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Abstract. Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification 
problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent 
method and its improved versions in affine space. In this paper we present a comparative study of the least mean square 
(LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, 
transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these 
algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the 
unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare 
the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties 
of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved 
versions of LMS algorithms on their robustness and misalignment. 
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INTRODUCTION 

The stochastic gradient based least mean square (LMS) algorithm is the most famous adaptive algorithm in 
signal processing applications because of its easiest and reliable approach [1-5] . Although LMS algorithm is a 
robust and computationally simple algorithm, its performance is highly dependent on the spectral power (i.e. 
eigenvalue spread) of the input signal's autocorrelation matrix. The spectral power of input signals increases with an 
increase in correlation and this results in poor performance of LMS algorithm. Several iterative algorithms have 
been presented in literature to overcome this problem and have improved performance. Narayan proposed transform 
domain LMS (TD-LMS) algorithm using data-independent orthogonal transforms[6], while LMS-Newton algorithm 
is a good realization of the same algorithm[3]. These algorithms provided better convergence speed than that of 
conventional LMS algorithm. Further improvements in the convergence speed were made by Normalized LMS 
(NLMS) algorithm [7, 8] that updates the weight vector based on the current input vector, and Affine projection 
algorithm (APA) [9] that is based on affine subspace projections.  

In this paper a comparative study of system identification of an unknown plant is performed, employing LMS 
algorithm and its four well known variants LMS-Newton, NLMS, TD-LMS and APA. The purpose of this study is 
to find out the characteristics of LMS algorithm which still need to be improved. Emphasis is given to the 
misalignment that is the tap-weight error of adaptive filter. In simulations, learning curves of normalized 
misalignment of all the algorithms are compared, and it is found that although improved versions of LMS algorithm 
have fast convergence speed for mean squares error (MSE), but none has exhibited better convergence in 
misalignment, than conventional LMS algorithm. 

LMS ADAPTIVE FILTER

Consider an FIR filter of length N  with a tap-weight vector wn , and error signal w aT
n ne n s n  at instant

n . Here s n  is the output signal, while the input vector 1 1a
T

n u n u n u n N  is formed 

by the input signal u n . The LMS algorithm minimizes the instantaneous error function 2J n e n , for 
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minimum MSE, and this minimization problem is equivalent to updating the tap-weight vector w n , as each new 

input signal is received, to get an optimal solution wopt . The update equation of the LMS algorithm is given as: 

                        1 2w w an n ne n ,                                      (1) 

where  is a positive constant that controls the rate of convergence. For stationary input and an appropriate choice 

of , the minimum value of e n  generates a  Cauchy sequence 
1

wn n
from (1) in N . But since N  is a 

Banach space [10], there must exist an  optimum weight vector w N
opt , such that w wn opt  as n gets very 

large. Value of optimal solution wopt , as given by Wiener-Hopf equation [3], is 1w X popt , where X a aT
n nE is 

the autocorrelation matrix of input signal, and  p anE s n is its crosscorrelation vector. Defining misalignment 

of LMS algorithm's tap weight vector as: m w wn n opt , and solving Eq- (1), [3] gives 

It is clear from Eq-(2) that mnE  forms a geometric progression, with common ratio equal to 2 XI . It 
implies that convergence behavior of LMS algorithm can be determined by the geometric progressions of filter 
weights w n towards the optimal solution wopt . In that case mnE converges to zero, and 

2 1 1, ,jI j N ,

where j  is an eigenvalue of  the autocorrelation matrix X a aT
n nE . Simplification of above inequality gives 

10 ; 1, ,
j

j N . To ensure the stability of the adaptive process, value of  must satisfy the condition: 

                               
max

10 ;                                   (3) 

max  is the largest eigenvalues of  the autocorrelation matrix X  and is given by the maximum of the power 

spectrum of input signal an . Hence convergence rate of LMS algorithm depends upon the eigenvalue spread of the 

correlation matrix X  of input signals. Since it is difficult to have a prior knowledge of initial settings of weight 
vector with respect to eigenvalue spread of matrix X , it is difficult to predict the rate of convergence of LMS 
algorithm. This drawback has motivated researchers to look for some efficient modifications of computationally 
simple LMS algorithm, and several improvements have been developed so far. Here we present a few of them and 
see that still there is scope of further improvement in the efficiency of the algorithm. 

The LMS-Newton Algorithm 

The input vector an in error term ane n  of Eq-(1), is preconditioned by an estimate of the inverse 1Xn  of 

input signal's autocorrelation matrix X . The modified update equation is: 
                   1

1 2w w X aNt Nt
n n n ne n .                                   (4) 

Misalignment m w wNt Nt
n n opt of LMS-Newton algorithm, satisfies (by Eq-(2))  

                  1 2m X mn nE I E .                                               (2) 

   1
1 2m X X mNt Nt

n n nE I E .                                              (5) 

234



Since 1X Xn I , the eigenvalue spread of input correlation matrix X does not affect the convergence of 

geometric progression mNt
nE  to zero. It shows that the convergence characteristics of the LMS-Newton algorithm 

are independent of the eigenvalue spread of X , and therefore its rate of convergence is predictable. But it has an 
increased complexity of computing the inverse of input correlation matrix in each iteration, which makes it a 
comparatively less favorable choice.

Normalized LMS Algorithm 

In normalized LMS (NLMS) algorithm, we use a regularized inverse of X  to precondition the input signals. 

