geometry (Section 3.5). These
descriptors focus on characteristics de-
rived from model surfaces.

—Image-based descriptors (Section 3.6).
The 3D similarity problem can be re-
duced to an image similarity problem by
comparing 2D projections rendered from
the 3D models.

While this survey focuses on FV-based
descriptors, we recognize that a rich body
of work from computer vision and shape
analysis exists which deals with advanced
3D shape descriptors relying on structural
shape analysis and customized data struc-
tures and distance functions. In principle,
these can also be used to implement sim-
ilarity search algorithms for 3D objects.
Therefore, in Section 3.7, we exemplarily
recall 3D matching approaches based on

topological graphs, skeleton graphs, and a
customized data structure built for each
point in a 3D image (or model).

Figure 6 summarizes the chosen orga-
nization of the methods surveyed in this
article. The remainder of this section fol-
lows this organization.

3.2. Statistical 3D Descriptors

3.2.1. Simple Statistics. Bounding vol-
ume, object orientation, and object volume
density descriptors are probably the most
basic shape descriptors and are widely
used in the CAD domain. In Paquet et al.
[2000], the authors review several possible
simple shape descriptors. The bounding
volume (BV) is given by the volume of the
minimal rectangular box that encloses a
3D object. The orientation of this bound-
ing box is usually specified parallel to
either the coordinate frame or parallel
to the principal axes of the respective
object. Also, the occupancy fraction of the
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Fig. 6. Organization of 3D retrieval methods in this survey.

Fig. 7. Principal axes-based bounding volume and orientation of an ob-
ject with respect to the original coordinate system (2D illustration).

object within its bounding volume gives
information on how solid respectively
rectangular the object is. Having deter-
mined the principal axes, it is also possible
to integrate orientation information into
the description, relating the principal
axes to the given world coordinates of the
object. Here, it is proposed to consider the
distance between the bounding volume’s
center from the origin of the coordinate
system as well as the angle enclosed
between the principal axes and the co-
ordinate system. If only the bounding
volume is considered, this descriptor is
invariant with respect to translation.
If the bounding volume is determined
edge-parallel to the object’s principal

axes, it is also approximately invariant
with respect to rotation. In both variants,
the bounding volume descriptor is not
invariant with respect to the object’s
scale. Figure 7 illustrates this.

3.2.2. Parameterized Statistics. Ohbuchi
et al. [2002] propose a statistical fea-
ture vector which is composed of three
measures taken from the partitioning
of a model into slices orthogonal to its
three principal axes. The FV consists of
3 ∗ 3 ∗ (n − 1) components, where n is
the number of equally-sized bins along
the principal axes. A sampling window
is moved along the axes that considers
the average measures from consecutive
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Fig. 8. Discretization of a model into 5 equally-sized slices, yielding 4 descriptor components.

pairs of adjacent slides, obtaining n − 1
values on each principal axis for each of
the three proposed measures (see Figure
8). The measures used are the moment of
inertia of the surface points, the average
distance of surface points from the princi-
pal axis, and the variance in this distance.
Selection of object points for PCA and
statistical measure calculation is done by
randomly sampling a number of points
from the object’s faces (assuming a polyg-
onal mesh), keeping the number of points
in each face proportional to its area. For
retrieval, the authors experiment with
the standard Euclidean distance as well
as with a custom distance called elastic
distance which allows for some shift in
the bins to be compared [Ohbuchi et al.
2002]. Both metrics are shown to produce
similar results. The authors conduct
experiments on a VRML object database
and conclude that their descriptor is well
suited for objects that possess rotational
symmetry, for example, chess figures. A
sensitivity analysis indicates that there
exists some optimal choice for the number
of analysis windows, given a number of
total sampling points.

3.2.3. Geometric 3D Moments. The usage
of moments as a means of description has
a tradition in image retrieval and classifi-
cation. Thus, moments have been used in
some of the first attempts to define feature
vectors for 3D object retrieval. Statistical
moments μ are scalar values that describe

a distribution f . Parametrized by their or-
der, moments represent a spectrum from
coarse-level to detailed information of the
given distribution [Paquet et al. 2000]. In
the case of 3D objects, an object may be
regarded as a distribution f (x, y , z) ∈ R

3,
and the moment μi, j ,k of order n = i+ j +k
in continuous form can be given as:

μi j k =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (x, y ,z)xi y jzkdxdydz.

It is well known, that the complete (in-
finite) set of moments uniquely describes
a distribution and vice versa. In its dis-
crete form, objects are taken as finite point
sets P in 3D, and the moment formula

becomes μi j k = ∑|P |
p=1 xp

i yp
j z p

k . Because

moments are not invariant with respect to
translation, rotation, and scale of the con-
sidered distribution, appropriate normal-
ization should be applied before moment
calculation. When given as a polygon
mesh, candidates for input to moment cal-
culation are the mesh vertices, the centers
of mass of triangles, or other object points
sampled by some scheme. A FV can then be
constructed by concatenating several mo-
ments, for example, all moments of order
up to some n.

Studies that employ moments as de-
scriptors for 3D retrieval include Vranić
and Saupe [2001a] where moments are
calculated for object points sampled

ACM Computing Surveys, Vol. 37, No. 4, December 2005.



Feature-Based Similarity Search in 3D Object Databases 359

uniformly with a ray-based scheme (see
Section 3.3.1), and Paquet et al. [2000]
where moments are calculated from the
centers of mass (centroids) of all ob-
ject faces (see Section 3.2.5). Vranić and
Saupe [2001a] compare the retrieval per-
formance of ray-based with centroid-based
moments and conclude that the former are
more effective. Another publication that
proposed the usage of moments for 3D re-
trieval is Elad et al. [2002]. Here, the au-
thors uniformly sample a certain number
of points from the object’s surface for mo-
ment calculation. Special to their analysis
is the usage of relevance feedback to adjust
the distance function employed on their
moment-based descriptor. While in most
systems a static distance function is em-
ployed, here it is proposed to interactively
adapt the metric. A user performs an ini-
tial query using a feature vector of sev-
eral moments under the Euclidean norm.
She marks relevant and irrelevant objects
in a prefix of the complete ranking. Then,
via solving a quadratic optimization prob-
lem, weights are calculated that reflect the
feedback so that, in the new ranking using
the weighted Euclidean distance, relevant
and irrelevant objects (according to the
user input) are discriminated by a fixed
distance threshold. The user is allowed to
iterate through this process until a satis-
factory end result is obtained. The authors
conclude that this process is suited to im-
prove search effectiveness.

3.2.4. Shape Distribution. Osada et al.
[2002] propose describing the shape of
a 3D object as a probability distribution
sampled from a shape function, which
reflects geometric properties of the ob-
ject. The algorithm calculates histograms
called shape distributions and estimates
similarity between two shapes by any met-
ric that measures distances between dis-
tributions (e.g., Minkowski distances). De-
pending on the shape function employed,
shape distributions possess rigid trans-
formation invariance, robustness against
small model distortions, independence of
object representation, and efficient com-
putation. The shape functions studied by

Fig. 9. D2 distance histograms for some example
objects. (Figure adapted from Osada et al. [2002] c©
2002 ACM Press).

the authors include the distribution of an-
gles between three random points on the
surface of a 3D object and the distribu-
tion of Euclidean distances between one
certain fixed point and random points on
the surface. Furthermore, they propose to
use the Euclidean distance between two
random points on the surface, the square
root of the area of the triangle formed by
triples of random surface points, or the
cube root of the volume of the tetrahe-
dron between four random points on the
surface. Where necessary, a normalization
step is applied for differences in scale.

Generally, the analytic computation of
distributions is not feasible. Thus, the au-
thors perform random point sampling of
an object and construct a histogram to
represent a shape distribution. Retrieval
experiments yielded that the best results
were achieved using the D2 distance func-
tion (distance between pairs of points on
the surface, see Figure 9 [Osada et al.
2002].) and using the L1 norm of the prob-
ability density histograms which were nor-
malized by aligning the mean of each of the
two histograms to be compared.

Shape distributions for 3D retrieval
have also been explored in Ip et al. [2002],
Ip et al. [2003], and Ohbuchi et al. [2003].
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3.2.5. Cords-Based Descriptor. Paquet
et al. [2000] present a descriptor that
combines information about the spatial
extent and orientation of a 3D object. The
authors define a cord as a vector that
runs from an object’s center of mass to the
centroid of a face of the object. For all ob-
ject faces, such a cord is constructed. The
descriptor consists of three histograms,
namely, for the angles between the cords
and the object’s first two principal axes,
and for the distribution of the cord length,
measuring spatial extension. The three
histograms are normalized by the number
of cords. Using the principal axes for
reference, the descriptor is invariant to
rotation and translation. It is also invari-
ant to scale as the length distribution is
binned to the same number of bins for
all objects. It can be inferred that the
descriptor is not invariant to nonuniform
tessellation changes.

3.3. Extension-Based Descriptors

3.3.1. Ray-Based Sampling with Spherical
Harmonics Representation. Vranić and
Saupe [2001a, 2002] propose a descriptor
framework that is based on taking sam-
ples from a PCA-normalized 3D object
by probing the polygonal mesh along
regularly spaced directional unit vectors
ui j as defined and visualized in Figure 10.
The samples can be regarded as values
of a function on a sphere (||ui j || = 1).
The so-called ray-based feature vector
measures the extent of the object from
its center of gravity O in directions ui j .
The extent r(ui j ) = ||P (ui j ) − O|| in
direction ui j is determined by finding
the furthest intersection point P (ui j )
between the mesh and the ray emitted
from the origin O in the direction ui j . If
the mesh is not intersected by the ray,
then the extent is set to zero, r(ui j ) = 0.

The number of samples, 4B2 (Figure 10),
should be large enough (e.g., B ≥ 32)
so that sufficient information about the
object can be captured. The samples
obtained can be considered components of
a feature vector in the spatial domain. A
similar FV called Sphere Projection was
considered by Leifman et al. [2003] which

Fig. 10. Determining ray directions u by uniformly
varying spherical angular coordinates θi and ϕ j .

includes a number of empirical studies,
showing good performance with respect
to to a ground truth database of VRML
models collected from the Internet.

Nonetheless, such a descriptor consists
of a large dimensionality. In order to char-
acterize many samples of a function on a
sphere by just a few parameters, spherical
harmonics [Healy et al. 2003] are pro-
posed as a suitable tool. The magnitudes
of complex coefficients, which are obtained
by applying the fast Fourier transform
on the sphere (SFFT) to the samples, are
regarded as vector components. Thus, the
ray-based feature vector is represented
in the spectral domain where each vector
component is formed by taking into
account all original samples. Bearing in
mind that the extent function is a real-
valued function, the magnitudes of the
obtained coefficients are equal pairwise.
Therefore, vector components are formed
by using magnitudes of nonsymmetric
coefficients. Also, an embedded multires-
olution representation of the feature can
easily be provided. A useful property of
the ray-based FV with spherical harmonic
representation is invariance with respect
to rotation around the z-axis (when
the samples are taken as depicted in
Figure 10). The inverse SFFT can be
applied to a number of the spherical
harmonic coefficients to reconstruct an
approximation of the underlying object at
different levels (see Figure 11). Besides
considering the extent as a feature aimed
at describing 3D-shape, the authors con-
sider a rendered perspective projection
of the object on an enclosing sphere. The
scalar product x(u) = |u · n(u)|, where
n(u) is the normal vector of the polygon
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Fig. 11. Ray-based feature vector (left). The right illustration shows the back-transform of
the ray-based samples from frequency to spatial domain.

that contains the point O + r(u)u (if
r(u) > 0), can be regarded as information
about shading at the point (θ , ϕ) on the
enclosing sphere. A shading-based FV is
generated analogously to the ray-based
FV by sampling the shading function,
applying the SFFT, and taking the mag-
nitudes of low-frequency coefficients as
vector components. An extension to using
either r(u) or x(u), and also the combi-
nation of both measures in a complex
function y(u) = r(u)+i ·x(u), is considered
by the authors and called the complex FV.
The authors demonstrate experimentally
that this combined FV in spherical har-
monics representation outperforms both
the ray-based and the shading-based FVs
in terms of retrieval effectiveness.

3.3.2. Extensions for Ray-Based Sampling.
Vranić [2003] further explores an im-
provement of the ray-based methods pre-
viously described. Particularly the author
proposes not to restrict the sampling at
each ray to the last intersection point with
the mesh, and also to consider interior in-
tersection points of the ray with model
surfaces. This is implemented by using
concentric spheres centered at the model
origin and with uniformly varying radii
and associating all intersection points be-
tween rays and the mesh, each to the clos-
est sphere. For each ray and each sphere
radius, the largest distance between the
origin and the intersection points asso-
ciated with the respective ray and ra-
dius is set as the sampling value if such
a point exists (otherwise, the respective
sampling value is set to zero). The au-
thor thereby obtains samples of functions

on multiple concentric spheres. He defines
two FVs by applying the spherical Fourier
transform on these samples and extract-
ing FV components from either the en-
ergy contained in certain low frequency
bands (RH1 FV) as done in the approach
by Funkhouser et al. [2003] and described
in Section 3.4.6, or from the magnitudes of
certain low frequency Fourier coefficients
(RH2 FV). While RH2 relies on the PCA for
pose estimation and includes orientation
information, RH1 is rotation invariant by
definition, discarding orientation informa-
tion. The author experimentally evaluates
the retrieval quality of these two descrip-
tors against the ray-based FV in spher-
ical harmonics representation described
previously, and against the FV defined by
Funkhouser et al. [2003]. From the re-
sults, the author concludes that (1) RH1
outperforms the implicitly rotation invari-
ant FV based on the spherical harmonics
representation of a model voxelization (see
Section 3.4.6), implying that the SFT is ef-
fective in filtering high frequency noise,
and (2) that RH2 and the ray-based FV,
both relying on PCA, outperform the other
two FVs, implying that including orien-
tation information using the PCA in FVs
may positively affect object retrieval on av-
erage. As a further conclusion, the author
states that RH2 performs slightly better
than the ray-based FV, implying that con-
sidering interior model information can
increase retrieval effectiveness.

3.4. Volume-Based Descriptors

3.4.1. Discretized Model Volume. A class
encompassing several 3D descriptors that
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Fig. 12. Shells and sectors as basic space decompositions for shape his-
tograms. In each of the 2D examples, a single bin is marked.

are all derived from some form of volumet-
ric discretization of the models is reviewed
next. Here, the basic idea is to construct a
feature vector from a model by partition-
ing the space in which it resides, and then
aggregating the model content that is lo-
cated in the respective partitioning seg-
ments to form the components of feature
vectors. Unless otherwise stated, these
descriptors rely on model normalization,
usually with PCA methods, to approxi-
mately provide comparability between the
spatial partitions of all models.

3.4.2. Shape Histograms. Ankerst et al.
[1999a] studied classification and similar-
ity search of 3D objects modeled as point
clouds. They describe 3D object shapes as
histograms of point fractions that fall into
partitions of the enclosing object space un-
der different partitioning models. One de-
composition is the shell model which par-
titions the space into shells concentric to
the object’s center of mass, keeping radii
intervals constant. The sector model de-
composition uses equally-sized segments
obtained by forming Voronoi partitions
around rays emitted from the model ori-
gin and pointing to the vertices of an en-
closing regular polyhedron. Finally, a com-
bined model uses the intersection of shells
and sectors, see Figure 12 for an illus-
tration. While the shell model is inher-
ently rotation invariant, the sector and the
combined models rely on rotational object
normalization. The authors propose the
quadratic form distance for similarity esti-
mation in order to reflect cross-similarities
between histogram bins. Experiments are

conducted in a molecular classification set
up and good discrimination capabilities
are reported for the high-dimensional sec-
tor (122-dim) and combination (240-dim)
models, respectively.

3.4.3. Rotation Invariant Point Cloud Descrip-
tor. Kato et al. [2000] present a descriptor
that relies on PCA registration but, at the
same time, is invariant to rotations of 90
degrees along the principal axes. To con-
struct the descriptor, an object is placed
and oriented into the canonical coordinate
frame using PCA and scaled to fit into
a unit cube with its origin at the cen-
ter of mass of the object and perpendic-
ular to the principal axes. The unit cube
is then partitioned into 7 × 7 × 7 equally-
sized cube cells, and for each cell, the fre-
quency of points regularly sampled from
the object surface and which lie in the re-
spective cell, is determined. To reduce the
size of the descriptor, which until now con-
sists of 343 values, all grid cells are asso-
ciated with one of 21 equivalence classes
based on their location in the grid. To this
end, all cells that coincide when perform-
ing arbitrary rotations of 90 degrees along
the principal axes are grouped together
in one of the classes (see Figure 13 [Kato
et al. 2000] for an illustration). For each
equivalence class, the frequency data con-
tained in the cells belonging to the respec-
tive equivalence class is aggregated, and
the final descriptor of dimensionality 21 is
obtained. The authors presented retrieval
performance results on a 3D database, on
which 7×7×7 was found to be the best grid
dimensionality, but state that, in general,
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Fig. 13. Aggregating object geometry in equivalence classes defined on a 3×3×3
grid. (Figure taken from Kato et al. [2000] c© 2000 IEEE).

the optimal size of the descriptor depends
on the specific database characteristics.

3.4.4. Model Voxelization. Vranić and
Saupe [2001b] present a FV, based on the
rasterization of a model into a voxel grid
structure and experimentally evaluate
the representation of this FV in both
the spatial and the frequency domain
(see Figure 14). The voxel descriptor is
obtained by first subdividing the bound-
ing cube of an object (after PCA-based
rotation normalization) into n × n × n
equally-sized voxel cells. Each of these
voxel cells vij k , i, j , k ∈ {1, . . . , n} then

stores the fraction pij k = Sij k

S of the object

surface area Sij k that lies in voxel vij k ,
where S = ∑n

i=1

∑n
j=1

∑n
k=1 Sij k is the

total surface area of the model. In order
to compute the value of Sij k , each model
triangle Ti (i = 1, . . . , m) is subdivided
into l2

i (l ∈ N) coincident triangles, where

the value of l2
i is proportional to the area

of T . The value of STi /l2
i (STi is the area of

triangle Ti) is the attribute of the centers
of gravity of the triangles obtained by the
subdivision. Finally, the value of Sij k is
approximated by summing up attributes
of centroids lying in the corresponding
voxel cell. The object’s voxel cell occupan-
cies constitute the FV of dimension n3. For
similarity estimation with this FV, a met-
ric can be defined in the spatial domain
(voxel), or after a 3D Fourier-transform
in the frequency domain (3DDFT). Then,
magnitudes of certain k low-frequency

Fig. 14. The voxel-based feature vector compares
occupancy fractions of voxelized models in the spatial
or frequency domain.

coefficients are used for description,
enabling multiresolution search.