Since a aT
n n  has rank one, it has at most one nonzero eigenvalue, given by:

2

2
a a aT

n n n . This value can be very 
close to zero for numerically small values of input signals, in which case the algorithm might get unstable. In order 
to avoid division by zero, we choose  1( )a aT

n nI  as a regularized inverse of a aT
n n , where 0 . The update 

equation is then given by: 
          1

1 ( )w w a a aNm Nm T
n n n n ne n I .                                    (6) 

Using matrix inversion lemma, it becomes: 
1 2

2

w w a
a

Nm Nm
n n n

n

e n .

The misalignment m w wNm Nm
n n opt  of NLMS-tap weight vector must satisfy the relation: 

Choice of stepsize parameter 2

2
aNm

n
 offers a good tradeoff between fast convergence and good 

tracking abilities, but this algorithm has a drawback of increased misadjustment. 

TD-LMS Algorithm 

Transform domain LMS algorithms is a class of robust preconditioned algorithms having good tracking 
capabilities in non stationary environments. Application of an orthogonal transform (e.g. FFT, DCT, or DST etc.) , 
followed by a power normalization step, has the ability to reduce the eigenvalue spread of input correlation matrix, 
which results in an increase of convergence speed of the algorithm[3]. The input vector an , and  weight vector w n

are transformed to â an n and ŵ wn n  respectively, through an orthogonal transform .  With error 

estimate ˆŵ aT
n ne n s n , and power 2 2 2

1 ˆ1 an n ni i i ; 0,1, , 1i N , where 

0 1,  the weight vector update equation is: 

          1
1 ˆˆ ˆ 2w w an n n nD e n .                                    (8) 

Here 2 2 20 , 1 , , 1n n n nD diag N  is a diagonal matrix consisting of the approximated 

eigenvalues of X . TD-LMS algorithm follows an almost straight path to the optimal solution and that the effect of 
the eigenvalue spread is compensated by the power normalization. 

Affine Projection Algorithm (APA) 

All the algorithms, discussed in previous sections, update the weight vector on the basis of a single input vector 
and can be viewed as one dimensional affine projection algorithms. Affine projection algorithm (APA) is a 
generalization of the NLMS algorithm in multiple dimensional affine spaces. APA uses data-reusing technique to 

1 2

2

m X m
a

Nm Nm
n n

n

E I E .                            
                                             (7) 
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TABLE(1).  Norm-2 of the Misalignment of iterative algorithms for 1000n .

Algorithm 0.0, 5N 0.5, 5N 0.5, 10N 0.85, 5N 0.85, 10N
LMS 0.005738 0.009859 0.010155 0.026207 0.010609 
LMS-Newton 0.013175 0.021317 0.020108 0.012811 0.067711 
NLMS 0.010316 0.023599 0.015334 0.022428 0.035410 
TD-LMS 0.014521  0.022428 0.024578 0.009403 0.047362 
APA 0.020215 0.035195 0.021997 0.022866 0.0426390 

As far as performance of remaining four algorithms is concerned, it can be seen in Figure 2(a-d) that they have 
failed to show better convergence of misalignment. Table 1 shows that for smaller filter length and small values of 

, LMS-Newton and TD-LMS algorithms have almost the same misalignment near 1000n , while misalignment 
of LMS-Newton gets poor with an increase in value of , as compared with its variant TD-LMS algorithm. An 
overall comparison of LMS-Newton, NLMS, TD-LMS and APA shows preferred misalignment behavior of NLMS 
algorithm. APA has fastest convergence rate of MSE among these algorithms, but has poorest convergence of 
misalignment. Figures 2(a) and (c) compare the normalized misalignment for 5N with correlated signals 
corresponding to 0.5 & 0.85 respectively. In both cases TD-LMS exhibit closest normalized convergence 
to LMS, while  learning curves of normalized misalignment in Figure 2(b)&(d)  for 10N  show preference of 
NLMS algorithm in normalized misalignment behavior. 

(a)  (b)

(c) (d)

FIGURE 2.  Learning Curves of Normalized Misalignment for (a). 0.5 , and 5N ,

 (b). 0.5 , and 10N , (c). 0.85 , and 5N , (d). 0.85, and 10N .
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In Figure 3, 20N and learning curves of normalized misalignment are recorded for 2000 iterations, with an 
ensemble average of 200 independent runs, and 0.85 . More iterations are considered because of slow 
convergence in MSE of LMS algorithm, with an increase in filter length, slowdowns convergence of normalized 
misalignment as well and to have a clear picture of observations we need to consider more time samples. This 
simulation with larger filter length presents a better comparison of misalignment behavior of all the algorithms. This 
comparison again shows the preference of NLMS algorithms over other invariants of LMS algorithm. 

FIGURE 3.  Learning Curves of Normalized Misalignment for 0.85 , and 20N .

 CONCLUSION 

The objective of this study was to compare the performance of well known modifications of LMS algorithm and 
find out the rooms of further improvement. The unknown system identification problem is solved by using LMS 
algorithm and its variants LMS-Newton, NLMS, TD-LMS and APA, and experiments are performed for observing 
learning curves of normalized misalignment and transient performances employing these algorithms. This 
comparison has shown that although APA has fast rate of convergence in MSE, however its misadjustment and 
convergence in misalignment are not good enough. On the other hand NLMS algorithm has normalized 
misalignment closest to that of LMS algorithm and remains stable, but its misadjustment needs improvement. This 
comparison highlights the need of designing new preconditioning techniques to develop variants of LMS algorithm, 
having better misadjustment and misalignment.  
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