Using octrees for 3D similarity search
was also recently proposed by Leifman
et al. [2003] where the similarity of two ob-
jects is given by the sum of occupancy dif-
ferences for each nonempty cell pair of the
voxel structure. The authors report good
retrieval capabilities of this descriptor.

3.4.5. Voxelized Volume. In the preceding
section, an object was considered as a col-
lection of 2D-polygons, that is, as a surface
in 3D. This approach is the most general
applying to unstructured “polygon soups.”
In the case of polygons giving rise to a
watertight model, one may want to use the
enclosed volume to derive shape descrip-
tors. Such schemes require an additional
preprocessing step after pose normal-
ization, namely the computation of a 3D
bitmap that specifies the inside/outside
relation of each voxel with respect to the
enclosed volume of the polygonal model.
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Several methods for similarity estimation
based on voxelized volume data of normal-
ized models have been proposed. Paquet
et al. [2000] and Paquet and Rioux [2000]
propose a descriptor that characterizes
voxelized models by statistical moments
calculated at different levels of resolution
of the voxel grid and where the different
resolutions are obtained by applying the
Daubechies D4 wavelet transform on
the 3D grid. Keim [1999] describes a
similarity measure based on the amount
of intersection between the volumes of
two voxelized 3D objects.

Novotni and Klein [2001b] proposed
using the minimum of the symmetric
volume differences between two solid
objects obtained when considering differ-
ent object alignments based on principal
axes in order to measure volume simi-
larity. The authors also give a technique
that supports the efficient calculation of
symmetric volume differences based on
the discretization of volumes into a grid.
Sánchez-Cruz and Bribiesca [2003] report
a scheme for optimum voxel-based trans-
formation from one object into another
one which can be employed as a measure
of object dissimilarity.

Another volume-based FV is presented
in Heczko et al. [2002]. In order to re-
move the topological requirement of a wa-
tertight model the volume of a given 3D-
model specified by a collection of polygons
is defined in a different way. Each poly-
gon contributes a (signed) volume given
by the tetrahedron that is formed by con-
sidering the center of mass of all poly-
gons as a vertex for a polyhedron with the
given polygon as a base face. The sign is
chosen according to the normal vector for
the polygon given by the model. The space
surrounding the 3D models is partitioned
into sectors similar to the method in Sec-
tion 3.4.2 and, in each sector, the (signed)
volumes of the intersection with a gener-
ated polyhedra is accumulated and gives
one component of the FV. The partitioning
scheme is as follows. The six surfaces of an
object’s bounding cube are equally divided
into n2 squares each. Adding the object’s
center of mass to all squares, a total of
6n2 pyramid-like segments in the bound-

Fig. 15. Volume-based feature vector.

ing cube is obtained. For similarity search
either the volumes occupied in each seg-
ment or a number of k first coefficients
after a Fourier transform is considered.
Figure 15 illustrates the idea in a 2D
sketch. Experimental results with this de-
scriptor are presented in Section 4. It
performs rather poorly which may be at-
tributed to the fact that the retrieval
database used does not guarantee consis-
tent orientation of the polygons.

Kriegel et al. [2003] present another
approach for describing voxelized objects.
The cover sequence model approximates a
voxelized 3D object using a sequence of
grid primitives (called covers) which are
basically large parallelepipeds. The qual-
ity of a cover sequence is measured as the
symmetric volume difference between the
original voxelized object and the sequence
of grid primitives. The sequence is de-
scribed as the set of unions or differences
of the covers, and then each cover of the se-
quence contributes six values for the final
descriptor (three values for describing the
position of the cover, and three values for
describing the extension of the cover). The
main problem is the ordering of the cov-
ers in the sequence: two voxelized objects
that are similar may produce features that
are distant from one and other, depend-
ing on the ordering of the covers. To over-
come this problem, the authors propose to
use sets of FVs (one FV for each cover) to
describe the 3D objects and to compute a
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Fig. 16. Descriptor extraction process for the harmonics 3D descriptor. (Figure taken from Funkhouser et al.
[2003] c© 2003 ACM Press).

similarity measure between two sets of
FVs that ensures that the optimal se-
quence of covers, the one that produces the
minimal distance between the two objects,
will always be considered.

3.4.6. Rotation Invariant Spherical Harmonics
Descriptor. Funkhouser et al. [2003] pro-
pose a descriptor also based on the spher-
ical harmonics representation of object
samples (see Figure 16). The main differ-
ence between this approach and the one
reported in Section 3.3.1, apart from the
sampling function chosen, is that, by de-
scriptor design, it provides rotation invari-
ance without requiring pose estimation.
This is possible since the energy in each
frequency band of the spherical transform
is rotation invariant [Healy et al. 2003].

Input to their transform is the binary
voxelization of a polygon mesh into a grid
with dimension 2R ∗ 2R ∗ 2R, where each
occupied voxel indicates the intersection
of the mesh with the respective voxel. To
construct the voxelization, the object’s cen-
ter of mass is translated into grid posi-
tion (R, R, R) (grid origin), and the ob-
ject is scaled so that the average distance
of occupied voxels to the center of mass

amounts to R
2

, that is, 1
4

of the grids edge
length. By using this scale instead of scal-
ing it so that the bounding cube fits into
the grid, it is possible to lose some ob-
ject geometry in the description. On the
other hand, sensitivity with respect to out-
liers is expected to be reduced. The 8R3

voxels give rise to a binary function on
the corresponding cube which is written in
spherical coordinates as fr (θ , φ) with the

origin (r = 0) placed at the cube center.
The binary function is sampled for radii
r = 1, 2, . . . , R and a sufficient number
of angles θ , φ to allow computation of the
spherical harmonics representation of the
spherical functions fr . The feature vector
consists of low-frequency band energies of
the functions fr , r = 1, . . . , R. By con-
struction, it is invariant with respect to
rotation around the center of mass of the
object.

The authors presented experimental re-
sults conducted on a database of 1,890
models that were manually classified,
comparing the harmonics 3D descriptor
with the shape histogram (see Section
3.4.2), shape distribution D2 (see Sec-
tion 3.2.4), EGI (see Section 3.5.3), and a
moment-based (see Section 3.2.3) descrip-
tor. The experiments indicated that their
descriptor consistently outperformed the
other descriptors which among other ar-
guments was attributed to discarding ro-
tation information.

A generalization of this approach con-
sidering the full volumetric model infor-
mation was introduced in Novotni and
Klein [2003, 2004]. The authors form
rotational-invariant descriptors from 3D
Zernike moments obtained from appropri-
ately voxelized mesh models. The authors
present the mathematical framework and
discuss implementation specifics. From
analysis and experiments, they concluded
that, by considering the integral of the
volumetric information in extension to
just sampling it on concentric spheres,
retrieval performance may be improved,
and, at the same time, a more compact de-
scriptor is obtained.
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3.4.7. Reflective Symmetry Descriptor.
Kazhdan et al. [2003] present a descriptor
that is based on global object symmetry.
The method is based on a function on
the unit sphere that measures reflective
symmetry between two parts of an object
lying on the opposite sides of a cutting
plane. The cutting plane contains the
center of gravity of the object, while the
normal vector is determined by a point
on the unit sphere. The main idea of
the approach is that the shape of an
object may be characterized by using an
appropriate measure of symmetry and
by sampling the corresponding function
at a sufficient number of points. Briefly,
for a given cutting plane, the reflective
symmetry is computed using a function
f on concentric spheres. The function
f is defined by sampling a voxel-based
representation of the object. The voxel
attributes are defined using an expo-
nentially decaying Euclidean distance
transform. The reflective symmetry mea-
sure describes the proportion of f that
is symmetric with respect to the given
plane and the proportion of f that is
antisymmetric. The symmetric proportion
is obtained by projecting the function f
onto the space π of functions invariant
under reflection about the given plane and
by computing the L2 distance between the
original function and the projection. The
antisymmetric proportion is calculated in
a similar manner, by projecting f onto
the space π⊥ that is orthogonal to π and
by computing the L2 distance between f
and the projection. Since the reflective
symmetry measure is determined by
analyzing the whole object, a sample
value of the function on the unit sphere
gives information about global symmetry
with respect to a given plane.

For 3D retrieval, the similarity between
objects is estimated by the L∞ norm be-
tween their reflective symmetry descrip-
tions. Analytically and experimentally, the
authors show the main properties of this
approach to be stability against high-
frequency noise, scale invariance, and ro-
bustness against the level of detail of
the object representation. Considering re-
trieval power, the algorithm is experimen-

Fig. 17. Visualization of the reflective symmetry
measure (lower row) for certain objects (upper row).
The extension in direction u indicates the degree of
symmetry with respect to the symmetry plane per-
pendicular to u. (Figure taken from Kazhdan et al.
[2003] c© 2003 Springer-Verlag with kind permission
of Springer Science and Business Media.)

tally shown to be orthogonal to some ex-
tent to other descriptors, in the sense
that overall retrieval power is increased
when combining it with other descriptors.
Figure 17 [Kazhdan et al. 2003] shows an
example of reflective symmetry measures
for several objects.

3.4.8. Point Sets Methods. The weighted
point set method [Tangelder and Veltkamp
2003] compares two 3D objects repre-
sented by polyhedral meshes. A shape sig-
nature of the 3D object is defined as a
set of points that consists of weighted
salient points from the object. The first
step of the algorithm is to place the 3D
object into a canonical coordinate system
which is established by means of the PCA
and to partition the object’s bounding cube
into a rectangular voxel grid. Then, for
each nonempty grid cell, one representa-
tive vertex as well as an associated weight
are determined by one of three methods
explored by the authors. In the first pro-
posed method, for each nonempty cell, one
of the contained points is selected based
on the Gaussian curvature at the respec-
tive point and the Gaussian curvature is
associated with that point. The two other
proposed methods average over the ver-
tices of a cell, and associate either a mea-
sure for the normal variation or the unit
weight. The latter method is given in or-
der to be able to support meshes with
inconsistent polygon orientation because
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Fig. 18. Shape index values for some elementary shapes. (Figure taken from Zaharia and Prêteux [2001]
c© 2001 SPIE).

then curvature and normal variation can-
not be determined meaningfully. A varia-
tion of the Earth’s Mover Distance (EMD)
[Rubner et al. 1998], 1 the so-called pro-
portional transportation distance (PTD),
is introduced as the similarity function
to compare two weighted point sets. The
PTD is described as a linear program-
ming problem that can be solved, for ex-
ample, using the simplex algorithm. The
authors state that the PTD is a pseudo-
metric which makes it suitable to use for
indexing purposes (in contrast, the EMD
does not obey the triangle inequality). Ex-
periments were performed which indicate
competitive retrieval performance, but no
clear winner could be identified among the
three proposed weighing methods.

Another approach that matches sets of
points was introduced in Shamir et al.
[2003]. There, the point sets to be matched
are obtained for each 3D model by decom-
posing the model into a coarse-to-fine hi-
erarchy of an elementary shape (spheres).
The point sets, therefore, consist of sphere
radii and associated centers and can be
matched by a custom coarse-to-fine al-
gorithm involving exhaustive search on
a coarse level and graph matching tech-
niques on finer levels in the multiresolu-
tion representation.

3.5. Surface Geometry-Based Descriptors

In this Section, we present 3D descriptors
that are based on object surface measures.
These surface measures include surface
curvature measures as well as the distri-
bution of surface normal vectors.

1The basic idea of the earth movers distance is to
measure the distance between two histograms by
solving the transportation problem of converting one
histogram into the other.

3.5.1. Surface Normal Directions. Paquet
and Rioux [2000] consider histograms of
the angles enclosed between each of the
first two principal axes and the face nor-
mals of all object polygons. Straightfor-
ward, it is possible to construct either
one unifying histogram, or two separate
histograms for the distribution with re-
spect to each of the two first principal
axes, or a bivariate histogram which re-
flects the dependency between the angles.
Intuitively, the bidimensional distribution
contains the most information. Still, such
histograms are sensitive to the level of
detail by which the model is repre-
sented. An illustrative example is given
by the authors that presents two pyra-
mids with the sides of one of them
formed by inclined planes and the other
formed by a stairway-like makeup. Ob-
viously, the angular distributions of the
two pyramids will differ tremendously,
while their global shape might be quite
similar.

3.5.2. Surface Curvature. Zaharia and
Prêteux [2001] present a descriptor
for 3D retrieval proposed within the
MPEG-7 framework for multimedia con-
tent description. The descriptor reflects
curvature properties of 3D objects. The
shape spectrum FV is defined as the
distribution of the shape index for points
on the surface of a 3D object which is a
function of the two principal curvatures.
The shape index is a scaled version of the
angular coordinate of a polar representa-
tion of the principal curvature vector, and
it is invariant with respect to rotation,
translation and scale by construction.
Figure 18 [Zaharia and Prêteux 2001]
illustrates some elementary shapes with
their corresponding shape index values.
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Fig. 19. Mapping from object normals to the Gaussian sphere.

Because the shape index is not defined
for planar surfaces, but 3D objects are
usually approximated by polygon meshes,
the authors suggest approximating the
shape index by fitting quadratic surface
patches to all mesh faces based on the
respective face and adjacent faces and
using this surface for shape index cal-
culation. To compensate for potential
estimation unreliability due to (near)
planar surface approximations and (near)
isolated polygonal face areas, these are
excluded from the shape index distri-
bution based on a threshold criterion,
but the relative area of the sum of such
problematic surface regions is accumu-
lated in two additional attributes named
planar surface and singular surface,
respectively. These attributes, together
with the shape index histogram, form the
final descriptor. Experiments conducted
by the authors with this descriptor on
several 3D databases quantitatively show
good retrieval results.

Surface curvature as a description for
3D models was also considered by Shum
et al. [1996]. In this work, the models
were resampled by fitting a regularly
tessellated spherical polygon mesh onto
the model. Then, the curvature was
determined for each vertex of the fitted
spherical mesh based on the vertex’
neighbor nodes. Finally, the similarity
measure between two models was ob-
tained by minimizing an l p norm between
their curvature maps over all rotations

of the map, thereby supporting rotation
invariance.

3.5.3. Extended Gaussian Image. The dis-
tribution of the normals of the polygons
that form a 3D object can be used to de-
scribe its global shape. One way to rep-
resent this distribution is using the Ex-
tended Gaussian Image (EGI) [Horn 1984;
Ip and Wong 2002]. The EGI is a mapping
from the 3D object to the Gaussian sphere
(see Figure 19). To compute the EGI of a
3D object, the normal vectors of all poly-
gons of the 3D objects are mapped onto the
respective point of the Gaussian sphere
that has the same normal as the polygon.
To build a descriptor from this mapping,
the Gaussian sphere is partitioned into
R × C cells (by using R different longi-
tudes and C−1 different latitudes), where
each cell corresponds to a range of normal
orientations. The number of mapped nor-
mals on cell ci j gives the value of this cell.
All cell’s values are mapped to a R×C ma-
trix which is called the signature of the 3D
object. The similarity between two object
signatures a and b is given by sim(a, b) =∑R

i=1

∑C
j=1

(∣∣aij − bij
∣∣ /

∣∣aij + bij
∣∣) [Ip and

Wong 2002]. The EGI is scale and
translation invariant, but it requires
rotational normalization. Retrieval per-
formance studies were performed in
Kazhdan et al. [2003] and Funkhouser
et al. [2003]. Also, its performance was
evaluated in recognition of aligned human
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head models in Ip and Wong [2002]. There
is also a complex version of the EGI (CEGI)
[Kang and Ikeuchi 1993] which associates
a complex weight to each cell of the EGI.

3.5.4. Shape Descriptor Based on the 3D
Hough Transform. Zaharia and Prêteux
[2002] presents a descriptor based on
the 3D Hough transform, the so-called
canonical 3D Hough transform descrip-
tor (C3DHTD). The basic idea of the
3D Hough transform is to accumulate
three-dimensional points within a set of
planes. These planes are determined by
parametrizing the space using spherical
coordinates (e.g., a distances from the ori-
gin, b azimuth angles, and c elevation an-
gles, thus obtaining a · b · c planes). Each
triangle t of the object contributes to each
plane p with a weight equal to the projec-
tion area of t on p but only if the scalar
product between the normals of t and p is
higher than a given threshold.

Rotation invariance for this descriptor
is approximated by normalizing the 3D
object with PCA, determining its princi-
pal axes, and using its center of gravity
as the origin of the coordinate system for
the Hough transform. However, it is ar-
gued that PCA may fail to provide the
correct orientation of a 3D object by just
labeling the principal axes according to
the eigenvalues (in ascending or descend-
ing order). For this reason, the 48 possible
Hough transforms (one for each possible
PCA-based coordinate system) are aggre-
gated into the descriptor.

The direct concatenation of 48 descrip-
tors would lead to a high complexity
in terms of descriptor size and match-
ing computation time. To solve this prob-
lem, the authors propose to partition the
unit sphere by projecting the vertices of
any regular polyhedron. This partition-
ing schema is then used as parametriza-
tion of the space. Then they show how
to derive all Hough transforms from just
one of them which is then called the gen-
erating transform. The similarity mea-
sure between two canonical 3DHT de-
scriptors from objects q and r, hq and
hr , respectively, is defined as d (hq , hr ) =

Fig. 20. Silhouettes of a 3D models. Note that, from
left to right, the viewing direction is parallel to the
first, second, and third principal axes of the model.
Equidistant sampling points are marked along the
contour.

min1≤i≤48

{∣∣∣∣hq − hi
r

∣∣∣∣}, where the set {hi
r}

corresponds to one of the 48 possible 3D
Hough transforms of object r, and || · || de-
notes the L1 or L2 norm. Retrieval exper-
iments were conducted, contrasting the
proposed descriptor with the shape spec-
trum (cf. Section 3.5.2) and EGI (cf. Section
3.5.3) descriptors, attributing best perfor-
mance to the C3DHT descriptor.

3.6. Image-Based Descriptors

In the real world, spatial objects, apart
from means of physical interaction, are
recognized by humans in the way they
are visually perceived. Therefore, a natu-
ral approach is to consider 2D projections
of spatial objects for similarity estimation.
Thereby the problem of 3D retrieval is
reduced to one in two dimensions where
techniques from image retrieval can be ap-
plied. One advantage of image-based re-
trieval methods over most of the other de-
scriptors is that it is straightforward to
design query interfaces where a user sup-
plies a 2D sketch which is then input into
the search algorithm [Funkhouser et al.
2003; Löffler 2000]. The problem of ro-
tational invariance can again be solved
by either rotational normalization prepro-
cessing, by using rotational-invariant fea-
tures, or by matching over many different
alignments simultaneously.

3.6.1. Description with Silhouettes. A met-
hod called silhouette descriptor [Heczko
et al. 2002] characterizes 3D objects in
terms of their silhouettes that are ob-
tained by parallel projections. The objects
are first PCA-normalized and scaled into
a unit cube that is axis-parallel to the
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Fig. 21. Depth buffer-based feature vector. The first row of images shows the
depth buffers of a car model. Darker pixels indicate that the distance between
view plane and object is smaller than at brighter pixels. The second row shows
coefficient magnitudes of the 2D Fourier transform of the six images.

principal axes. Then, parallel projections
onto three planes each orthogonal to one of
the principal axes are calculated. The au-
thors propose to obtain descriptors by con-
catenating Fourier descriptors of the three
resulting contours. To obtain the descrip-
tors, a silhouette contour is scanned by
placing equally-spaced, sequential points
onto the contour. The sequence of centroid-
distances of the (ordered) contour points
is Fourier transformed, and magnitudes
of a number of low-frequency Fourier co-
efficients contribute to the feature vector.
Via PCA preprocessing, the Silhouette de-
scriptor is pose and scale invariant. Figure
20 illustrates the contour images of a car
object.

Experimental results on the retrieval
effectiveness of this descriptor were pub-
lished in Vranic [2004] and some results
are also given in Section 4 of this survey.
Song and Golshani [2002] also address the
usage of projected images for 3D retrieval.
The authors propose to render object im-
ages from certain directions and to employ
various distance functions on resulting
image pairs, for example, based on circu-
larity measures from the projections or
distances between vectors of magnitudes
after Fourier transform. Further work on
image-based retrieval methods has been
reported in Ansary et al. [2004], Löffler
[2000], and Cyr and Kimia [2004].

3.6.2. Description with Depth Information.
Another image-based descriptor was pro-
posed in Heczko et al. [2002] and further
discussed in Vranic [2004]. The so-called
depth buffer descriptor starts with the

same setup as the silhouette descriptor:
the model is oriented and scaled into the
canonical unit cube. Instead of three sil-
houettes, six grey-scale images are ren-
dered using parallel projection, two each
for each of the principal axes. Each pixel
encodes in an 8-bit grey value the dis-
tance from the viewing plane (i.e., sides
of the unit cube) of the object. These im-
ages correspond to the concept of z- or
depth-buffers in computer graphics. Af-
ter rendering, the six images are trans-
formed using the standard 2D discrete
Fourier transform, and the magnitudes of
certain k first low-frequency coefficients
of each image contribute to the depth
buffer feature vector of dimensionality 6k.
An illustration of this method is given in
Figure 21.

From our own experimental results (see
Vranic [2004] as well as Section 4.2 in
this article), we conclude that the depth
buffer has good retrieval capability and
is able to outperform other descriptors on
our benchmarking database.

Figure 21 shows the depth buffer ren-
derings of a car object as well as a visu-
alization of the respective Fourier trans-
forms.

3.6.3. Lightfield Descriptor. Chen et al.
[2003] proposed a descriptor based on
images from many different viewing
directions. The authors define the Light-
Field descriptor as certain image features
extracted from a set of silhouettes that
are obtained from parallel projections of
a 3D object. A camera system is defined
where a camera is located on each of
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Fig. 22. The LightField descriptor determines similarity between 3D objects by
the maximum similarity when aligning sets of projections obtained from an array
of cameras surrounding the object. (Figure taken from Chen et al. [2003] c© 2003
Blackwell Publishing).

the vertices of a dodecahedron which is
centered at the object’s center, completely
surrounding the object (see Figure 22
[Chen et al. 2003]). The cameras’ viewing
directions point towards the center of the
dodecahedron and the camera up-vector
is uniquely defined. Considering parallel
projections, due to symmetries, at most 10
unique silhouettes result from one such
camera system. The similarity between
two objects is then defined as the mini-
mum of the sum of distances between all
corresponding image pairs when rotating
one camera system relative to the other,
covering all 60 possible alignments of the
camera systems. To further support the
rotation invariance of this method, the
authors consider not just one, but ten im-
ages per dodecahedron vertex obtained by
uniformly varying all camera positions in
the neighborhood of the vertex. For a full
object-to-object comparison run, this leads
to 5, 460 rotations of one camera system
in order to determine the final distance.

The image metric employed to compare
each image pair is the l1 norm over a vec-
tor of coefficients composed of 35 Zernike
moments and 10 Fourier coefficients ex-
tracted from the rendered silhouettes. For
online retrieval purposes, this rather ex-
pensive algorithm is accelerated by a mul-
tistage filter-and-refinement process. This
process gradually increases the number of

rotations, images and vector components
as well as the component quantization ac-
curacy that are considered in each refine-
ment iteration, discarding all the objects
that exhibit a distance greater than the
mean distance between the query object
and all objects of the database. From ex-
periments conducted by the authors as
well as those presented in Shilane et al.
[2004], it can be concluded that the re-
trieval quality of this method is excellent,
and that it outperforms a range of other
methods presented.

3.7. Nonfeature Vector Matching Techniques

Until now, we have reviewed 3D descrip-
tors based on rather fast and easy to
extract vectors of real-valued measures
(feature vectors) defined on model char-
acteristics such as spatial extent, surface
curvature, 2D projections, and so on.
While the feature vector approach is prac-
tical for application on large databases
of 3D objects, other paradigms for object
description and matching, that originate
from computer vision and shape analysis
exist. While very powerful, methods
from these fields usually are compu-
tationally more complex, may lead to
representations other than real vectors,
and demand for customized distance
functions.
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Graphs are a natural choice to cap-
ture model topology but they often
involve complex extraction algorithms
and matching strategies. Graphs have
been derived from model surface [Hi-
laga et al. 2001; McWherter et al. 2001;
McWherter et al. 2001] and volumet-
ric [Sundar et al. 2003] properties of
3D models. Similarity calculation can
proceed on the graphs themselves via
customized graph matching approaches
[Hilaga et al. 2001; Bespalov et al. 2003] or
via numeric descriptions of the graphs ob-
tained, for example, using spectral theory
[McWherter et al. 2001] or combinations
of both methods. In Sections 3.7.1 and
3.7.2, we exemplarily recall two graph-
based techniques, noting that a growing
body of work exists in this area [Bespalov
et al. 2003; Biasotti et al. 2003].

Besides graphs and feature vectors, cus-
tomized numeric data structures have
been proposed for 3D description and re-
trieval such as the Spin Images recalled in
Section 3.7.3.

While all of these methods introduce
interesting matching concepts, their ap-
plication to large databases of general 3D
objects raises problems due to complexity
issues or certain restrictions imposed on
the types of 3D models supported.

3.7.1. Topological Matching. Hilaga et al.
[2001] present an approach to describe the
topology of 3D objects by a graph structure
and show how to use it for matching and
retrieval. The algorithm is based on con-
structing so-called Reeb graphs from the
models which can be interpreted as infor-
mation about the skeletal structure of an
object. The basic idea is to partition the ob-
ject into connected portions by analyzing
a function μ that is defined over the en-
tire object’s surface. Informally, the Reeb
graph generated from a 3D object is made
up of nodes that represent portions of the
object for which μ assumes values ranging
in certain value intervals. Parent-child re-
lationships between nodes represent ad-
jacent intervals of these function values
for the contained object parts. For comput-
ing the similarity of two objects, the au-

thors propose comparing the topology of
the objects respective Reeb graphs as well
as similarities between the mesh proper-
ties of the model parts that are associated
with corresponding graph nodes.

Defining a suited function μ is criti-
cal to the construction of graphs suited
for object analysis and matching. For ex-
ample, the height function h(x, y , z) = z
that returns the height of a surface at po-
sition (x, y) is suited to analyze terrain
data where orientation is well-defined. To
be rotation, translation, and scale invari-
ant, Hilaga et al. [2001] propose using the
appropriately normalized sum of geodesic
distances between a unique central point
and all other points of the model surface
as the function μ. Intuitively, if for a point
p of the objects surface, μ(p) is relatively
low, p is expected to be closer to the center
of the object, while points on the object’s
periphery would possess higher function
values. To construct the final descriptor
for an object, the range of possible function
values is discretized into a number of bins.
For each bin, the restriction of the object
to the parts containing μ-values in the re-
spective bin, topologically connected sub-
parts are identified and aggregated into
a node of the Reeb graph each. By merg-
ing the nodes belonging to adjacent bins, a
given Reeb graph is recursively condensed
into coarser Reeb graphs and the so-called
multiresolution Reeb graph (MRG) is ob-
tained. The authors give details on com-
puting the descriptor and a coarse-to-
fine MRG matching strategy. Sensitivity
and retrieval experiments are reported,
indicating that the descriptor is useful
for retrieving topologically similar objects
according to human notion. Figure 23
[Hilaqa et al. 2001] schematically illus-
trates construction of a Reeb graph and
visualizes the geodesic distance function
on two similar but deformed objects.

3.7.2. Skeleton-Based Object Matching.
Skeletons derived from solid objects can
be regarded as intuitive object descrip-
tions. They are able to capture important
information about the structure of objects
with applications in, for example, object
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Fig. 23. The construction of several Reeb graphs is shown by recursively refining μ-intervals
(left). The right image visualizes the aggregated, normalized geodesic distance function eval-
uated on two topologically similar objects. (Figure taken from [Hilaga et al. 2001] c© 2001
ACM Press).

analysis, compression, or animation.
In order to use skeletons for 3D object
retrieval, suitable skeletonization algo-
rithms and skeleton similarity functions
have to be defined. In a recent paper,
Sundar et al. [2003] presented a frame-
work for this task. To obtain a thin
skeleton, the authors proposed to first
apply a thinning algorithm on the vox-
elization of a solid object. The method
reduces the model voxels to those voxels
that are important for object reconstruc-
tion as determined by a heuristic that
relates the distance transform value of
each voxel with the mean of the distance
transform values of the voxels among
its 26 neighbors [Gagvani and Silver
1999]. In a second step, the remaining
voxels are clustered, and a minimum
spanning tree is constructed connecting
the voxel clusters. Clustering and con-
necting proceed subject to the condition
of not violating the object boundary. The
resulting tree may be converted to a
directed acyclic graph (DAG) by directing
edges guided by the distance transform
values of the voxels within a cluster.
It may also be converted to a uniquely
rooted tree [Siddiqi et al. 1998]. Having
obtained a DAG, a topological signature
vector (TSV) is associated to each node in
the DAG as a node label which is formed
by sums of eigenvalues of the adjacency
matrices of all subtrees rooted at the
considered node. The TSV is used to
encode structural information about the
subgraph rooted at the respective node.
As another node label, measures for the
distribution of distance transform values
of the respective cluster members are

Fig. 24. A pair of mutually best-matching objects
from a database of about 100 models. (Figure taken
from Sundar et al. [2003] c© 2003 IEEE).

considered. These node labels constitute
the input to a distance function that mea-
sures similarity between individual nodes
in skeletal graphs. The final matching
of two skeletal graphs is performed by
establishing a set of node-to-node corre-
spondences between the graphs based
on a greedy, recursive bipartite graph-
matching algorithm [Shokoufandeh and
Dickinson 2001]. A final measure for the
dissimilarity between two skeletal graphs
may be obtained from the quality of the
node correspondences as determined by
their node label distance.

The authors demonstrated the capabil-
ities of their framework by a number of
matches obtained from querying a test
database (see Figure 24 [Sundar et al.
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Fig. 25. Building a spin image as a histogram of dis-
tances α and β of points in some neighborhood with
respect to basis point p. (Figure taken from Johnson
and Hebert [1998] c© 1998 Elsevier with permission
from Elsevier.)

2003] for an example). They emphasize
the method’s suitability for matching ar-
ticulated objects and also the potential for
finding partial matches between objects.
The approach requires several parameters
to be set, for example, the threshold levels
for thinning and clustering.

3.7.3. Spin-Images. A 3D descriptor
using sets of so-called spin-images to
characterize 3D objects was proposed by
Johnson and Hebert [1999] and, regarding
the matching process, modified in a study
by de Alarcón et al. [2002]. The descriptor
is rotation and translation invariant by
design. It requires a set of points on the
model surface and associated normal
vectors (i.e., an oriented point set O) as
input. The basic idea is to generate a set of
two-dimensional histograms of the object
geometry in the neighborhood of selected
points and to use these descriptions to
search for point-to-point correspondences
between two models. It can also be used
to search for correspondences between a
model and a whole 3D scene. Via refine-
ment steps, a final measure for similarity
between parts of an object or two objects
as a hole can be generated. We recall the
description generation algorithm in the
following.

For each oi ∈ O, O, for example, cho-
sen as the centers of mass of (oriented)
triangles of a model mesh, a so-called spin-
image Si is generated by accumulating the
output of a mapping R

3 → R
2 in a two–

dimensional index, the spin-image. These
spin-images describe object geometry in

Fig. 26. Selected spin images generated from a 3D
model. (Figure taken from Johnson [1997].

the neighborhood of oi. The set of spin im-
ages gives an object description by a set of
descriptions each local to one point oi from
the object. Given an object point oi and its
associated normal vector ni, the mapping
is performed by building a 2-dimensional
histogram from distances αi, j and βi, j .
αi, j is defined as the distance of all points
o j ∈ O, i �= j to the line L extending ni to
infinity. βi, j is defined as the distance of all
points o j ∈ O, i �= j to the plane through
oi with normal vector ni. The pair of dis-
tance distributions (αi j , βi j ) for a point oi
is then discretized into a two-dimensional
histogram Si, where for each distance bin,
the number of points o j that belong to the
respective bin is recorded. Note that this
mapping is equal to discretizing radius
and elevation components of points o j
in a cylindrical coordinate system given
by origin oi and normal vector ni. Via
thresholding, the relevant neighborhood
around oi is controlled; alternatively, one
may consider the complete object as the
neighborhood. The authors suggest apply-
ing bilinear filtering on the spin-images
in order to reduce the impact of noise.
Scaling invariance is provided by normal-
izing the distance range to unit length.
Figures 25 [Johnson and Hebert 1998]
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and 26 [Johnson 1997] illustrate the spin
images generation process.

Due to potentially high storage and com-
putation overhead when cross-comparing
all spin-images of two objects and also
the presence of redundant information
among close or symmetrically-related spin
images, Johnson and Hebert [1999] sug-
gest performing compression on the set
of an object’s spin images using dimen-
sion reduction. de Alarcón et al. [2002]
propose a two-step data reduction pro-
cess by first clustering a spin-image set
using the self-organizing map (SOM) al-
gorithm to group similar spin images,
followed by application of a clustering
algorithm. This technique is suited to re-
duce the number of required descriptor
comparisons by checking only the spin im-
age prototypes. Also, Assfalg et al. [2004]
suggested spin image postprocessing tech-
niques that help to reduce the number of
spin images used to describe each object.
Particularly, spin images were interpreted
as grey-scale images which could be ef-
ficiently described by a low-dimensional
region-based description scheme from the
content-based image retrieval (CBIR) do-
main. Orthogonally, fuzzy clustering was
proposed to reduce the number of spin im-
ages to a smaller number of prototypes
onto which a sum of cluster distance func-
tion was suggested.

4. COMPARISON BETWEEN 3D
DESCRIPTORS

Comparing the surveyed descriptors is a
difficult task since the amount of technical
details given in the original literature
did vary between different descriptors
and most of the authors did employ
individually compiled benchmarks when
empirically evaluating retrieval precision.
We recognize it is a tremendous task to
(re)produce an objective analytic and
experimental comparison of the wealth
of 3D retrieval methods that is beyond
our resources. What we provide here is
a limited comparison of key features of
the surveyed algorithms as well as an
experimental comparison of the retrieval
performance measured against our own

benchmark of a subset of algorithms of
which we possess implementations.

4.1. Qualitative Comparison

We first summarize the surveyed meth-
ods using the following main algorithm
characteristics.

—Proposed dimensionality gives either
the dimensionality that was found to
perform best if experiments were per-
formed or recommended values from
the literature if available. It is gen-
erally agreed that the optimal di-
mensionality depends on the experi-
mental set up, that is, the choice of
database and ground truth for retrieval
experiments.

—Invariance indicates the provided in-
variance (rotation (R), translation (T),
scale (S)), and how they are achieved
(implicit or by object normalization).

—Required object representation gives the
assumed object representation. Typi-
cally the algorithms work on triangula-
tions, but some assume point clouds or
voxelizations.

—Consistency requirements states the
properties required in addition to geom-
etry information, mainly topology and
orientation of objects.

—The proposed metric mentions the
distance function used in retrieval
experiments or recommended by the
respective authors (if applicable). If an
interval is given, good retrieval results
are reported throughout the interval.

Table II shows a qualitative comparison
between the FVs surveyed in Section
3. Where more than one descriptor was
proposed in a descriptor class (e.g., for sta-
tistical moments), we chose the descriptor
that was technically described best in
the literature, according to our view. We
omitted descriptors from the table, in
cases where the technical description
in the original sources was insufficient
for this comparison. In general, much
technical detail is also encapsulated in the
implementation of object preprocessing
such as mesh normalization, surface point
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Table II. Comparison Table Between 3D Descriptors
Descriptor Proposed

Dim.
Invariance Req. Obj.

Represent.
Req. Obj.
Consistency

Proposed
Metric

Parametrized
Statistics 3.2.2

64 × 3 × 3 RTS via PCA Triangulation — L2, elastic
matching

Shape distribu-
tion 3.2.4

1024 bins RT implicit, S
via hist. norm.

Triangulation — L1

Shape his-
tograms 3.4.2

122–240
bins

RTS via PCA Point cloud — Quadratic
form

Rot. inv. point
cloud 3.4.3

21 RTS via PCA Triangulation — Not specified

Voxel 3.4.4 172 RTS via PCA Triangulation — L1

Volume 3.4.5 486 RTS via PCA Triangulation Orientation L1

Cords 3.2.5 120 RT via PCA, S
via hist. norm.

Triangulation — L1

Ray-based sam-
pling 3.3.1

91–169 RTS via PCA Triangulation — L1, L2

Rot. inv. sph.
harm. 3.4.6

512 TS via norm., R
implicit

Triangulation — L2

Reflective sym-
metry 3.4.7

— TS via norm., R
assumed

Triangulation — L∞

Surf. normal
properties 3.5.1

n.a. RT via PCA, S
implicit

Triangulation Orientation n.a.

Shape spectrum
3.5.2

10–100 RTS implicit Triangulation Orientation L1, L2

Ext. Gaussian
image 3.5.3

200 TS implicit, R
assumed

Triangulation Orientation Histogram
metric

Canonical 3DHT
3.5.4

2560 RTS via PCA Triangulation Orientation L1, L2

Weighted point
sets 3.4.8

25 × 3
cells in
signature

RTS via PCA Triangulation Orientation
(some of the
variants)

Solution to
transport
problem

Silhouette 3.6.1 375 RTS via PCA Triangulation — L1

Depth buffer
3.6.2

366 RTS via PCA Triangulation — L1

Lightfield 3.6.3 45 per
image

RTS implicit Triangulation — Multistage
matching

Topological
matching 3.7.1

n.a. RTS implicit,
non-structural
deformation

Triangulation Non-
disconnected
objects

Custom
graph
matching

Skeletonization
3.7.2

n.a. RTS implicit Volumetric Volume Custom
graph
matching

Sping Image
3.7.3

n.a. RTS implicit Point Cloud — Correlation

resampling, choosing voxel grid resolu-
tions, and so forth. Also, parametrization
of the numeric transform methods of-
ten employed, such as the Fourier and
Spherical Harmonics transform, which
in itself may have an impact on retrieval
performance of the methods, would have
to be considered. Such effects are not
reflected in the comparison table.

4.2. Experimental Comparison

The database used for our experiments
contains 1,838 3D objects that we collected

from the Internet.2 From this set, 472 ob-
jects were manually classified by shape
similarity into 55 different model classes.
The rest of the objects were left as unclas-
sified. Each classified object of each model
class was used as a query object. The ob-
jects belonging to the same model class,
excluding the query, were taken as the rel-
evant objects.

Table III gives a complete description of
the classified objects of the database. The

2Konstanz 3D model search engine at http://-
merkur01.inf.uni-konstanz.de/CCCC/
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Table III. Description of the Classified Set of Our 3D Object Database
Class id Description # of models

1 ants 6
2 rabbits 4
3 cows 7
4 dogs 4
5 fish-like 13
6 bees 5
7 CPUs 4
8 keyboards 8
9 cans 4

10 bottles 14
11 bowls 4
12 pots 4
13 cups 8
14 wine glasses 9
15 teapots 4
16 biplanes 5
17 helicopters 9
18 missiles 16
19 jet planes 18
20 fighter jet planes 26
21 propeller planes 10
22 other planes 4
23 zeppelins 6
24 motorcycles 5
25 sport cars 6
26 cars 23
27 Formula-1 cars 9
28 galleons 4

Class id Description # of models

29 submarines 5
30 warships 5
31 beds 7
32 chairs 24
33 office chairs 6
34 sofas 4
35 benches 3
36 couches 11
37 axes 4
38 glasses 7
39 knives 3
40 screws 3
41 spoons 3
42 tables 6
43 skulls 3
44 human heads 8
45 human masks 4
46 books 4
47 watches 2
48 sand clocks 4
49 swords 25
50 barrels 3
51 birches 4
52 flower pots 9
53 trees 11
54 weeds 9
55 human bodies 56

first column indicates the class identifica-
tion number. The second column describes
the 3D class models. The last column lists
the number of objects per model class.

We implemented 16 different types
of FVs to perform experiments which
includes statistical FVs (3D moments),
geometry-based FVs (principal curvature,
shape distribution, ray-based, ray-based
with spherical harmonics, shading, com-
plex valued shading, cords-based, segment
volume occupation, voxel-based, 3DDFT,
rotation invariant spherical harmonics),
image-based FVs (depth buffer, silhou-
ette), and other approaches (rotation in-
variant point cloud descriptor).

4.3. Computational Complexity of
Descriptors

Firstly, we compared the computational
complexity of 16 implemented descriptors.
Typically the computational cost of fea-
ture extraction is not of primary concern
as extraction needs to be done only once
for a database, while additional extraction
must be performed only for those objects

that are to be inserted into the database
or for query examples submitted by a user
to the database. Nevertheless, we present
some efficiency measures taken on an In-
tel P4 2.4 GHz platform with 1GB of main
memory, running Microsoft Windows. We
made the observation that, in general, fea-
ture calculation is quite fast for most of
the methods and 3D objects. Shape spec-
trum is an exception. Due to the approxi-
mation of local curvature from polygonal
data by the fitting of quadratic surface
patches to all object polygons, this method
is very computation intensive. In general,
PCA object preprocessing only constituted
a minor fraction of total extraction cost as
on average the PCA cost was only 3.59 sec-
onds for the complete database of 1,838
objects (1.96 milliseconds per object on
average).

Figure 27 shows the average extrac-
tion time as a function of the dimen-
sionality of a descriptor. We did not
include in this chart those descriptors
that posses the multiresolution property
(because we computed those descriptors
only once, using the maximum possible
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Fig. 27. Average extraction time for some of the descriptors while varying their
dimensionality.

dimensionality), and we also discarded the
curves for shape spectrum (almost con-
stant and one order of magnitude higher
than the others) and volume (a constant
value for all possible dimensions, 387
milliseconds). It follows that the extrac-
tion complexity depends on the imple-
mented descriptor. For example, one of
them has constant extraction complexity
(shape distribution), others produce sub-
linear curves (e.g., rotation invariant and
cords), others produce linear curves (e.g.,
ray-moments), and the rest produce super-
linear curves (e.g., harmonics 3D and mo-
ments).

4.4. Effectiveness Comparison Between
Descriptors

We use precision versus recall figures
[Baeza-Yates and Ribeiro-Neto 1999] for
comparing the effectiveness of the search
algorithms. Precision is the fraction of the
retrieved objects which is relevant to a
given query, and recall is the fraction of the
relevant objects which has been retrieved
from the database. That is, if R is the set
of relevant objects to the query, A is the
set of objects retrieved, and RA is the set

of relevant objects in the result set, then

precision = |RA|
|A| and recall = |RA|

|R| .

All our precision versus recall figures are
based on the eleven standard recall levels
(0%, 10%, . . . , 100%), and we average the
precision figures over all test queries at
each recall level.

In addition to the precision at multi-
ple recall points, we also calculate the R-
precision [Baeza-Yates and Ribeiro-Neto
1999] for each query which is defined by
the precision when retrieving only the first
N objects, where N is the number of rele-
vant objects for the query. The R-precision
gives a single number to rate the perfor-
mance of a retrieval algorithm. This mea-
sure is similar to the Bull-Eye Percent-
age (BEP) score adopted as an evaluation
standard by MPEG-7. The BEP is also a
single value measure and equal to recall
when retrieving the first 2N objects.

We tested all these FVs using different
levels of resolution from a few dimensions
up to 512, and we used the Manhattan
(L1) distance as the similarity function

ACM Computing Surveys, Vol. 37, No. 4, December 2005.



Feature-Based Similarity Search in 3D Object Databases 379

Table IV. Average R-Precision of the 3D Descriptors
Descriptor Best dimensionality Avg. R-precision
Depth buffer 366 0.3220
Voxel 343 0.3026
Complex valued shading 196 0.2974
Rays with spherical harmonics 105 0.2815
Silhouette 375 0.2736
3DDFT 365 0.2622
Shading 136 0.2386
Ray-based 42 0.2331
Rotation invariant point cloud 406 0.2265
Rotation invariant spherical harmonics 112 0.2219
Shape distribution 188 0.1930
Ray moments 363 0.1922
Cords-based 120 0.1728
3D moments 31 0.1648
Volume 486 0.1443
Principal curvature 432 0.1119

between vectors (we also tested L2

and Lmax , but we consistently obtained
the best effectiveness scores using L1).
Table IV shows the best R-precision
values obtained with all the FVs in de-
scending order. The first column lists the
different descriptors. The second column
indicates the best dimensionality (in
terms of effectiveness) of the FV. The last
column lists the average R-precision val-
ues obtained for each FV with their best
dimensionality.

The best overall FV among our set
of implemented methods was the depth
buffer, with an average R-precision of 0.32.
The difference in effectiveness between
the best and the worst performing FV
(depth buffer and principal curvature, re-
spectively) was significant. However, the
difference in effectiveness between sim-
ilar performing FVs was small specially
when comparing the most effective de-
scriptors. This implies that, in practice,
these best FVs should be suited about
equally well for retrieval of general polyg-
onal objects. As a contrast, the effective-
ness difference between the worst and the
best descriptor was significant (up to a fac-
tor of 3). We observed that descriptors that
rely on consistent polygon orientation like
shape spectrum or volume exhibited low
retrieval rates as consistent orientation is
not guaranteed for many of the models re-
trieved from the Internet. Also, the geo-
metrical moment-based descriptors seem
to offer only limited discrimination capa-

bilities. Figures 28 and 29 show the pre-
cision vs. recall figures for all the imple-
mented descriptors (first eight and last
eight descriptors according to Table IV,
respectively).

Figures 30 and 31 (first eight and last
eight descriptors, respectively) show the
effect of the descriptor dimensionality on
the overall effectiveness. The figures show
that the effectiveness of the FVs first in-
creases with dimensionality, but the im-
provement rate diminishes quickly for
roughly more than 64 dimensions for most
FVs (except for 3DDFT). It is interest-
ing to note that the saturation effect is
reached for most descriptors at roughly
the same dimensionality level. This is an
unexpected result, considering that differ-
ent FVs describe different characteristics
of 3D objects.

We also performed some tests using
the Princeton Shape Benchmark [Shilane
et al. 2004], to contrast our experimen-
tal results with those obtained using a
different 3D ground truth. In summary,
we obtained the same results as with our
database with only minor differences (see
Bustos et al. [2005] for details).

4.5. Analysis of the Experimental Results

From the results obtained in our exper-
iments on a limited set of implemented
descriptors, we conclude that the best
descriptors on average are those based
on projections (2D, ray-based) of the
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Fig. 28. Average precision vs. recall with best dimensionality, first eight descriptors,
according to Table IV.

Fig. 29. Average precision vs. recall with best dimensionality, last eight descriptors,
according to Table IV.
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Fig. 30. Dimensionality vs. R-precision, first eight descriptors, according to Table IV.

Fig. 31. Dimensionality vs. R-precision, last eight descriptors, according to Table IV.
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original 3D object, for example, depth
buffer, silhouette, and so forth. Excep-
tions to this rule are the voxel FV and the
3DDFT FV, which are volumetric descrip-
tors and also obtained a good experimental
effectiveness. Surface-based descriptors
obtained, in general, low effectiveness
values. All the implemented FVs showed
good robustness with respect to the level of
detail of the 3D objects. The good retrieval
quality of image-based descriptors from
our experiments are in accordance with
Chen et al. [2003] where an image-based
descriptor embedded in an advanced
multistage matching framework was
shown to provide excellent retrieval
results and outperformed several other
descriptors.

However, we also observed significant
variance with respect to the effective-
ness of retrieval when comparing the re-
sults for classes of objects. For different
classes of objects, a different FV was usu-
ally the most effective one. Unfortunately,
we could not find a strong correlation be-
tween geometric properties of the 3D ob-
ject class and the best suited FV for that
model class. A notable exception for this is
the Shape Spectrum descriptor (the worst
descriptor on average) which obtained the
best retrieval effectiveness for the human
model class. Shape spectrum was able to
recognize different models of human bod-
ies in different poses, something that was
not possible for the rest of the imple-
mented FVs. This can be attributed to
the fact that the Shape Spectrum descrip-
tor considers the distribution of local cur-
vature on the 3D object which does not
vary considerably in similar 3D models
with different poses (e.g., human bodies in
different positions). Another observation
that we made is that model classes which
are difficult to correctly orient using PCA
(cf. Figure 4, first row) are best retrieved
by FVs that are inherently rotational in-
variant, for example, rotational invariant
spherical harmonics.

Besides these specific exceptions, it is
difficult to assess a priori which FV will
have the best retrieval effectiveness for
an unknown query object. On average,
depth buffer or voxel will do pretty well,

but one would like to always select the
best FV given a query object. There-
fore, it is hard to give a recommendation
with respect to which FV to implement
into a 3D similarity search system when
building.

A promising approach to solve this
problem is to resort to the usage of
combinations of feature vectors. The idea
is to not only use one but several FVs
together, hence taking advantage of the
particularities of each considered FV. A
linear combination of FVs will not provide
the optimal results because if one of the
considered FVs has a very bad effective-
ness for the given query object, then it will
spoil the final result. Dynamic weighting
methods have been recently proposed
[Bustos et al. 2004a, 2004b] which aim
to avoid this problem, giving only a high
weight to those FVs that are most promis-
ing to the query object. The goodness of
a FV is estimated against a training (or
reference) database prior to performing
the weighted query against the actual
database. The presented experimental
results showed noticeable improvements
in the overall effectiveness of the retrieval
system by using dynamically generated
combinations of FVs.

Regarding the nature of the surveyed
FVs, we conclude that they are all pro-
posed for usage on databases which do
not restrict the type of objects contained
therein. In practice, authors have used
general purpose VRML models obtained
from the Internet, representing a wide
spectrum of objects. Of course, if the
type of models to be supported can be
anticipated in advance, it is possible to
perform benchmarks targeted at the spe-
cific models in order to select the best FVs
to implement. On the other hand, if the
relevant model features for the retrieval
task are known, it should be possible to
design custom descriptors. For example,
in CAD databases, it might be possible
to specify certain geometric features
relevant for a construction process so
one could design descriptors exploiting
such knowledge. Identifying application-
specific requirements and designing
descriptors that support them is an
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interesting future work with high com-
mercial potential.

5. CONCLUSIONS

This survey described a variety of recently
proposed feature-based descriptors for
3D objects and introduced a taxonomy
to classify them. We believe that the re-
ported feature extraction methods present
the first important achievements in the
search for general purpose, fast retrieval
algorithms for 3D object databases. The
feature vector approach maps 3D objects
to a vector of real values which, in turn,
can be used for distance calculation. Fur-
thermore, it makes applicable the wide
area of multimedia indexing techniques
which have been researched for a long
time now [Böhm et al. 2001]. Retrieval
systems may also profit from semi-
interactive query enhancement methods,
like relevance feedback [Elad et al. 2002],
annotation information [Zhang and Chen
2001], or feature selection and combina-
tion techniques [Bustos et al. 2004b].

While many sophisticated object anal-
ysis and matching methods exist in
the domain of computational geometry
and computer vision, these are usually
tailored to specific recognition problems,
and it is questionable whether they easily
extend to the database retrieval problem.
This is due to restrictions imposed on
the objects and due to computational
complexity issues. Extracting feature
vectors from skeletal representations of
the objects [Lou et al. 2004; Sundar et al.
2003] is an interesting approach but,
to date, its applicability to the database
retrieval problem in terms of effectiveness
and efficiency is unclear. Specifically, the
robustness of such methods with respect
to feature extraction parametrization has
to be explored.

Considering the wealth of feature ex-
traction methods proposed so far (new
methods defining novel 3D features are
proposed regularly), selecting the ones
to use when building an actual 3D re-
trieval system is a difficult problem. A
complete and fair comparison of all the
main available methods does not seem fea-

sible as it is currently more attractive for
researchers to propose new methods than
to re-implement existing ones. But consid-
ering computational complexity and ob-
ject consistency requirements can provide
guidance in order to select application-
specific methods to implement.

In this survey, we compared the com-
putational complexity of certain feature
vectors which are currently implemented
in our own system. In practice, the
normalization step and the descriptor
computation cost is small, and almost all
descriptors can be computed in less than
a second for an object, on average, on a
standard workstation. As the descriptor
computation must be performed only once
per object, this implies that the described
descriptors can be used for real-world
applications.

We also experimentally compared sev-
eral of these 3D FVs on a classified
database of 3D objects formed by models
collected from the Internet, and we com-
pared their retrieval performance using
standard effectiveness measures from the
information retrieval domain (precision
vs. recall diagrams and the R-precision
values). Our experimental comparison of
16 different 3D FVs shows that there are
number of them that have good average
effectiveness and work well in most cases
(e.g., depth buffer, voxel and complex FVs)
for the types of 3D models found on the
Internet today.

There remain important open problems
in the research of content-based descrip-
tion and retrieval of 3D objects, some of
which we outline in the following.

To consider searching 3D objects
from heterogeneous databases where
the objects may be arbitrarily scaled and
oriented in their respective coordinate sys-
tems, scale and rotation invariant meth-
ods must either normalize the models or
employ descriptions that provide these in-
variances implicitly. Most methods to date
advocate rotation and translation normal-
ization based on Principal Components
Analysis. As PCA may lead to counterintu-
itive alignment results for certain 3D mod-
els [Funkhouser et al. 2003; Tangelder
and Veltkamp 2003], extensions and
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alternatives to the PCA-based normaliza-
tion need to be devised. Depending on the
application domain, additional invariance
may be desirable, for example, invari-
ance with respect to local deformations in
geometry and topology or invariance with
respect to anisotropic scaling [Kazhdan
et al. 2004].

Also, the current methods focus mainly
on geometric aspects of 3D models. Left
aside are other attributes which are
present in many 3D databases: color, ma-
terial properties, and texture can be spec-
ified in many formats, such as the popular
VRML format. More specialized formats
from the CAD domain usually also contain
structural object information and machin-
ing process information; this information
might as well be exploited for 3D retrieval.

How to improve the efficiency of 3D
search systems is also an open issue. The
need for appropriate indexing techniques,
considering the high dimensionality of the
descriptors, seems obvious. Moreover, if
we consider the segmentation of objects
as a possible approach for partial similar-
ity search, then the original database with
a few thousands of models can be trans-
formed into a database with millions of
objects where efficiency considerations be-
come mandatory.
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BÖHM, C., BERCHTOLD, S., AND KEIM, D. A. 2001.
Searching in high-dimensional spaces: Index
structures for improving the performance
of multimedia databases. ACM Comput.
Surv. 33, 3, 322–373.

BUSTOS, B., KEIM, D. A., SAUPE, D., SCHRECK, T., AND
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